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Abstract: Market basket prediction, which is the basis of product recommendation systems, is the
concept of predicting what customers will buy in the next shopping basket based on analysis of their
historical shopping records. Although product recommendation systems develop rapidly and have
good performance in practice, state-of-the-art algorithms still have plenty of room for improvement.
In this paper, we propose a new algorithm combining pattern prediction and preference prediction. In
pattern prediction, sequential rules, periodic patterns and association rules are mined and probability
models are established based on their statistical characteristics, e.g., the distribution of periods of a
periodic pattern, to make a more precise prediction. Products that have a higher probability will have
priority to be recommended. If the quantity of recommended products is insufficient, then we make
a preference prediction to select more products. Preference prediction is based on the frequency and
tendency of products that appear in customers’ individual shopping records, where tendency is a
new concept to reflect the evolution of customers’ shopping preferences. Experiments show that our
algorithm outperforms those of the baseline methods and state-of-the-art methods on three of four
real-world transaction sequence datasets.

Keywords: recommendation systems; market basket recommendation; data mining; periodic pattern;
sequential rule; association rule

1. Introduction

Data mining technology is an efficient tool for business. Early in 1993, Agrawal et al. [1]
proposed association rule mining for transaction databases to discover the intrinsic connec-
tion between different products and the shopping habits of customers. This technology
makes sales prediction easier. By predicting what customers will buy in the next shopping
basket and then recommending the products to them, retailers can improve their services
and promote sales. We call such a technique market basket prediction, which is the basis of
product recommendation systems.

Since Agrawal et al. proposed association rule mining, both data mining and recom-
mendation systems have been developing rapidly. On the one hand, sequential patterns [2],
sequential rules [3], coverage patterns [4], temporal patterns [5], subgraph patterns [6]
and periodic patterns [7] have been proposed. Data mining, as an increasingly sophis-
ticated technology, has been used for many domains, such as time series analysis [8],
medicine [9] and image processing [10]. On the other hand, recommendation systems
include other kinds of implementation methods including pattern-based models, collabo-
rative filtering [11] and Markov chains [12]. Advances in data mining technology make
pattern-based models promising. There are many efficient and ready-made algorithms for
pattern mining [13], and they can be easily used to implement pattern-based recommenda-
tion systems.
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A pattern reveals the relation between different products, which makes pattern-based
models comprehensive. Among them, a sequential rule reveals the relation between the
products in two consecutive transactions. This means that a customer bought a product
at some time and will buy another product at a future time. For example, if a customer
buys a computer, he or she will need a U-Disk or printer possibly when working on
the computer. The higher the confidence of a sequential rule, the higher the possibility.
A number of sophisticated and efficient sequential rule mining algorithms have been
proposed, including RuleGen [13], ERMiner [14] and RuleGrowth [3,15]. Because all
products have a limited service life, when a product is used out, we will buy another
product again. Therefore, some products periodically appear in our market baskets. If we
know the period of a periodic pattern, then we can predict when it will appear again. Some
periodic pattern mining algorithms have been proposed, including SPP [16], MPFPS [17]
and LPPM [18]. The association rule reveals the relation between the products in a basket.
This means that if a customer buys a product, he or she will buy another product at the
same time. Some efficient algorithms such as TopKRules [19] and TNR [20] focus on
association rule mining.

As described above, pattern-based models have the advantages of popularity and
comprehensibility. However, existing pattern-based recommendation algorithms are in-
sufficient to capture customers’ shopping habits. For example, Ref. [21] focused on the
association rule only, and the periodicity was neglected. Furthermore, the statistical char-
acteristics inside a pattern, e.g., the distribution of periods of a periodic pattern, are also
neglected. For example, by the current definition of periodic patterns [22], when a periodic
pattern is used to make a prediction, we can only predict that the pattern will reoccur
between a time interval but the probability at an exact time.

In terms of the disadvantages of existing methods, our method leverages not only the
association rule but also the sequential rule and periodic pattern for prediction at the same
time. We call such a strategy pattern prediction. Furthermore, the frequency and tendency
of a product will be considered the preference that customers have for this product and
the evolution of preference, respectively, to make predictions, which we call preference
prediction. Combining pattern prediction and preference prediction, we propose a new
algorithm for market basket prediction, which we call SPAP (Sequential rule, Periodic
pattern, Association rule, and Preference).

In this paper, first, we present a new definition of periodic patterns and tendencies.
Generally, if a product is bought periodically by a customer, then the period will be nearly
equal to the service life of the product. However, service lives of a kind of product may
differ from one another, leading to a fluctuation in the period. What type of pattern is a
periodic pattern, which has a virtue to reveal the periodicity of product purchases that
have not a fixed period? Obviously, if a pattern has periods that the fluctuation is too large
compared to the average period, it will not be periodic. Taking the average period and
standard deviation into account, the coefficient of variation, which is the specific value of
the standard deviation and mean value, is used to measure the periodicity of patterns in our
definition. The concept of tendency is based on the following considerations: if a product
is more frequently bought in recent baskets than in early baskets of a customer, then the
customer tends to be increasingly inclined to the product. Otherwise, if a product is more
frequently bought in early baskets than recent ones, the customer tends to be increasingly
estranged from the product. We use a new concept of tendency to reflect this fact.

Second, we propose probability models for pattern prediction. The sequential rule
reveals the relation of two patterns belonging to two consecutive transactions. The former
pattern is called the antecedent, and the latter the consequent. When a sequential rule is
used for predicting the next basket, the time interval between antecedent and consequent
is usually neglected. That is, the consequent will follow the antecedent with a given confi-
dence, however, we do not know for sure at what time it occurs. In this paper, we learn
the statistical model for the time interval of all sequential rules in the training data. In
prediction, we use the statistical model to compute the probability of the occurrence of con-
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sequents at an exact time stamp. For periodic patterns, the statistical model is determined
by the average period and standard deviation. After training, we obtain all sequential
rules, periodic patterns and association rules, along with their statistical characteristics.
Consequently, we can calculate the probability of all products in a customer’s next basket.
Products that have a higher probability will have priority to be recommended. If the quan-
tity of recommended products is insufficient, then we will make a preference prediction to
select more products.

Preference prediction is based on this observation: if a product is more frequently
bought by a customer, then we draw the conclusion that the customer has a preference for
this product, and this product will have priority to be recommended. If some products
have the same frequency, then the product with a higher tendency will be selected first in
such a case.

Our contributions in this paper are summarized as follows:

• We present a new definition for periodic patterns and the tendency of patterns.
• We propose probability models for pattern prediction to predict the next basket.
• We design a new algorithm combining pattern prediction and preference prediction

for next basket recommendation.
• Empirically, we show that our algorithm outperforms the baseline methods and state-

of-the-art methods on three of four real-world transaction sequence datasets under
the evaluation metrics of F1-Score and Hit-Ratio.

The remainder of this paper is organized as follows: Section 2 reviews the existing
approaches. Section 3 includes the preliminary. We introduce our prediction method
in Section 4. The implementation of our algorithm is described in Section 5, and the
experimental analysis is reported in Section 6. Finally, we draw a conclusion in Section 7.

2. Related Work

Implementation methods of recommendation systems can be categorized into sequen-
tial, general, pattern-based, and hybrid models. Sequential models [23,24], mostly relying
on Markov chains, explore sequential transaction data by predicting the next purchase
based on the last actions to capture sequential behavior. A major advantage of this model
is its ability to capture sequential behavior to provide good recommendations. The general
model [25], in contrast, does not consider sequential behavior but makes recommendations
based on customers’ whole purchase history. The key idea is collaborative filtering. The
pattern-based model bases predictions on the frequent patterns that are extracted from
the shopping records of all customers [26]. Among them, the hybrid model combines the
models mentioned above or other ideas, such as graph-based models [27] and recurrent
neural network models [28,29]. Since there are so many works devoted to recommendation
systems, it is impossible to list all here. So, we only briefly review pattern-based approaches
in the next paragraph.

Fu et al. [30] first used an association rule for recommendation systems. Candidate
items are listed for her in their order of support. Wang et al. [31] proposed an associa-
tion rule mining algorithm with maximal nonblank for recommendation. The weighted
association rule mining algorithm based on FP-tree and its application procedure in per-
sonalization recommendation was given by Wang et al. [32]. Ding et al. [33,34] proposed
a method for personalized recommendation, which could decrease the number of asso-
ciation rules by merging different rules. Li et al. [21,35] proposed the notion of strongest
association rules (SARs), and developed a matrix-based algorithm for mining SAR sets.
As the subset of the entire association rule set, the SAR set includes many fewer rules
with the special suitable form for personalized recommendation without information
loss. Lazcorreta et al. [26] applied a modified version of the well-known apriori data
mining algorithm towards personalized recommendation. Najafabadi et al. [36] applied
the users’ implicit interaction records with items to efficiently process massive data by
employing association rules mining. It captures the multiple purchases per transaction in
association rules, rather than just counting total purchases made. Chen et al. [37] mined
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simple association rules with a single item in consequent to avoid exponential pattern
growth. The method proposed by Zhou et al. [38] involved implementation of genetic
network programming and ant colony optimization to solve the sequential rule mining
problem for commercial recommendations in time-related transaction sequence databases.
Maske et al. [39] proposed a method describing how customer behavior predicted based
on the customer purchase items by association rule mining algorithm Apriori.

In the other methods, Cumby et al. [40] proposed a predictor that embraces a user-
centric vision by reformulating basket prediction as a classification problem. They build
a distinct classifier for every customer and perform predictions by relying just on their
personal data. Unfortunately, this approach assumes the independence of items purchased
together. Wang et al. [41] employed a two-layer structure to construct a hybrid represen-
tation over customers and items purchase history from last transactions: the first layer
represents the transactions by aggregating item vectors from the last transactions, while
the second layer realizes the hybrid representation by aggregating the customer’s vectors
and the transactions representations. Guidotti et al. [42–44] defined a new pattern named
the Temporal Annotated Recurring Sequence (TARS), which seeks to simultaneously and
adaptively capture the co-occurrence, sequentiality, periodicity and recurrence of the items
in the transaction sequence. Jain et al. [45] designed a business strategy prediction system
for market basket analysis. Kraus et al. [46] proposed similarity matching based on subse-
quential dynamic time warping as a novel predictor of market baskets, and leverage the
Wasserstein distance for measuring the similarity among embedded purchase histories.
Hu et al. [47] presented a k-nearest neighbors (kNN) based method to directly capture two
useful patterns: repeated purchase pattern and collaborative purchase pattern that asso-
ciate with personalized item frequency. Faggioli et al. [48] proposed an efficient solution
to achieve the next basket recommendation, under a more general top-n recommenda-
tion framework by exploiting a set of collaborative filtering based techniques to capture
customers’ shopping patterns and intentions.

3. Preliminary

Retailers usually preserve their customers’ shopping histories in a database that we
call the transaction sequence database. A customer’s shopping history contains many
transactions. Transaction, also called basket, usually contains ID, date, product list and
quantity. All transactions of a customer are sorted according to date. This is called the
transaction sequence, as Table 1 shows. A transaction sequence database contains all
customers’ transaction sequence, as Table 2 shows.

Let C = {c1, ..., cn} be a set of n customers and I = {i1, ..., im} be a set of m items
or products in the market. The transaction sequence of customer c is denoted as Bc, and
Bc = 〈b1, ..., brc〉, where bi ⊆ I , i ∈ {1, ..., rc}, denotes a transaction or basket. The terms
transaction, basket and itemset will be used interchangeably, due to the fact that we are
referring to an unordered set of items (or products). The size of sequence Bc is denoted as
|Bc|, and |Bc| = rc. brc+1 denotes the next basket that will be purchased by customer c at the
next time. We use indexes set {1, ..., rc} of baskets in transaction sequence rather than formal
dates as timestamps to simplify the problem. The interval of two transactions is denoted
as Gap(bi, bj) and defined as Gap(bi, bj) = j− i, where 1 ≤ i < j ≤ rc. The transaction
sequence dataset D = {Bc1 , ..., Bcn} consists of transaction sequences of n customers.

Problem 1. Assume a transaction sequence dataset, our aim is to predict the next basket for each
customer according to their transaction sequence. Then, we will select k products to recommend to
him or her. Formally, given dataset D, for all transaction sequence Bc ∈ D and Bc = 〈b1, ..., brc〉
to predict brc+1, which contains a set of candidate items for recommendation. Let b∗c denote the
selected item set; then, b∗c contains k items selected from brc+1 to recommend to customer c.
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Table 1. Transaction sequence of a customer.

Transa. ID Timestamp Basket Transa. ID Timestamp Basket

b1 2010-01-01 {a, b, c, f } b9 2010-02-06 {a, b, g, h}
b2 2010-01-05 {b, c, d} b10 2010-02-14 {b, c, d}
b3 2010-01-07 {a, b, e, f , h} b11 2010-02-19 {a, b, f , h}
b4 2010-01-11 {c, d, f , h} b12 2010-02-25 {c, d, f , g, h}
b5 2010-01-16 {a, d, e, f , g} b13 2010-03-02 {a, b, c}
b6 2010-01-19 {c, e, g, h} b14 2010-03-09 {b, e, g}
b7 2010-01-28 {a, b, c, g} b15 2010-03-17 {a, c, d, e}
b8 2010-01-31 {a, c, f , g} b16 2010-03-28 {c, f }

Table 2. Illustrative transaction sequence database containing seven customers.

Customer ID Transaction Sequences

c1 〈{a, c}, {b, e}, { f , g}〉
c2 〈{b, c, d}, {a, c}, { f , g}, {d, e}〉
c3 〈{d, e, g}, {a, c}, { f , g}〉
c4 〈{a, c}, {d, e}, {c}, { f , g}〉
c5 〈{a, c}, {e}, { f , g}〉
c6 〈{a, c, e}, {a, c}, { f , g}, {b, f , g}〉
c7 〈{d}, {a, b, c}〉

Definition 1. (Frequent Itemset Pattern) Given an itemset p, p ⊆ I , frequency threshold θ, and
transaction sequence B = 〈b1, ..., br〉. If ∃bi ∈ B, we have p ⊆ bi, then we call bi a support for p.
Let Sup(p) denotes all supports of p, then Sup(p) = {bi|∀bi ∈ B, p ⊆ bi}. The absolute frequency
of p is defined as Freq(p) = |Sup(p)|, and the relative frequency is Freq(p) = |Sup(p)|/|B|. If
Freq(p) ≥ θ, then we call p a frequent itemset pattern and itemset pattern for short. If p contains
only a single item, that is, |p| = 1, we call it a single item pattern.

Definition 2. (Association Rule) Given two itemset patterns p1 and p2 of a transaction sequence,
confidence threshold η, if
(1) p1 6= ∅, p2 6= ∅ and p1 ∩ p2 = ∅,
(2) p = p1 ∪ p2 is an itemset pattern, and
(3) Freq(p)/Freq(p1) ≥ η,
then p1 → p2 is an association rule. Its frequency is denoted as Freq(p1 → p2) and defined
as Freq(p1 → p2) = Freq(p). Its confidence is denoted as Con f (p1 → p2) and defined as
Con f (p1 → p2) = Freq(p)/Freq(p1). We call p1 the antecedent, and p2 the consequent.

Definition 3. (Frequent Sequential Pattern) A sequence s = 〈p1, ..., pk〉 is a subsequence of
transaction sequence B = 〈b1, ..., br〉, denoted as s ≺ B, if and only if there exist k integers
{e1, ..., ek} such that k ≤ r, e1 < · · · < ek and ∀i ∈ {1, ..., k} it holds that pi ⊆ bei . We call
this integer set an embedding of s in B, denoted as Emb(s), Emb(s) = {e1, ..., ek}. Embs(s)
denotes the set of all embeddings of s in B. In transaction sequence dataset D, if s ≺ Bc, we call
Bc a support of s. The set of all supports of s is denoted as Sup(s) and Sup(s) = {Bc|∀Bc ∈ D,
s ≺ Bc}. The absolute frequency of s is defined as Freq(s) = |Sup(s)| and the relative frequency
Freq(s) = |Sup(s)|/|D|. Given a threshold θ for frequency, if Freq(s) ≥ θ, then s is a frequent
sequential pattern, sequential pattern for short.

In this paper, the length of s is denoted as Len(s), and defined as Len(s) = ∑v∈{1,...,k} |pv|.
If a sequence s contains only an itemset p, that is, s = 〈p〉, |s| = 1, then it can be mapped
into itemset p, and we have s = p. If Len(s) = 1, viz. s has only a single itemset, and this
itemset contains only a single item. We call it a single item pattern.
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Definition 4. (Sequential Rule) Given two sequential patterns s1 and s2 of a transaction sequence
dataset and confidence threshold η, if
(1) s1 6= ∅, s2 6= ∅,
(2) s = 〈s1, s2〉 (s1 concatenates with s2) is a sequential pattern, and
(3) Freq(s)/Freq(s1) ≥ η,
then we call s1 → s2 a sequential rule. Its frequency Freq(s1 → s2) = Freq(s), and confidence
Con f (s1 → s2) = Freq(s)/Freq(s1). We call s1 the antecedent, and s2 the consequent.

Property 1. Assume a sequential rule s1 → s2 : Con f , where s2 = 〈p1, ..., pk〉, then we have
s1 → 〈p1〉 : Con f1,..., s1 → 〈pk〉 : Con fk, and Con f ≤ Con f1,..., Con f ≤ Con fk.

Proof. The proof comes from the anti-monotonicity of sequential patterns’ frequency.

Definition 5. (Periodic Pattern) Let p be an itemset pattern of transaction sequence B = 〈b1, ..., br〉,
λ = Freq(p). The occurrence list of p is denoted as Occur(p), and defined as Occur(p) = {i|∀i ∈
{1, ..., r} s.t. bi ∈ B and p ⊆ bi}. Then, the period list of p in B is denoted as Per(p), and
defined as Per(p) = {pera = wa+1 − wa|∀a ∈ {1, ..., λ− 1}, wa ∈ Occur(p)}. The coefficient
of variation of p is denoted as Coe f va(p), and Coe f va(p) = std(Per(p))/mean(Per(p)), where
std(∗) and mean(∗) are the standard deviation and mean, respectively. Given a threshold δ for the
coefficient of variation, if Coe f va(p) ≤ δ, then p is a periodic itemset pattern or periodic pattern
for short.

Definition 6. (Gap of Two Itemsets) Given two itemsets p1 and p2 of transaction sequence B.
If ∃o1 ∈ Occur(p1), ∃o2 ∈ Occur(p2) and o1 < o2, then the gap of p1 and p2 in B is defined as
Gap(p1, p2) = min{g|∀o1 ∈ Occur(p1), ∀o2 ∈ Occur(p2), o1 < o2, g = o2 − o1}; otherwise,
Gap(p1, p2) = ∞.

Definition 7. (Gap of Two Subsequences) Given two subsequences s1 and s2 of transaction
sequence B. If ∃E1 ∈ Embs(s1), ∃E2 ∈ Embs(s2) and max(E1) < min(E2), then the gap
of s1 and s2 in B is defined as Gap(s1, s2) = min{g|∀E1 ∈ Embs(s1), ∀E2 ∈ Embs(s2),
max(E1) < min(E2), g = min(E2)−max(E1)}; otherwise, Gap(p1, p2) = ∞.

Definition 8. (Tendency) Given an itemset p of transaction sequence B, we call Ten(p) =
mean(Occur(p)) the tendency of itemset p in transaction sequence B.

Example 1. For the transaction sequence given in Table 1, the support of itemset p = {a, h} is
Sup(p) = {b3, b9, b11}, frequency Freq(p) = 3, Occur(p) = {3, 9, 11}, per1 = 9− 3 = 6,
per2 = 11− 9 = 2, periods list Per(p) = {6, 2}, Coe f va(p) = 0.71. In Table 2, the frequency of
sequence s1 = 〈{a, c}〉 is Freq(s1) = 7, the frequency of sequence s2 = 〈{ f , g}〉 is Freq(s2) = 6,
and the frequency of sequence s = 〈s1, s2〉 is Freq(s) = 6. We have Con f (s1 → s2) = 6/7.
Embs(s)c1 = {{1, 3}}. Embs(s)c6 = {{1, 3}, {1, 4}, {2, 3}, {2, 4}}. The frequencies of itemsets
p1 = {a, c} and p2 = { f , g} in transaction sequence Bc6 are Freq(p1)c6 = 2 and Freq(p2)c6 = 2,
respectively. The occurrence list of itemset {d} in transaction sequence Bc2 is Occur({d})c2 =
{1, 4}, tendency Ten({d})c2 = 2.5.

4. Framework

Our method includes pattern prediction and preference prediction. In pattern predic-
tion, first, all sequential rules, periodic patterns and association rules are found together
with their statistical characteristics. Then, probability models are built based on their statis-
tical characteristics. Afterward, we use the probability models to calculate the probability of
all products in the next basket for a customer. The products that have a higher probability
will be selected preferentially to recommend to him or her. If k products have been selected,
then continue to the prediction of the next customer; otherwise, make preference predic-
tions. In preference prediction, the product that is more frequent in the individual shopping
records will be selected first. If some products have the same frequency, then the product
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that has a higher tendency will be selected. Until all k products are selected, we continue to
predict the next customer. See Algorithm 1. We introduce the probability list pl to preserve
the probability of all items in br+1, viz. pl := {(item1 : value1), (item2 : value2), ...}.

Algorithm 1: SPAP(D, θr, η, θp, δ, k).

1 SeqRuleSet←SequentialRuleMining(D, θr, η);
2 for all Bc ∈ D do
3 PPSet←PeriodicPatternMining(Bc, θp, δ);
4 AssRuleSet←AssociationRuleMining(Bc, θr, η);
5 br+1 = Null, pl = Null, b∗c = Null;
6 br+1, pl = SequentialRulePrediction(SeqRuleSet, Bc, br+1, pl);
7 br+1, pl = PeriodicPatternPrediction(PPSet, Bc, br+1, pl);
8 br+1, pl = AssociationRulePrediction(AssRuleSet, br+1, pl);
9 sort br+1 by probability in descending order;

10 k∗ = min(|br+1|, k);
11 b∗c = b∗c∪ {select the first k∗ items from br+1};
12 if (k∗ = k− |b∗c |) > 0 then
13 b∗c = b∗c∪ {select k∗ items by preference prediction};
14 end
15 end
16 return b∗c for all Bc ∈ D;

4.1. Sequential Rule Prediction
4.1.1. Probability Model of Sequential Rule

Sequential rules reveal the relation between products in two consecutive transactions.
This means that a customer bought a product at some time, and he or she will buy another
product at a future time. However, the sequential rule defined by the previous section
has a limitation to use for the next basket prediction. For example, given sequential
rule E1 → E2 : Con f = 0.8. If event E1 occurs, then it will lead to event E2 occurring
at a confidence of 0.8, and the confidence is considered as the probability here, that is,
P(E2|E1) = 0.8. However, we did not know for sure at what time event E2 occurs, and did
not know the probability of event E2 occurring at an exact time after event E1 occurred. To
address this limitation, we build a probability model for time intervals of the sequential
rule. The time interval of a sequential rule, i.e., the time interval between event E1 and
event E2, is a random variable and represented by X here, X = Gap(E1, E2). Generally, the
larger the time interval, the lower the relevance of E1 and E2, and vice versa. We suppose
that the probability model nearly follows an exponential distribution with a parameter of
mean(Gap(s1, s2)).

Example 2. For a transaction sequence dataset showed in Table 2, let s1 = 〈{a, c}〉, s2 = 〈{ f , g}〉
and s = 〈s1, s2〉 = 〈{a, c}, { f , g}〉, we have Sup(s1) = {c1, c2, c3, c4, c5, c6, c7}, Sup(s2) =
{c1, c2, c3, c4, c5, c6}. If we set θ = 5, η = 0.8, and we have Con f (s1 → s2) = 6/7 > η, then
s1 → s2 is a sequential rule. The time interval between s1 and s2 is Gap(s1, s2)c1 = 3− 1 = 2
in c1, where Occur(s1)c1 = {1} and Occur(s2)c1 = {3}. In a similar way, Gap(s1, s2)c2 = 1,
Gap(s1, s2)c3 = 1, Gap(s1, s2)c4 = 3, Gap(s1, s2)c5 = 2, Gap(s1, s2)c6 = 1. Note that in
sequence c6, we have Occur(s1)c6 = {1, 2} and Occur(s2)c6 = {3, 4}, leading Gap(s1, s2)c6 to
be multiple-valued. According to Definition 6, we have Gap(s1, s2)c6 = min{(3− 1), (3− 2),
(4− 1), (4− 2)} = 1. Consequently, we obtain a probability model for Gap(s1, s2) as P{Gap(s1, s2) =
1} = 1/2, P{Gap(s1, s2) = 2} = 1/3 and P{Gap(s1, s2) = 3} = 1/6, respectively.

4.1.2. Principle of Sequential Rule Prediction

Given transaction sequence B = 〈b1, ..., br〉, sequential rule s1 → s2 : Con f , and its
probability distribution P{X = Gap(s1, s2)} of time intervals between s1 and s2. Suppose
the consequent contains only a single itemset, that is, |s2| = 1 (Since if |s2| > 1, then we
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can break it down into several sequential rules, which have a consequent containing only
a single itemset, according to Property 1). If s1 ⊀ B, then P(s1 ≺ B) = 0. Otherwise,
P(s1 ≺ 〈b1, ..., bλ〉) = 1, where λ = max{e|∀E ∈ Embs(s1), e ∈ E}. Since sequential
rule s1 → s2 : Con f means that P(s2 ≺ 〈bλ+1, bλ+2, ...〉|s1 ≺ 〈b1, ..., bλ〉) = Con f , then
P(s2 ≺ 〈bλ+1, bλ+2, ...〉) = Con f × P(s1 ≺ 〈b1, ..., bλ〉) = Con f . Suppose A1 denote the
event s2 ⊆ br+1. In a similar way, Au denote the event s2 ⊆ br+u. If event A1 occurs, then
Gap(s1, s2) = r + 1− λ, P(A1|s2 ≺ 〈bλ+1, bλ+2, ...〉) = P{X = (r + 1− λ)}. In a similar
way, if event Au occurs, then Gap(s1, s2) = r + u− λ, P(Au|s2 ≺ 〈bλ+1, bλ+2, ...〉) = P{X =
(r + u− λ)}. Since P(s2 ≺ 〈bλ+1, bλ+2, ...〉) = Con f , we obtain the probability of s2 ⊆ br+u,
P(Au) = P{X = (r + u− λ)} × Con f .

First, the time variable is continuous in general. However, in our case, we use the
index of baskets as the timestamp, so the time variable is discretized. The probability of
an exact value of the time variable is the probability within a unit interval over this value.
Second, if an item is contained in the consequents of several sequential rules, then it will be
predicted several times. In such a case, we update its probability as the maximal value. See
Algorithm 2.

Algorithm 2: SequentialRulePrediction(RuleSet, B, br+1, pl).

1 for all rule(s1 → s2 : Con f ) ∈ RuleSet do
2 if B ∈ Sup(s1) then
3 λ = max{e|∀E ∈ Embs(s1), e ∈ E};
4 P(A1|s2 ≺ 〈bλ+1, bλ+2, ...〉) = P{X = (r + 1− λ)};
5 P(A1) = P{X = (r + 1− λ)} × Con f ;
6 for all i ∈ s2 do
7 if i ∈ br+1 and vali ≥ P(A1), where (i : vali) ∈ pl then
8 continue;
9 else if i ∈ br+1 then

10 update vali as P(A1), where (i : vali) ∈ pl;
11 else
12 br+1 = br+1 ∪ {i};
13 pl = pl ∪ {(i : P(A1))};
14 end
15 end
16 end
17 end
18 return br+1, pl;

Continue with the Example 2 Let B = 〈{a, b, c}, {b, e, g}, {a, c, d, e}, {c, f }〉; we pre-
dict the probability of all products in b5. In Example 2, we obtain a sequential rule
s1 → s2 : Con f and its probability model. Embs(s1) = {{1}, {3}}, λ = 3. If s2 ⊆ b5,
then Gap(s1, s2) = 2. We have P{Gap(s1, s2) = 2} = 1/3 from the probability distribution.
Finally, we have P({ f , g} ⊆ b5) = 6/7× 1/3 = 6/21, as Figure 1 shows.

Figure 1. Probability model of sequential rule.
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4.2. Periodic Pattern Prediction
4.2.1. Probability Model of Periodic Pattern

Periodic events intrinsically reoccur with a fixed period. However, in the real world,
the period is influenced by different factors, leading to a fluctuation in the period. In
this case, we only have an average value for periods. As we all know, the smaller the
fluctuation, the better. So, we compare the fluctuation with the average period. If the
fluctuation is too large compared to the average period, we do not define it as a periodic
event. The coefficient of variation, which is the specific value of the standard deviation
and mean value, is suitable for periodicity measure, since standard deviation is a good
measure for fluctuation. The service life of a product is no exception. If a product is bought
periodically by a customer, then the period will be nearly equal to the service life of the
product. However, service lives of a kind of products may differ from one another, leading
to a fluctuation in the period.

According to Definition 5, we define periodic patterns based on the coefficient of
variation. If a pattern has a higher coefficient of variation, which means that the standard
deviation is too large compared to the mean value, the pattern is not periodic. Otherwise,
we classify it as a periodic pattern. Given a periodic pattern, if it occurs at some time, then
it is more likely to reoccur after an average period of time. The probability at a time closer
to the time after an average period later has a higher value; otherwise, it has a lower value.
We suppose that the probability model of periods follows a normal distribution and has
two parameters: mean(Per(p)) and std(Per(p)), as Figure 2 shows.

Figure 2. Probability model of periodic pattern {a, c}.

4.2.2. Principle of Periodic Pattern Prediction

Given transaction sequence B = 〈b1, ..., br〉, and a periodic pattern p of B, the prediction
of the probability of P(p ⊆ br+1) is analogous to the sequential rule prediction.

4.3. Association Rule Prediction

Given an association rule p1 → p2 : Con f , if itemset pattern p1 ⊆ b, then itemset
pattern p2 ⊆ b with a probability of P(p2 ⊆ b|p1 ⊆ b) = Con f . If p1 * b, then P(p1 ⊆ b) =
0, and P(p2 ⊆ b|p1 ⊆ b) = 0.

After sequential rule prediction and periodic pattern prediction, we obtain a set of
candidate products with their probability in br+1. At the same time, we define the proba-
bility of p1 ⊆ br+1 as P(p1 ⊆ br+1) = min{P(i)|∀i ∈ p1, (i : P(i)) ∈ pl}. Therefore, we get
the probability of p2 ⊆ br+1 as P(p2 ⊆ br+1) = P(p1 ⊆ br+1)× Con f . See Algorithm 3.

After pattern prediction, if a product has not been predicted, then it will have a
default probability value of zero and is not included in br+1 to be recommended in the
pattern prediction stage. Therefore, we obtain a set of candidate products along with their
probabilities in the next basket br+1. In br+1, a product with a higher probability will have
priority to be recommended to customers. If |br+1| < k, that is, the number of candidate
items is less than k in br+1, then we will make a preference prediction to continue to select
products to recommend until we get all k products.
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Algorithm 3: AssociationRulePrediction(RuleSet, br+1, pl).

1 for all rule(p1 → p2 : Con f ) ∈ RuleSet do
2 if p1 ⊆ br+1 then
3 P(p1 ⊆ br+1) = min{P(i)|∀i ∈ p1, (i : P(i)) ∈ pl};
4 P(p2 ⊆ br+1) = P(p1 ⊆ br+1)× Con f ;
5 for all i ∈ p2 do
6 if i ∈ br+1 and vali ≥ P(p2 ⊆ br+1), where (i : vali) ∈ pl then
7 continue;
8 else if i ∈ br+1 then
9 update vali as P(p2 ⊆ br+1), where (i : vali) ∈ pl;

10 else
11 br+1 = br+1 ∪ {i};
12 pl = pl ∪ {(i : P(p2 ⊆ br+1))};
13 end
14 end
15 end
16 end
17 return br+1, pl;

4.4. Preference Prediction

In pattern prediction, we selected a set of products to recommend to a customer.
If the number of selected products is less than k, then we continue to select based on
preference prediction.

In preference prediction, if a product is more frequently bought by a customer, then
we conclude that the customer has a preference for this product. However, the preference
will evolve over time. The purchase distribution of a product over a shopping history will
indicate a change in preference. If a product is more frequently bought in the recent baskets
than the earlier ones of a customer, then the customer is more and more inclined toward
the product; otherwise, if a product is more frequently bought in earlier baskets than recent
ones, then the customer tends to be increasingly estranged from the product. According
to Definition 8, tendency reflects such a fact. The preference prediction is based on the
frequency and tendency of a product in customers’ shopping histories. We first select the
products that are more frequent to recommend. If some products have the same frequency,
then the product that has a higher tendency is prioritized.

4.5. A Comprehensive Example

For the transaction sequence given in Table 1, itemset p = {c, f } has an occurrence list
of Occur(p) = {1, 4, 8, 12, 16} and a period list of Per(p) = {3, 4, 4, 4}. By calculating, we
get mean(Per(p)) = 3.75 and std(Per(p)) = 0.866, Coe f va(p) = std(Per(p))/mean(Per(p))
= 0.23. If we set θ = 5 and δ = 0.5, then p is a periodic pattern and its period fol-
lows per ∼ N(3.75, 0.866). Now let us predict b17 and select 5 products to recommend,
viz. k = 5. Suppose we have a sequential rule of Example 2 and an association rule
of {c, f , g} → {d} : 0.9 at the same time. First, in sequential rule prediction, we have
P({ f , g} ⊆ b17) = 6/21 = 0.2857, pl = {( f : 0.2857), (g : 0.2857)}. Second, we use peri-
odic pattern p = {c, f } to predict. As Occur(p) = {1, 4, 8, 12, 16}, λ = 16. If p ⊆ b17, then
per5 = 17− 16 = 1. We have P{per = 1} = 0.0046 from the probability model. Merging
{(c : 0.0046), ( f : 0.0046)} into pl, we get pl = {(c : 0.0046), ( f : 0.2857), (g : 0.2857)}.
Third, the association rule is used to predict. By definition, we have P({c, f , g} ⊆ b17) =
min{0.0046, 0.2857, 0.2857} = 0.0046, then P({d} ⊆ b17) = 0.0046× 0.9 = 0.0041. Finally,
the products are selected in the order of 〈 f , g, c, d〉. However, there are not enough products
to recommend. Thus, we will have a preference prediction.

In preference prediction, all products that are in the individual shopping history,
excluding selected products, are sorted by frequency. We have Freq({a}) = 9, Freq({b}) =
9, Freq({h}) = 6 and Freq({e}) = 5. Because the frequencies of items a and b are the
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same, their tendencies are calculated. Item a has an occurrence list of Occur({a}) =
{1, 3, 5, 7, 8, 9, 11, 13, 15}, and item b has Occur({b}) = {1, 2, 3, 7, 9, 10, 11, 13, 14}. We get
Ten({a}) = 8 and Ten({b}) = 7.78, and select a. Finally, all 5 products are selected.

4.6. Relation of Two Prediction Strategies

In pattern prediction, we must set a value to the frequency threshold, confidence
threshold and threshold for the coefficient of variation in pattern mining. These parameters
determine the weight of pattern prediction and preference prediction.

The confidence threshold parameter is set for sequential rule mining and association
rule mining. A higher value of the confidence threshold is set, and fewer sequential rules
and association rules are found. The threshold parameter for the coefficient of variation is
set for periodic pattern mining. If it has a lower value, then fewer periodic patterns are
found. The frequency threshold parameter is set for all three types of patterns. If a higher
value is set, then fewer patterns are found. There is no parameter for preference prediction.

In general, if we have a higher value on the frequency threshold and confidence
threshold and a lower value on the threshold for the coefficient of variation, then we will
select fewer products in pattern prediction. Preference prediction will have a higher weight
on the selected result, and pattern prediction will have the opposite effect. Conversely,
preference prediction will have a lower weight on the selected result.

5. Implementation
5.1. Optimizations

In pattern mining, the result grows exponentially as the pattern expands in size. It is a
severe problem that traditional pattern mining approaches face to efficiently mine large
patterns in dense datasets. The growth of the number of patterns is not proportional to
the improvement of prediction performance in our method but leads to heavier workload.
In the pattern prediction of our method, if an item is contained in several patterns, it will
probably be repeatedly predicted several times, leading to redundancies in workload. The
larger the number of patterns or the larger the size of the pattern, the more redundancies
in the workload.

For the two reasons mentioned above, we use simple association rules, simple sequen-
tial rules and simple periodic patterns to implement pattern prediction.

Definition 9. (Simple Association Rule) Given an association rule p1 → p2 : Con f , if both p1
and p2 are single item patterns, then we call it a simple association rule.

Definition 10. (Simple Sequential Rule) Given a sequential rule s1 → s2 : Con f , if both s1 and
s2 are single item patterns, then we call it a simple sequence rule.

Definition 11. (Simple Periodic Pattern) Given a periodic pattern p, if p is a single item pattern,
then we call it a simple periodic pattern.

This strategy dramatically reduces the number of patterns and is easier to implement.
As a result, our algorithm is incomplete. We use two ready-made algorithms introduced
by Philippe Fournier-Viger et al. [13], namely, FPGrowth and RuleGen, to mine simple
association rules and simple sequential rules, respectively. The implementation of simple
periodic pattern mining will be discussed in the next subsection.

5.2. Data Structure

Inspired by Fabio Fumarola et al. [49], we propose a new data structure named vertical
bit-list to represent the dataset. Each item i ∈ I is assigned a vertical bit-list. A vertical
bit-list is made up of a bit vector and several integer arrays, as Figure 3 shows. Bit vectors
have a size of the dataset size, i.e. the number of sequences in the dataset. The jth bit,
j ∈ {1, ..., |D|}, in each bit vector correspond to the jth sequence in the dataset D. If the
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jth bit in the bit vector of a vertical bit-list is flipped, then means there exist an itemset
in the jth sequence contains the item to which the vertical bit-list is assigned, and each
flipped bit is assigned an integer array to preserve the occurrence list of the item in the
sequence to which the flipped bit correspond. If the jth sequence contains item i, that is,
there exist itemsets in the jth sequence containing item i, then the frequency and tendency
of i in the jth sequence can be calculated by its corresponding integer array, and we can
determine whether the item i is a simple periodic pattern in the jth sequence based on the
integer array according to Definition 5, since simple periodic pattern mining is free from
pattern growth.

(a) (b) (c) (d)

Figure 3. (a) shows the vertical bit-list of item i ∈ I , where q = |{Bc|∀Bc ∈ D, ∃b ∈ Bc, i ∈ b}|. (b–d) show vertical bit-list
of items b, d and g, respectively, in dataset of Table 2.

5.3. Complexity

In the stage of pattern mining, we dramatically reduce the complexity of our algorithm
by mining only simple sequential rules, simple association rules and simple periodic
patterns. We mine simple sequential rules and simple association rules in O(m2), where
m is the number of distinct items in I since the rule of two types only contains two items.
Simple periodic pattern mining and tendency calculation have a complexity of O(n× v), n
is the number of all customers and v is the average count of products the customers have
bought, that is, one scan over the dataset, and the complexity of the prediction stage is
the same.

6. Experiment

To evaluate the performance of our SPAP algorithm, experiments were conducted on
four read-world datasets. First, we assessed the influences of parameters on the weight of
pattern prediction and preference prediction. Second, we compared our algorithm with
those of the baseline methods and state-of-the-art methods in the evaluation metrics of
F1-Score and Hit-Ratio. The experiments were conducted on a computer with an Intel
Core I7-8550U 1.8 GHz processor and 8 GB of RAM, running Windows 10 (64-bit version).
The SPAP is implemented in Java.

6.1. Datasets

We performed our experiments on four real-world transaction sequence datasets. Three
of the datasets, Ta-Feng (https://www.kaggle.com/chiranjivdas09/ta-feng-grocery-data
set (Accessed data: 19 October 2021)), Dunnhumby (https://www.kaggle.com/frtgnn/
dunnhumby-the-complete-journey (Accessed data: 19 October 2021)) and X5-Retail-Hero
(https://www.kaggle.com/mvyurchenko/x5-retail-hero (Accessed data: 19 October 2021)),
are based on physical markets; and one dataset, T-Mall (Provided by Guidotti et al. [50] at
https://github.com/riccotti/CustomerTemporalRegularities/tree/master/datasets (Ac-
cessed data: 19 October 2021)), is based on an online market.

https://www.kaggle.com/chiranjivdas09/ta-feng-grocery-dataset
https://www.kaggle.com/chiranjivdas09/ta-feng-grocery-dataset
https://www.kaggle.com/frtgnn/dunnhumby-the-complete-journey
https://www.kaggle.com/frtgnn/dunnhumby-the-complete-journey
https://www.kaggle.com/mvyurchenko/x5-retail-hero
https://github.com/riccotti/CustomerTemporalRegularities/tree/master/datasets
https://github.com/riccotti/CustomerTemporalRegularities/tree/master/datasets
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• Ta-Feng is a dataset of a physical market, covering food, stationery and furniture, with
a total of 23,812 different items in China. It contains 817,741 transactions made by
32,266 customers over 4 months.

• The Dunnhumby (Dunnh for short) dataset contains household level transactions over
two years from a group of 2500 households who are frequent shoppers at a retailer.

• The X5-Retail-Hero (X5RH for short) dataset contains 183,258 transactions made by
9305 customers over 4 months and a total of 27,766 distinct items.

• The T-Mall dataset records four months of online transactions of an online e-commerce
website. It contains 4298 transactions belonging to 884 users and 9531 distinct brands
considered as items.

In preprocessing these datasets, we remove customers who have fewer than 10 baskets
for Ta-Feng, Dunnh and T-Mall, and remove customers who have fewer than 21 baskets for
X5RH. For simplicity, we adopt the index of the basket in sequence as the time unit rather
than the real date. Table 3 shows the details of these datasets used in our experiment.

Table 3. Characteristics of running datasets.

Dataset ] Customers ] Items ] Baskets Average Basket Size

Ta-Feng 2374 18,138 39,533 5.58
Dunnh 2402 91,779 273,474 9.36
X5RH 2924 22,921 99,357 5.40
T-Mall 748 9436 31,035 2.52

6.2. Evaluate Metrics F1-Score and Hit-Ratio

Following Guidotti et al. [44], first, we sort the transactions by the timestamps for
each customer. Then, we split the dataset into training set and testing set. Testing set
contains the latest transaction of all customers for model evaluation. Training set contains
the remainder of the transactions of all customers for model training. This is known as
leave-one-out strategy. The product set that customer c actually buys is denoted as b′c. The
product set recommended to customer c is denoted as b∗c . The metrics we use for evaluation,
F1-Score and Hit-Ratio, are defined as

precison(b′c, b∗c ) =
|b′c ∩ b∗c |
|b∗c |

(1)

recall(b′c, b∗c ) =
|b′c ∩ b∗c |
|b′c|

(2)

F1− Score =
2× precison(b′c, b∗c )× recall(b′c, b∗c )

precison(b′c, b∗c ) + recall(b′c, b∗c )
(3)

Hit− Ratio =
∑c∈C I(b′c ∩ b∗c 6= ∅)

|C| (4)

where I(∗) is an indicator function. The F1-Score is reported by the average value of
all customers.

Furthermore, to evaluate the contribution of two prediction strategies, we introduce
a new measure: Weight. Let bpa denote all the items selected in pattern prediction for all
customers, and bpr denote all the items selected in preference prediction for all customers.
The number of all items selected to recommend to all customers is ∑c∈C |b∗c |, and we have
|bpa|+ |bpr| = ∑c∈C |b∗c |. The weights of pattern prediction and preference prediction are
denoted as Weightpa and Weightpr, respectively, and defined as

Weightpa =
|bpa|

∑c∈C |b∗c |
(5)

Weightpr =
|bpr|

∑c∈C |b∗c |
= 1−Weightpa (6)
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due to the complementation of Weightpa and Weightpr, we report Weightpa only. A higher
value of Weightpa means that more items are selected in pattern prediction, and vice versa.
In the remainder of this paper, we use Weight to replace Weightpa. Note that if the number
of all distinct products customer c has bought is less than k, then we cannot select a set
of products including more than or equal to k items to recommend to him or her, that is,
|b∗c | ≤ k, leading to ∑c∈C |b∗c | ≤ k× n, where |C| = n.

6.3. Influence of Parameters

Our algorithm is composed of two prediction strategies. We obtain the best per-
formance only on the right proportion of weight on pattern prediction and preference
prediction. There are four parameters in pattern prediction: relative frequency threshold
θr and confidence threshold η for sequential rule mining and association rule mining,
threshold for coefficient of variation δ and absolute frequency threshold θp for periodic
pattern mining. All of these parameters have an influence on the weight of these two
prediction strategies. In this subsection, we will evaluate the influences of these parameters.
k is set to the average basket size of each dataset. The values for the remainder of the
parameters are preset to be θr = 0.16, η = 0.2, δ = 0.2 and θp = 5 for Ta-Feng, θr = 0.35,
η = 0.7, δ = 0.4 and θp = 12 for Dunnh, θr = 0.15, η = 0.4, δ = 0.8 and θp = 10 for X5RH,
and θr = 0.1, η = 0.4, δ = 0.8 and θp = 5 for T-Mall.

First, we test the parameter of relative frequency threshold θr, and the results are
shown in Figure 4. We can see that when θr rises, the total number of distinct rules,
including sequential rules and association rules, and Weight decrease in all cases of the four
datasets. Weight is always lower than 0.5, which means that preference prediction plays a
dominant role. For the Ta-Feng dataset, when θr has a value less than 0.16, both F1-Score
and Hit-Ratio remain unchanged and achieve the optimal values, and the situation is the
same on the Dunnh dataset when θr is greater than 0.75. Both F1-Score and Hit-Ratio are
constant on the X5RH dataset when θr is greater than 0.63. For the T-Mall dataset, when θr
is near to 0.11, both F1-Score and Hit-Ratio achieve the optimal values. Figure 5 shows the
influences of different values for threshold η. As η rises, the number of rules and Weight
decrease on all four datasets. Both F1-Score and Hit-Ratio achieve the optimal values on
the Ta-Feng dataset when η is less than 0.38, achieve the optimal values on the Dunnh
when η is greater than 0.9 and achieve the optimal values on the T-Mall dataset when η is
equal to 0.5, respectively. When η is greater than 0.8, F1-Score or Hit-Ratio achieves the
optimal value on the X5RH dataset.

The threshold for the coefficient of variation δ is set for periodic pattern mining. A
higher value for δ will lead to a larger number of periodic patterns, as Figure 6 shows. At
the same time, a larger number of periodic patterns results in a higher Weight on all four
datasets. When δ is less than 0.4, F1-Score or Hit-Ratio achieves the optimal value on the
Ta-Feng dataset. Both F1-Score and Hit-Ratio remain unchanged and achieve the optimal
values on the Dunnh dataset when δ is greater than 2.8, and the situation is the same on
the X5RH and T-Mall datasets when δ is greater than 2.0.

Finally, we test the absolute frequency threshold θp for periodic pattern mining. As
shown in Figure 7, when θp rises, the number of periodic patterns and Weight decrease on
all four datasets. Both F1-Score and Hit-Ratio remain unchanged and achieve the optimal
values on the Ta-Feng dataset when θp is greater than 11, and the situation is the same on
the Dunnh dataset when θp is greater than 27. In the case of X5RH, when θp is equal to 7,
both F1-Score and Hit-Ratio achieve the optimal values. For the T-Mall dataset, F1-Score
and Hit-Ratio achieve their optimal values when θp is equal to 10 and 5, respectively.
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Figure 4. Influences of different values of θr on number of rules, Weight, F1-Score and Hit-Ratio.

Figure 5. Influences of different values of η on number of rules, Weight, F1-Score and Hit-Ratio.
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Figure 6. Influences of different values of δ on number of periodic patterns, Weight, F1-Score and
Hit-Ratio.

Figure 7. Influences of different values of θp on number of periodic patterns, Weight, F1-Score
and Hit-Ratio.

6.4. Comparison with Baseline Methods and State-of-the-Art Methods

In this subsection, we report the comparisons of our method with baseline methods,
including TOP, MC, CLF and NMF; and state-of-the-art methods, including HRM, TBP,
TIFU and UPCF.
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• TOP predicts the top-k most frequent items with respect to their appearance, i.e., the
number of times that they are purchased, in a customer’s purchasing history Bc.

• MC [40] makes the prediction based on the last purchase brc and on a Markov chain
calculated on Bc.

• CLF [40]: Due to space limitations, we do not discuss here. See [40] for more details.
• NMF (Non-negative Matrix Factorization) [51] is a collaborative filtering method that

applies a non-negative matrix factorization to the customers-items matrix. The matrix
is constructed from the purchase history of all customers.

• HRM (Hierarchical Representation Model) [41] employs a two-layer structure to
construct a hybrid representation over customers and items purchase history B from
last transactions: the first layer represents the transactions by aggregating item vectors
from the last transactions, while the second layer realizes the hybrid representation by
aggregating the user’s vectors and the transactions representations.

• TBP [44] is a new pattern-based method proposed by Guidotti et al. [44] that seeks to
simultaneously capture the co-occurrence, sequentiality, periodicity and recurrence of
the items in basket sequences.

• TIFU [47] (https://github.com/HaojiHu/TIFUKNN (Accessed data: 19 October
2021)) is a k-nearest neighbors (kNN) based method.

• UPCF [48] (https://github.com/MayloIFERR/RACF (Accessed data: 19 October
2021)) denotes User Popularity-based Collaborative Filtering. The model considers a
user-based collaborative approach that relies on similar users to find new items that
can be of interest to the target user.

Source code for MC, CLF, NMF, HRM and TBP are provided by [44] (https://
github.com/GiulioRossetti/tbp-next-basket (Accessed data: 19 October 2021)); and all
the algorithms run under the recommended parameter values. Results are shown in
Figures 8 and 9. TBP runs overtime on the Dunnh dataset.

Figure 8 shows the results of F1-Score, we can see that our SPAP algorithm has the
best F1-Score on the Ta-Feng dataset when k is less than 14, and closes to TOP on the Dunnh
and X5RH datasets. Figure 9 shows the results of Hit-Ratio, SPAP outperforms the other
algorithms on the Ta-Feng dataset, and closes to TOP on the Dunnh and X5RH datasets.

We noticed that all algorithms, except TBP, exhibit poor performance for F1-Score
when k is too higher or lower than the average basket size. The most obvious finding is on
T-Mall dataset, which has the smallest average basket size. Because F1-Score is relevant
to the size of recommended basket b∗c . A higher value for k means we will select more
products to recommend, leading to a large size for b∗c and a lower value for precison(b′c, b∗c );
otherwise, we have a lower value for recall(b′c, b∗c ). However, when the value of k increases,
it results in a higher possibility of being hit, and Hit-Ratio rises naturally. Only k has a
value nearer to the average basket size, and we have a fairer comparison.

As described above, almost all algorithms exhibited their best performance when k
was set as a value of the average basket size. Table 4 lists the performance results in which
k has a value of the average basket size, k = 6, k = 9, k = 5 and k = 3 for Ta-Feng, Dunnh,
X5RH and T-Mall, respectively. TIFU has the best performances on the T-Mall dataset.
However, our SPAP algorithm outperforms other algorithms on the Ta-Feng, Dunnh and
X5RH datasets.

https://github.com/HaojiHu/TIFUKNN
https://github.com/MayloIFERR/RACF
https://github.com/GiulioRossetti/tbp-next-basket
https://github.com/GiulioRossetti/tbp-next-basket
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Table 4. Comparison with those of the baseline methods and state-of-the-art methods when k is set as average basket size
value. The bold is the maximum of the all, and the underline is the maximum of the competing algorithms.

Dataset SPAP TOP MC CLF N MF HRM TBP T IFU UPCF

F1
-S

co
re Ta-Feng (k = 6) 0.0922 0.0796 0.0415 0.0765 0.0617 0.0570 0.0742 0.0731 0.0672

Dunnh (k = 9) 0.0935 0.0926 0.0514 0.0675 0.0685 0.0545 - 0.0864 0.0839
X5RH (k = 5) 0.1604 0.1596 0.1100 0.1316 0.1057 0.0879 0.1502 0.1574 0.1417
T-Mall (k = 3) 0.0783 0.0691 0.0379 0.0735 0.0626 0.0440 0.0757 0.0944 0.0847

H
it

-R
at

io Ta-Feng (k = 6) 0.3934 0.3517 0.1963 0.3096 0.2894 0.2768 0.2850 0.3158 0.2991
Dunnh (k = 9) 0.5329 0.5287 0.3370 0.4165 0.4554 0.4049 - 0.4917 0.4833
X5RH (k = 5) 0.5771 0.5728 0.4454 0.5056 0.4457 0.4008 0.5075 0.5486 0.5266
T-Mall (k = 3) 0.1778 0.1631 0.0869 0.1725 0.1457 0.1072 0.1602 0.2200 0.1979

Figure 8. Comparison of F1-Score with those of the baseline methods and state-of-the-art methods
under different values of k.
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Figure 9. Comparison of Hit-Ratio with those of the baseline methods and state-of-the-art methods
under different values of k.

Patterns have a virtue of reflecting customers’ shopping habits. Due to the fact that
people visit physical stores more regularly than online stores, our pattern-based model
SPAP achieves the best performances on physical store datasets Ta-Feng, Dunnh and X5RH.
Table 5 lists the improvements of SPAP compared with TOP on the Ta-Feng, Dunnh and
X5RH datasets; and compared with TIFU on the T-Mall dataset.

Table 5. Improvements vs. the maximum of the competing algorithms.

Improvements vs. TOP Improvements vs. T IFU

Ta-Feng Dunnh X5RH T-Mall

F1-Score 15.8% 1% 0.5% −17.1%
Hit-Ratio 11.9% 0.8% 0.8% −19.2%
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6.5. Running Time

All of these algorithms have a running time ranging from several seconds to several
hours. TOP is always the fast one [44]. In this subsection, we compare the running
time (training time and prediction time) of our algorithm with TOP. Both of them are
implemented in Java. The results are shown in Table 6. Source code for MC, CLF, NMF,
HRM, TBP, TIFU and UPCF are implemented in Python, so we do not report their
running times here. We terminate the processe of TBP on the Dunnh dataset when it runs
over two days.

Table 6. Running times.

Ta-Feng Dunnh X5RH T-Mall

TOP 0.0476 s 0.444 s 0.192 s 0.078 s
SPAP 0.749 s 12.838 s 2.824 s 0.234 s

7. Conclusions

In this paper, we propose a pattern-based model for next basket prediction. The
method includes pattern prediction and preference prediction. In pattern prediction, first,
all sequential rules, periodic patterns and association rules are found together with their
statistical characteristics. Then, probability models are built based on their statistical
characteristics. Afterward, we use the probability models to calculate the probability of all
products in the next basket for a customer. The products that have a higher probability will
be selected to recommend to him or her. If k products have been selected, then continue to
the prediction of the next customer; otherwise, make preference predictions. In preference
prediction, the product that is more frequent in the individual shopping records will be
selected first. If some products have the same frequency, then the product that has a higher
tendency will be selected. Until all k products are selected. Experiments show that our
algorithm outperforms those of the baseline methods and state-of-the-art methods on three
of four real-world transaction sequence datasets.
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