
ll
OPEN ACCESS
Protocol
Quantitative neuronal morphometry by
supervised and unsupervised learning
Kayvan Bijari, Gema

Valera, Hernán

López-Schier,

Giorgio A. Ascoli

ascoli@gmu.edu

Highlights

Quantification of

microscopic neural

tracings stored in

SWC format

Unsupervised and

supervised analysis of

quantified features of

neural morphologies

Identification of

morphological

signatures

differentiating groups

of neural arbors

Open-source

software that can be

modified, expanded,

and applied to
diverse problems

We present a protocol to characterize the morphological properties of individual neurons

reconstructed frommicroscopic imaging.We first describe a simple procedure to extract relevant

morphological features from digital tracings of neural arbors. Then, we provide detailed steps on

classification, clustering, and statistical analysis of the traced cells based on morphological

features. We illustrate the pipeline design using specific examples from zebrafish anatomy. Our

approach can be readily applied and generalized to the characterization of axonal, dendritic, or

glial geometry.
Bijari et al., STAR Protocols 2,

100867

December 17, 2021 ª 2021

The Author(s).

https://doi.org/10.1016/

j.xpro.2021.100867

mailto:ascoli@gmu.edu
https://doi.org/10.1016/j.xpro.2021.100867
https://doi.org/10.1016/j.xpro.2021.100867
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2021.100867&domain=pdf


Protocol

Quantitative neuronal morphometry by supervised and
unsupervised learning

Kayvan Bijari,1 Gema Valera,2 Hernán López-Schier,2 and Giorgio A. Ascoli1,3,4,5,*

1Center for Neural Informatics, Structures, & Plasticity and Neuroscience Program, Krasnow Institute for Advanced Study,
George Mason University, Fairfax, VA 22030, USA

2Sensory Biology and Organogenesis, Helmholtz Zentrum Munich, 85764 Neuherberg, Germany

3Bioengineering Department, Volgenau School of Engineering, George Mason University, Fairfax, VA 22032, USA

4Technical contact

5Lead contact

*Correspondence: ascoli@gmu.edu
https://doi.org/10.1016/j.xpro.2021.100867

SUMMARY

We present a protocol to characterize the morphological properties of individual
neurons reconstructed frommicroscopic imaging. We first describe a simple pro-
cedure to extract relevant morphological features from digital tracings of neural
arbors. Then, we provide detailed steps on classification, clustering, and statisti-
cal analysis of the traced cells based on morphological features. We illustrate the
pipeline design using specific examples from zebrafish anatomy. Our approach
can be readily applied and generalized to the characterization of axonal, den-
dritic, or glial geometry.
For complete context and scientific motivation for the studies and datasets used
here, refer to Valera et al. (2021).

BEFORE YOU BEGIN

Technical details of data acquisition, imagingmodalities and neuronal tracing are discussed in depth

in the original publication (Valera et al., 2021). Continuous advances in both microscopy and compu-

tational power are making the semi-automated reconstructions of neuronal arbors progressively

more practical (Peng et al., 2017). This protocol describes how to quantify digitized neurons into

descriptive morphological features and then apply unsupervised, supervised, and statistical analysis

on quantifiable morphological attributes, see also (Polavaram et al., 2014). The software setup

described here was deployed on Ubuntu 20.04 LTS Linux distribution. However, all referred tools

and packages function properly across different platforms, including Windows 10.

Installation of analysis tools and downloading datasets and custom codes

Timing: 1 h

1. Install L-Measure v5.3 or v5.2 software (depending on the available version for your operating

system).

a. Download the version relevant to your platform. More information in this regard is available on

the L-Measure website (see key resources table for the research resource identifier (Bandrow-

ski et al., 2016)).

2. Install Python 3.8 on your computer system (see key resources table for link) or on a virtual envi-

ronment (see Note below).

a. Install the following packages on your installed python:

i. matplotlib version 3.3.4

STAR Protocols 2, 100867, December 17, 2021 ª 2021 The Author(s).
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1

ll
OPEN ACCESS

mailto:ascoli@gmu.edu
https://doi.org/10.1016/j.xpro.2021.100867
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2021.100867&domain=pdf
http://creativecommons.org/licenses/by/4.0/


ii. NumPy version 1.20.1

iii. Pandas version 1.2.2

iv. scikit-learn version 0.24.1

v. SciPy version 1.6.0

b. Alternative 1: After activating your virtual environment from the ‘scripts’ directory, use ‘pip

install -r requirements.txt’ to automatically install all required packages.

c. Alternative 2: We have provided ‘.yaml’ file located in the ‘scripts’ directory to install both

python environment and the required packages. To do so, open your ‘conda’ terminal

and run ‘conda env create –name star-protocol -f star-protocol.yaml’. This will create the py-

thon environment named ‘star-protocol’ along with the right packages. For more information

about ‘conda’ and its installation, please visit: https://conda.io/projects/conda/en/latest/

user-guide/index.html

Note: After installing Python, all scripts can be run either via command line using ‘python

[name-of-script].py [input parameters]’ or through any preferred python environment inter-

face providing optimized utilities for code modifications.

3. Download from the GitLab repository all python scripts and representative data pertaining to this

protocol and associated use case scenario.

a. URL: https://gitlab.orc.gmu.edu/kbijari/zebrafish-analysis-protocol

4. For simplicity purposes, all reconstruction files used in the examples illustrated here are also avail-

able in this GitLab repository. The reconstruction files from this and thousands of additional data-

sets can also be obtained from NeuroMorpho.Org (Ascoli et al., 2007).

KEY RESOURCES TABLE

STEP-BY-STEP METHOD DETAILS

We begin by illustrating how to extract quantitative morphological attributes from digital recon-

structions of neurons represented in the standard SWC file format (Nanda et al., 2018). Then, we

demonstrate the procedure to run unsupervised, supervised, and statistical analysis on these

attributes.

Data quantification

Timing: 2 h

These steps describe how to process and quantify neural morphologies stored in the SWC file format

(Figure 1). These are most typically representing neurons and glia (Abdellah et al., 2018; Ascoli et al.,

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Neuronal reconstructions NeuroMorpho.Org RRID:SCR_002145

Source code gitlab.orc.gmu.edu/kbijari/zebrafish-analysis-protocol RRID:SCR_021638

Software and algorithms

Python 3.8 python.org/downloads/ RRID:SCR_008394

L-Measure cng.gmu.edu:8080/Lm RRID:SCR_003487

SciPy 1.6.0 scipy.org RRID:SCR_008058

scikit-learn 0.24.1 scikit-learn.org RRID:SCR_002577

Pandas 1.2.2 pandas.pydata.org RRID:SCR_018214

NumPy 1.20.1 numpy.org RRID:SCR_008633

matplotlib 3.3.4 matplotlib.org RRID:SCR_008624

ll
OPEN ACCESS

2 STAR Protocols 2, 100867, December 17, 2021

Protocol

https://conda.io/projects/conda/en/latest/user-guide/index.html
https://conda.io/projects/conda/en/latest/user-guide/index.html
https://gitlab.orc.gmu.edu/kbijari/zebrafish-analysis-protocol
http://NeuroMorpho.Org
https://gitlab.orc.gmu.edu/kbijari/zebrafish-analysis-protocol


2017) but have also been used for vascular reconstructions (Wright et al., 2013). The output is a set of

quantitative morphological attributes for every neuron, which could be used for supervised, unsu-

pervised, or any other quantitative analysis.

1. Run L-Measure in your operating system.

a. In Linux you need to run java -jar Lm.jar in the command line from the folder where the L-Mea-

sure executable scripts are located.

b. Check the troubleshooting section of the L-Measure website if you run into errors.

c. Figure 2 shows the main view of L-Measure software being executed and related sample

output.

2. In the ‘function’ tab select the morphological attributes that you wish to extract from the SWC

files. The selected morphological attributes utilized here (referred to henceforth as ‘‘core metric

functions’’) are: ’N_bifs’, ’N_branch’, ’Width’, ’Height’, ’Depth’, ’Length’, ’EucDistance’, ’PathDis-

tance’, ’Branch_Order’, ’Contraction’, ’Fragmentation’, ’Partition_asymmetry’, ’Bif_ampl_local’,

’Bif_ampl_remote’, ’Fractal_Dim’ (see also Note below).

Note: The ‘included’ and ‘excluded’ points in step 6 are not user-defined, but rather automat-

ically determined by L-Measure and displayed for information only. Specifically, these values

refer to the number of rows in the SWC file used to calculate the desired morphometric. For

instance, the functions measuring the bifurcation angles (Bif_ampl_local and Bif_ampl_re-

mote) only operate on the arbor bifurcation points, and not on the stems, continuations,

and terminations. Thus, the included points would be in this example the counts of bifurca-

tions and the excluded points would be the rest of the arbor tracing points. For exact defini-

tions and more information about core metric functions and the measurements extracted in

Step 2, visit the L-Measure website (http://cng.gmu.edu:8080/Lm/help/index.htm).

3. In the ‘input’ tab select the SWC files corresponding to one or more neurons from the local

drive.

Figure 1. Sample visualized neuron from the zebrafish data along with the corresponding rows of its SWC file

ll
OPEN ACCESS

STAR Protocols 2, 100867, December 17, 2021 3

Protocol

http://cng.gmu.edu:8080/Lm/help/index.htm


4. In the ‘output’ tab specify a file name and the location where you wish to store the extracted

values.

5. Finally, in the ‘go’ tab press ‘go’ for L-Measure to run the analysis and calculate the numerical at-

tributes for each SWC file.

6. In the output file, L-Measure produces neuron name, name of the core metric function, total sum

of the function over all tracing points (Total_Sum), number of points included in the analysis

(Count_considered_compartments), number of points excluded (Count_discarded_compart-

ments), minimum value (Min), average (Ave), maximum (Max), and standard deviation (S.D.) of

each metric function (Scorcioni et al., 2008).

7. Edit these quantifications by removing irrelevant or redundant statistics in each row and save the

resultant file in comma separated value (CSV) format (see Note below for more details). Every line

in this CSV file should represent a single neuron. File ‘neuron_features.csv’ in the scripts/data

folder was obtained in that way from the output of L-Measure for this experimental dataset. Alter-

natively, you can run ‘python convert.py -i /location/of/input-file -o /location/to/save/output-fil-

e.csv’; this script reads the results yielded fromL-Measure from the user’s specified location and

creates a CSV file (output-file.csv) that can be used for both the supervised and unsupervised sub-

sequent steps.

Note: Step 7 is required because not all elements of the L-Measure default statistical summary

are appropriate for every feature. Therefore, selecting the most suitable statistic for the

Figure 2. Neuronal quantification

(A) Graphical User Interface of the L-Measure software (open on the default ‘specificity’ tab).

(B) Sample output file produced by L-Measure.

ll
OPEN ACCESS

4 STAR Protocols 2, 100867, December 17, 2021

Protocol



analysis is important. For more information on the used parameters and their relevance see

Table 1 below. It is important to mention that L-Measure does not calculate median values

and mean-based statistics may not be appropriate if the data is not normally distributed. A

detailed description of the values L-Measure can extract from the SWC files and their applica-

tions is provided by the reference paper (Scorcioni et al., 2008).

Unsupervised clustering

Timing: 2 h

The following steps describe the unsupervised analysis, a process that groups neurons based on

their morphological features independent of any a priori knowledge about the cells. We start with

the fundamental K-means algorithm for data clustering and then use graphical mixture models to

find innate distributions within the dataset.

8. From your Python environment or command line, run ‘python unsupervised-elbow-curve.py

-i ./Data/neuron_features.csv’.

Table 1. Description of L-Measure outputs

Core function (brief description) Relevant statistics to consider Reasoning behind the chosen statistic

N_bifs (number of bifurcations) Total_sum Returns the total number
of bifurcations

N_branch (number of branches) Total_sum Returns the total number
of branches

Width (neuronal width) L-Measure returns
the same value for
Min, Max, and Ave

Horizontal extent (x-coordinate)
containing 95% of all tracing points

Height (neuronal height) L-Measure returns the
same value for
Min, Max, and Ave

Vertical extent (y-coordinate)
containing 95% of all tracing points

Depth (neuronal depth) L-Measure returns the
same value for
Min, Max, and Ave

Depth (z-coordinate) containing
95% of all tracing points

Length (total
arborization length)

Total_sum Returns the total length
summed across all compartments

EucDistance (maximum Euclidean
distance from soma to the tips)

Ave and max are
relevant, we used Max

Maximum straight distance
encompassing the whole neuron

PathDistance (path distance
of a compartment)

Ave and max are
relevant, we used Max

Maximum geodesic distance
from soma to tips

Branch_Order (order of the
branch with respect to the soma)

Ave and max are
relevant, we used Max

Maximum number of bifurcations
from soma to tips

Contraction (ratio
between Euclidean distance
of a branch and its path length)

Ave Average tortuosity
across all branches

Fragmentation (total number
of compartments that
constitute a branch between
two bifurcation points)

All are relevant, we
used Total_sum

Total number of compartments
from all of the branches

Partition_asymmetry (average over
all bifurcations of sub-trees)

Ave Topological tree
asymmetry measured from
all bifurcation points

Bif_ampl_local (angle
between the first two
bifurcation compartments)

All are relevant,
we used Ave

Average over all bifurcations
of the angle between the first
two daughter compartments

Bif_ampl_remote (angle
between, current plane of bifurcation
and previous plane of bifurcation)

All are relevant,
we used Ave

Average over all bifurcations
of the angle between the
following bifurcations or tips

Fractal_Dim (slope of linear fit of
regression line obtained from the
plot of path vs. Euclidean distances)

All are relevant,
we used Ave

Average space occupancy
measured from all branches

ll
OPEN ACCESS

STAR Protocols 2, 100867, December 17, 2021 5

Protocol



a. This script reads the neuronal data from the data folder and normalizes them.

b. Then it plots the elbow curve, which shows the trade-off between residual variance and the

number of clusters (Figure 3A).

c. Elbow curve is used to determine the optimal number of clusters. This heuristic method cal-

culates the sum of squared distances of all points from the center of their respective cluster as

a function of the number of clusters. The point(s) of maximum inflection (visible bends) are

appropriate choices for the number of clusters. In this case, the curve has two high-inflection

points (3 and 5) and we selected 3 as the number of clusters for our analysis.

9. From your Python environment or command line, run ‘python unsupervised-kmeans.py

-i ./Data/neuron_features -k 3’.

a. This script reads the neuronal data from the data folder and groups them into 3 clusters uti-

lizing the K-means algorithm.

b. The script prints the cluster label for each neuron as well as the centers of the three clusters.

c. The program also performs a principal component analysis to optimize the spatial display of

the feature distribution along the main directions of their variance.

d. The program then plots (i) a scattered visualization of the data based on the first two principal

components and (ii) a bar plot depicting the count of neurons in each cluster (Figures 3B and 3C).

e. You can alter the number of clusters by changing the input parameter ‘‘k’’ before running the

script.

10. From your Python environment or command line, run ‘python unsupervised-BIC-curve.py

-i ./Data/neuron_features.csv’.

a. This script reads the neuronal data from the data folder and normalizes them.

b. Then it plots the Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC)

curves, which quantify the grouping distinctiveness as a function of the number of clusters

(Figure 4A).

c. Bayesian Information Criterion (BIC) is a likelihood-based method for model selection

among a finite set of possibilities. This is a heuristic score to determine the optimal number

of clusters.

d. Akaike Information Criterion (AIC) measures the relative amount of information lost by a

given model for a certain number of clusters.

e. Generally, lower values of AIC and BIC are more desirable. For our analysis, we selected 3,

where both curves have relatively low value compared to neighboring points.

Figure 3. K-means clustering results

(A) Elbow curve to determine the optimal number of clusters.

(B) Scatter plot of the neurons based on their first two principal components (PC1 and PC2) and color-coded clusters (each color represents a cluster).

(C) Distribution of different cluster assignments found by K-means algorithm.

ll
OPEN ACCESS

6 STAR Protocols 2, 100867, December 17, 2021

Protocol



11. From your Python environment or command line, run ‘python unsupervised-GMM.py -i ./Data/

neuron_features.csv -k 3’.

a. This script reads the neuronal data from the data folder and groups them into 3 clusters using

Gaussian mixture distributions.

b. The script prints the group label for each neuron.

c. The program also performs a principal component analysis to optimize the spatial display of

the feature distribution along the main directions of their variance.

d. The program then plots (i) a scattered visualization of the data based on the first two principal

components and (ii) a bar plot depicting the label distribution (Figures 4B and 4C).

e. You can alter the number of clusters by changing the input parameter ‘‘k’’ before running the

script.

Optional: Scikit-learn includes various algorithms to perform grouping and clustering data-

sets. Based on the nature and inherent characteristics of the data, different clustering models

might achievemore interpretable outcomes (Bijari et al., 2018). To explore different clustering

techniques please visit https://scikit-learn.org/stable/modules/clustering.html for an over-

view of suitable alternatives and code snippets to execute them.

Supervised clustering

Timing: 2 h

Many datasets of interest, including the examples employed here, have specific labels assigned to

each neuron, representing knowledge that the researcher has about these cells that is in principle

unrelated to the arbor morphology. Examples of such labels (often referred to as ‘‘true classes’’)

include electrophysiological characteristics, anatomical location of the soma, expression of partic-

ular genes, functional specificity, and many more (Ascoli and Wheeler, 2016). Having the data labels

in hand, the next series of steps describes the process of supervised analysis. This process assesses

the morphological features that best separate among the chosen labels. We begin with visualizing

the dataset to gain a spatial perception of the different data points based on their principal compo-

nents. Then we add the labels to the results of the previous unsupervisedmethods to check whether

the intrinsic morphological characteristics of the cells, as discovered by unsupervised learning,

correspond to any independent functional property (distinct ground truth classes) and ascertain

how adequately the supervised algorithms perform relative to the known information. At the end,

Figure 4. Gaussian Mixture Model (GMM) clustering results

(A) Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC) scores to determine the optimal number of clusters.

(B) Scatter plot of the neurons based on their first two principal components (PC1 and PC2) and color-coded clusters (each color represents a cluster).

(C) Distribution of different cluster assignments found by GMM.

ll
OPEN ACCESS

STAR Protocols 2, 100867, December 17, 2021 7

Protocol

https://scikit-learn.org/stable/modules/clustering.html


we train and test a battery of supervised classification methods on the labeled data to quantify how

accurately the morphological features can discern among the labels.

12. For this step, neural data should have explicit class labels. There are typically no limits to the

number of these labels (ground truth information) and they are typically determined by the

experimentalist while preparing the dataset based on biologically relevant knowledge. To pre-

pare your labels, please create or format your data labels as described below.

a. Use ‘labels (template).xlsx’ in the ‘Scripts’ folder and label each neuron with the proper label

based on your experiment.

b. If you have more than one class, use additional columns.

c. Save the template file for your records. Also, export a CSV file to provide input for the next

steps in the analysis.

13. From your Python environment or command line, run ‘python supervised-visualize.py -i ./Data/

neuron_features.csv -l ./Data/neuron_labels.csv’.

a. This script reads the neuronal data and their corresponding labels from the data folder.

b. The program next performs a principal component analysis to optimize the spatial display of

the feature distribution along the main directions of their variance.

c. The program then outputs a series of scatter plots, one for each set of labels, with each

neuron data point associated with its label symbol (Figure 5).

14. From your Python environment or command line, run ‘python labeled-kmeans.py -i ./Data/neu-

ron_features.csv -l ./Data/neuron_labels.csv -k 3’.

a. This script reads the neuronal data and groups them into 3 clusters.

b. The program then outputs the homogeneity score and a series of scatter plots, each display-

ing the color-coded K-means clusters with symbols (shapes) corresponding to the true class

labels in each label category (Figure 6).

c. Homogeneity is a clustering metric based on the ground truth labels. It checks if clusters

contain only samples belonging to a single class. A clustering result satisfies homogeneity

if all of its clusters contain only data points that are members of their ground truth class.

This metric is bounded between 0 and 1, with lower values indicating low homogeneity

(Rosenberg and Hirschberg, 2007).

d. You can alter the input parameters before running the python script.

15. From your Python environment or command line, run ‘python labeled-GMM.py -i ./Data/neuro-

n_features.csv -l ./Data/neuron_labels.csv -k 3’.

a. This script reads the neuronal data and groups them into 3 clusters, just as in steps 9a-d

above.

b. The program then outputs the homogeneity score (as described in 14.c) and a series of scat-

ter plots, each displaying the color-coded distributions with symbols (shapes) corresponding

to the true class labels in each label category (Figure 7).

c. You can alter the input parameters before running the python script.

16. From your Python environment or command line, run ‘python supervised-classification.py

-i ./Data/neuron_features.csv -l ./Data/neuron_labels.csv’ and follow the command line instruc-

tions.

a. This script reads and pre-processes the neuronal data and their corresponding labels from

the data folder.

b. The script asks which class label you want to select for the task of classification. This could

vary based on your choice of dataset.

c. The program then calculates the feature importance using the ‘ExtraTreesClassifier’ algo-

rithm (see Note below) and plots those values in a bar graph.

Note: The ExtraTreesClassifier algorithm used in step 16 is an approach to feature selection

based on the Random Forest method. Random Forest creates several tree-based models us-

ing the features and attempts to classify the data via those decision trees. The importance of

ll
OPEN ACCESS

8 STAR Protocols 2, 100867, December 17, 2021

Protocol



the features depends on the number of times that feature is used to split a node and on the

number of samples it splits. Specifically, this algorithm weighs the total decrease in ‘‘node im-

purity’’ by the proportion of samples reaching that node. AMean Decrease in Impurity (MDI) is

then calculated as the average of this measure over all trees of the ensemble. In other words,

the fewer splits a feature needs to classify the data, and the larger the proportion it classifies,

the ‘‘purer’’, hence more important, it is (Geurts et al., 2006).

d. Next, the program trains four distinct machine learning algorithms on the labeled data: ‘lo-

gistic regression’, ‘decision tree’, ‘k-nearest-neighbors’, and ‘multilayer perceptron’.

e. The program then calculates and plots the accuracy of each of those four algorithms in two

different scenarios: if considering all morphological attributes of the neurons; and if only

considering the most important attribute.

f. Here we show a representative classification example for the class label ‘region’ (Figure 8). To

obtain the results for other dimensions, follow command line instructions and change ‘class

label’ when the command prompt asks for the class label.

17. From your Python environment or command line, run ‘python supervised-density.py -i ./Data/

neuron_features.csv -l ./Data/neuron_labels.csv’ and follow the command line instructions.fakn

Figure 5. Distribution of the neurons based on their principal components (PC1 and PC2) and their ground truth labels

(A) Scatter plot based on different neuromast labels (A: anterior, L: lateral, T: trunk, D: dorsal; numbers associated with the labels indicate closeness of

the neuron to the head of the animal, with 1 being the closest and 6 being furthest).

(B) Scatter plot based on different tuning labels (u: unknown, r: rostral, c: caudal).

(C) Scatter plot based on different region labels (trunk, tail, posterior lateral line, dorsal lateral line, and anterior lateral line).

(D) Scatter plot based on different hemisphere labels (right and left).

ll
OPEN ACCESS

STAR Protocols 2, 100867, December 17, 2021 9

Protocol



a. This script reads and pre-processes the neuronal data and their corresponding labels from

the data folder.

b. The script then asks which feature and which class label you want to select for the density

analysis. This varies based on your choice of dataset.

c. In this example, we have selected the morphological features ‘Contraction’ and ‘EucDis-

tance’ to run density analysis. Nevertheless, the analysis could be repeated on any other

dimension of the data. To do so, follow the command line instructions.

d. Afterward, from the command line instructions we select ‘lateral line (LL)’ class labels to

perform density analysis within this class for different class labels, namely, ‘ALL’ and ‘PLL’

for anterior and posterior LL, respectively..

e. The program plots the density curve for the ‘Contraction’ and ‘EucDistance’ data considering

different ‘lateral line’ class labels (Figure 9).

18. From your Python environment or command line, run ‘python supervised-pdv-comparison.py

-p ./Data/PDVs -l ./Data/neuron_labels.csv’ and follow the command line instructions.

a. This script reads the persistent diagram vectors and the data labels from the data folder (see

Note below).

Note: The persistence diagram vectors (PDVs) utilized in step 18 are based on the concept of

topological persistence in the field of computational topology (Kanari et al., 2018). PDVs are

Figure 6. Visualization of the neurons based on K-means results (color-coded clusters) and their ground truth labels (shapes)

For label meanings, see Figure 5 legend.

ll
OPEN ACCESS

10 STAR Protocols 2, 100867, December 17, 2021

Protocol



derived from a simplified representation of the neural arbor that only considers the stems, bi-

furcations, and terminations while ignoring all continuation points along the branches. In

other words, this process creates a straight segment between any two topological nodes of

the tree representing the Euclidean length of each branch. The descriptor function is the total

length of the unique path (i.e., the sum of all branch lengths) from the tree stem to any point in

the tree. The stem is the tree root, typically corresponding to its point of emergence from the

soma (Li et al., 2017). Starting from this simplified representation, persistence analysis sweeps

the neuron tree in decreasing function values, i.e., beginning from the farthest terminal tip,

while tracking the appearance (end point) and disappearance (start point) of each neurite

branch. The persistence diagram summarizes all resulting appearances and disappearances

into a set of 2D points whose (x, y) coordinates represent the distance from the soma of the

end and start points of each branch. Mathematically, the set of points in the persistence dia-

gram captures a nested branch decomposition of the neuron tree with respect to the simpli-

fied Euclidean branch length description. Finally, the persistence diagram summary is con-

verted into a 100-dimensional vector representing the function values at 100 positions

sampled uniformly between the minimum and maximum values, corresponding respectively

to the beginning of the tree and the farthest terminal tip. Intuitively, persistence diagram vec-

tors capture the morphological information similar to that represented in Sholl diagrams (Gar-

cia-Segura and Perez-Marquez, 2014; Sholl, 1953). The advantage of this approach, however,

is that it produces a proper metric space which allows quantitative applications such as those

Figure 7. Visualization of the neurons based on GMM results (color-coded groups) and their ground truth labels (shapes)

For label meanings, see Figure 5 legend.

ll
OPEN ACCESS

STAR Protocols 2, 100867, December 17, 2021 11

Protocol



illustrated in this protocol. PDVs for the data used in this analysis are available on

NeuroMorpho.Org. For instructions to generate PDVs from SWC files or additional informa-

tion on their interpretation, refer respectively to the corresponding GitHub page https://

github.com/Nevermore520/NeuronTools or to the Frequently Asked Question entry of

NeuroMorpho.Org http://neuromorpho.org/myfaq.jsp?id=qr11

b. The script then asks which feature, class label, and values you want to select for the density

analysis. This varies based on your choice of dataset.

c. In this example, we illustrated the statistical analysis on lateral line (LL) to compare class la-

bels ‘ALL’ and ‘PLL’. Nevertheless, the comparison could be repeated for any other class

labels. To do so, follow the command line instructions and provide your desired input values.

d. The program calculates pairwise arccosine distances of different vectors based on their la-

bels and groups them in ‘within’ or ‘across’ populations for same labels (ALL/ALL or PLL/

PLL) and different labels (ALL/PLL), respectively.

e. Afterward, the software runs student’s t-test and displays a statement indicating whether the

two groups (‘within’ vs ‘across’) are statistically different based on the resulting p-value.

f. The program also outputs a bar plot of the average value of ‘within’ and ‘across’ populations

with error bars indicating S.D. (Figure 10).

Note: Model-specific parameters (e.g., number of clusters) will be inserted by the user

through the command prompt and users will be guided with appropriate help messages

from the command prompt in the clustering and classification algorithms. Furthermore, users

should be advised that we have accepted the default python package parameters (e.g., num-

ber of iterations, penalties, and learning rates) offered by the Scikit-learn toolkit. Please refer

to the Scikit-learn package manuals to check if the default settings are suitable for your data.

Optional: To disregard some of the data points from the visualization or analysis based on

their class or relevance, simply remove the corresponding entries from both the

Figure 8. Supervised analysis results

(A) Feature importance of the data.

(B) Classification accuracy of logistic regression, decision tree, K-nearest-neighbor (K-NN), and multilayer perceptron (MLP) using all features and just

the top feature. For more information on the morphological features see step 7 and for details on feature importance see step 16.

ll
OPEN ACCESS

12 STAR Protocols 2, 100867, December 17, 2021

Protocol

http://NeuroMorpho.Org
https://github.com/Nevermore520/NeuronTools
https://github.com/Nevermore520/NeuronTools
http://NeuroMorpho.Org
http://neuromorpho.org/myfaq.jsp?id=qr11


‘neuron_features.csv’ and ‘neuron_labels.csv’ files. Save a copy of the original files prior to any

modifications.

EXPECTED OUTCOMES

In this protocol, neuronal reconstructions are quantified into measurable attributes expressed as nu-

merical values. Moreover, the digitally reconstructed neurons are compared through unsupervised

and supervised analysis, manifesting the most distinguishing features conducive to neuronal

classification.

LIMITATIONS

The protocol only includes morphological attributes of the neural reconstructions into account.

Future variations could consider additional features in the analysis, such as genetic expression or

time-lapse dynamics (Nanda et al., 2020).

TROUBLESHOOTING

Use specified version of the tools or packages for proper functioning. Re-install tools if errors persist.

Problem 1

Different Python packages overlap causing code to malfunction.

Potential solution

Install Python in a virtual environment and install a fresh copy of the mentioned packages. For further

details on how to install a virtual environment for different operating systems please visit https://

packaging.python.org/guides/installing-using-pip-and-virtual-environments/ (Step 2 in before

you begin)

Problem 2

L-Measure does not produce the desired outputs (Step 1).

Figure 9. Density analysis

Density plot for features ‘Contraction’ (branch tortuosity) (A) and ‘EucDistance’ (maximum straight distance from soma to tips) (B) in the entire dataset as

well as in selected sub-class labels (ALL and PLL).

ll
OPEN ACCESS

STAR Protocols 2, 100867, December 17, 2021 13

Protocol

https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/
https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/


Potential solution

Make sure the software is executable and has appropriate privileges. In Linux, for example, this is

achieved using the ‘‘chmod u+x Lm.*’’ command.

Problem 3

Depending on your data, during the classification phase you might receive a warning that some of

the algorithms did not converge yet. For example, after running the supervised_classification.py

script you might see a warning like: (ConvergenceWarning: Stochastic Optimizer: Maximum itera-

tions (90) reached and the optimization hasn’t converged yet. warnings.warn) (Step 16)

Potential solution

In such cases, you need to increase the number of iterations for that algorithm. For example, in the

case above, in themulti-layer-perceptron algorithm, increase the ‘max_iter’ parameter on line 143 of

the supervised_classification.py script with a text editor of your choice.

Problem 4

Issue running python scripts while providing input parameters (any step).

Potential solution

All python scripts are enhanced with help command inside. Run ‘python [Script].py -h’ to see more

information about the input parameters of the script.

Problem 5

Python runs into error while reading files from the provided paths (any step)

Potential solution

Check path names and file names to make sure they exist in the appropriate location and their name

does not include any special characters.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead

contact, Giorgio A. Ascoli (ascoli@gmu.edu).

Figure 10. Statistical analysis of persistence diagram vectors (PDVs) relative to lateral lines (LL)

The script first calculates the pairwise arccosine distances between PDVs of ‘within’ and ‘across’ populations with

respect to class labels (ALL and PLL), and then performs their statistical comparison. Bar plot shows the average

of ‘within’ and ‘across’ distances with error bars indicating standard deviations.

ll
OPEN ACCESS

14 STAR Protocols 2, 100867, December 17, 2021

Protocol

mailto:ascoli@gmu.edu


Materials availability

This study did not generate any reagents.

Data and code availability

All image stacks, data, and scripts of this protocol are publicly available on GitLab at https://gitlab.

orc.gmu.edu/kbijari/zebrafish-analysis-protocol/tree/master/. Neuronal reconstructions are avail-

able at NeuroMorpho.Org (Lopez-Schier archive)

ACKNOWLEDGMENTS

This work is supported by NIH R01NS39600, U01MH114829, and R01NS86082 grants to G.A.A. and

NIH U19NS104653 and BMBF 01GQ1904 grants to H.L.-S.

AUTHOR CONTRIBUTIONS

K.B. and G.A.A. designed the specifications of the protocol. G.V. and H.L.-S. conducted all wet lab

experiments and neuronal tracings. K.B. and G.A.A quantified the neuronal morphologies and ran

the analysis. K.B. wrote the Python scripts. K.B. and G.A.A. wrote the manuscript with feedback

from G.V. and H.L.-S. G.A.A. was responsible for funding acquisitions and project management.

DECLARATION OF INTERESTS

The authors declare no competing interests.

REFERENCES

Abdellah, M., Hernando, J., Eilemann, S., Lapere,
S., Antille, N., Markram, H., and Schürmann, F.
(2018). NeuroMorphoVis: a collaborative
framework for analysis and visualization of neuronal
morphology skeletons reconstructed from
microscopy stacks. Bioinformatics 34, i574–i582.
https://doi.org/10.1093/bioinformatics/bty231.

Ascoli, G.A., Donohue, D.E., and Halavi, M. (2007).
NeuroMorpho.Org: a central resource for neuronal
morphologies. J. Neurosci. 27, 9247–9251. https://
doi.org/10.1523/JNEUROSCI.2055-07.2007.

Ascoli, G.A., Maraver, P., Nanda, S., Polavaram, S.,
and Armañanzas, R. (2017). Win-win data sharing in
neuroscience. Nat. Methods 14, 112–116. https://
doi.org/10.1038/nmeth.4152.

Ascoli, G.A., andWheeler, D.W. (2016). In search of
a periodic table of the neurons: axonal-dendritic
circuitry as the organizing principle. BioEssays 38,
969–976. https://doi.org/10.1002/bies.201600067.

Bandrowski, A., Brush, M., Grethe, J.S., Haendel,
M.A., Kennedy, D.N., Hill, S., Hof, P.R., Martone,
M.E., Pols, M., Tan, S.S., et al. (2016). The Resource
Identification Initiative: a cultural shift in publishing.
Neuroinformatics 14, 169–182. https://doi.org/10.
1007/s12021-015-9284-3.

Bijari, K., Zare, H., Veisi, H., and Bobarshad, H.
(2018). Memory-enriched big bang–big crunch
optimization algorithm for data clustering. Neural
Comput. Appl. 29, 111–121. https://doi.org/10.
1007/s00521-016-2528-9.

Garcia-Segura, L.M., and Perez-Marquez, J. (2014).
A new mathematical function to evaluate neuronal
morphology using the Sholl analysis. J. Neurosci.

Methods 226, 103–109. https://doi.org/10.1016/j.
jneumeth.2014.01.016.

Geurts, P., Ernst, D., and Wehenkel, L. (2006).
Extremely randomized trees. Mach Learn. 63, 3–42.
https://doi.org/10.1007/s10994-006-6226-1.

Kanari, L., Dłotko, P., Scolamiero, M., Levi, R.,
Shillcock, J., Hess, K., and Markram, H. (2018). A
topological representation of branching neuronal
morphologies. Neuroinformatics 16, 3–13. https://
doi.org/10.1007/s12021-017-9341-1.

Li, Y., Wang, D., Ascoli, G.A., Mitra, P., and Wang,
Y. (2017). Metrics for comparing neuronal tree
shapes based on persistent homology. PLoS One
12, e0182184. https://doi.org/10.1371/journal.
pone.0182184.

Nanda, S., Bhattacharjee, S., Cox, D.N., and Ascoli,
G.A. (2020). Distinct relations of microtubules and
actin filaments with dendritic architecture. iScience
23, 101865. https://doi.org/10.1016/j.isci.2020.
101865.

Nanda, S., Chen, H., Das, R., Bhattacharjee, S.,
Cuntz, H., Torben-Nielsen, B., Peng, H., Cox, D.N.,
De Schutter, E., and Ascoli, G.A. (2018). Design and
implementation of multi-signal and time-varying
neural reconstructions. Sci. Data 5, 170207. https://
doi.org/10.1038/sdata.2017.207.

Peng, H., Zhou, Z., Meijering, E., Zhao, T., Ascoli,
G.A., and Hawrylycz, M. (2017). Automatic tracing
of ultra-volumes of neuronal images. Nat. Methods
14, 332–333. https://doi.org/10.1038/nmeth.4233.

Polavaram, S., Gillette, T.A., Parekh, R., and Ascoli,
G.A. (2014). Statistical analysis and data mining of

digital reconstructions of dendritic morphologies.
Front. Neuroanat. 8. https://doi.org/10.3389/
fnana.2014.00138.

Rosenberg, A., and Hirschberg, J. (2007). V-
measure: a conditional entropy-based external
cluster evaluation measure. In Proceedings of the
2007 Joint Conference on Empirical Methods in
Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL).
Presented at the CoNLL-EMNLP 2007 (Association
for Computational Linguistics), pp. 410–420.

Scorcioni, R., Polavaram, S., and Ascoli, G.A. (2008).
L-Measure: a web-accessible tool for the analysis,
comparison and search of digital reconstructions of
neuronal morphologies. Nat. Protoc. 3, 866–876.
https://doi.org/10.1038/nprot.2008.51.

Sholl, D.A. (1953). Dendritic organization in the
neurons of the visual and motor cortices of the cat.
J. Anat. 87, 387–406.

Valera, G., Markov, D.A., Bijari, K., Randlett, O.,
Asgharsharghi, A., Baudoin, J.-P., Ascoli, G.A.,
Portugues, R., and López-Schier, H. (2021). A
neuronal blueprint for directional
mechanosensation in larval zebrafish. Curr. Biol. 0.
https://doi.org/10.1016/j.cub.2021.01.045.

Wright, S.N., Kochunov, P., Mut, F., Bergamino, M.,
Brown, K.M., Mazziotta, J.C., Toga, A.W., Cebral,
J.R., and Ascoli, G.A. (2013). Digital reconstruction
and morphometric analysis of human brain arterial
vasculature from magnetic resonance
angiography. Neuroimage 82, 170–181. https://
doi.org/10.1016/j.neuroimage.2013.05.089.

ll
OPEN ACCESS

STAR Protocols 2, 100867, December 17, 2021 15

Protocol

https://gitlab.orc.gmu.edu/kbijari/zebrafish-analysis-protocol/tree/master/
https://gitlab.orc.gmu.edu/kbijari/zebrafish-analysis-protocol/tree/master/
http://NeuroMorpho.Org
https://doi.org/10.1093/bioinformatics/bty231
https://doi.org/10.1523/JNEUROSCI.2055-07.2007
https://doi.org/10.1523/JNEUROSCI.2055-07.2007
https://doi.org/10.1038/nmeth.4152
https://doi.org/10.1038/nmeth.4152
https://doi.org/10.1002/bies.201600067
https://doi.org/10.1007/s12021-015-9284-3
https://doi.org/10.1007/s12021-015-9284-3
https://doi.org/10.1007/s00521-016-2528-9
https://doi.org/10.1007/s00521-016-2528-9
https://doi.org/10.1016/j.jneumeth.2014.01.016
https://doi.org/10.1016/j.jneumeth.2014.01.016
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1007/s12021-017-9341-1
https://doi.org/10.1007/s12021-017-9341-1
https://doi.org/10.1371/journal.pone.0182184
https://doi.org/10.1371/journal.pone.0182184
https://doi.org/10.1016/j.isci.2020.101865
https://doi.org/10.1016/j.isci.2020.101865
https://doi.org/10.1038/sdata.2017.207
https://doi.org/10.1038/sdata.2017.207
https://doi.org/10.1038/nmeth.4233
https://doi.org/10.3389/fnana.2014.00138
https://doi.org/10.3389/fnana.2014.00138
http://refhub.elsevier.com/S2666-1667(21)00573-6/sref15
http://refhub.elsevier.com/S2666-1667(21)00573-6/sref15
http://refhub.elsevier.com/S2666-1667(21)00573-6/sref15
http://refhub.elsevier.com/S2666-1667(21)00573-6/sref15
http://refhub.elsevier.com/S2666-1667(21)00573-6/sref15
http://refhub.elsevier.com/S2666-1667(21)00573-6/sref15
http://refhub.elsevier.com/S2666-1667(21)00573-6/sref15
http://refhub.elsevier.com/S2666-1667(21)00573-6/sref15
https://doi.org/10.1038/nprot.2008.51
http://refhub.elsevier.com/S2666-1667(21)00573-6/sref17
http://refhub.elsevier.com/S2666-1667(21)00573-6/sref17
http://refhub.elsevier.com/S2666-1667(21)00573-6/sref17
https://doi.org/10.1016/j.cub.2021.01.045
https://doi.org/10.1016/j.neuroimage.2013.05.089
https://doi.org/10.1016/j.neuroimage.2013.05.089

	XPRO100867_proof_v2i4.pdf
	Quantitative neuronal morphometry by supervised and unsupervised learning
	Before you begin
	Installation of analysis tools and downloading datasets and custom codes

	Key resources table
	Step-by-step method details
	Data quantification
	Unsupervised clustering
	Supervised clustering

	Expected outcomes
	Limitations
	Troubleshooting
	Problem 1
	Potential solution
	Problem 2
	Potential solution
	Problem 3
	Potential solution
	Problem 4
	Potential solution
	Problem 5
	Potential solution

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	References



