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Abstract

Clostridioides difficile infections occur upon ecological / metabolic disruptions to the normal

colonic microbiota, commonly due to broad-spectrum antibiotic use. Metabolism of bile

acids through a 7α-dehydroxylation pathway found in select members of the healthy micro-

biota is regarded to be the protective mechanism by which C. difficile is excluded. These 7α-

dehydroxylated secondary bile acids are highly toxic to C. difficile vegetative growth, and

antibiotic treatment abolishes the bacteria that perform this metabolism. However, the data

that supports the hypothesis that secondary bile acids protect against C. difficile infection is

supported only by in vitro data and correlative studies. Here we show that bacteria that 7α-

dehydroxylate primary bile acids protect against C. difficile infection in a bile acid-indepen-

dent manner. We monoassociated germ-free, wildtype or Cyp8b1-/- (cholic acid-deficient)

mutant mice and infected them with C. difficile spores. We show that 7α-dehydroxylation (i.

e., secondary bile acid generation) is dispensable for protection against C. difficile infection

and provide evidence that Stickland metabolism by these organisms consumes nutrients

essential for C. difficile growth. Our findings indicate secondary bile acid production by the

microbiome is a useful biomarker for a C. difficile-resistant environment but the microbiome

protects against C. difficile infection in bile acid-independent mechanisms.

Author summary

Secondary bile acid production by the colonic microbiome strongly correlates with an

environment that is resistant to C. difficile invasion. However, it remained unclear if these

bile acids provided in vivo protection. Here, we show that members of the microbiome

that generate secondary bile acids (e.g., C. scindens) protect against C. difficile disease inde-

pendently of secondary bile acid generation. These results are important because efforts to

restore colonization resistance (e.g., FMT or precision bacterial therapy) focus on restor-

ing secondary bile acid generation. Instead, restoring the organisms that produce 5-ami-

novalerate or consume proline / glycine are more important.
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Introduction

The Centers for Disease Control and Prevention estimates that over 223,000 Clostridioides dif-
ficile (formerly Clostridium) infections (CDI) require hospital care and 13,000 of those cases

resulted in fatality [1]. Moreover, the CDC has classified C. difficile as an urgent threat to the

US healthcare system because of the emergence of antibiotic resistant strains [2–4]. Due to the

strictly anaerobic nature of C. difficile vegetative cells, the spore form is required for host-to-

host transmission [5,6]. Once ingested, these metabolically-dormant spores germinate in

response to certain host-derived bile acids and certain amino acids [7–10].

Broad-spectrum antibiotic use is the greatest risk factor for CDI due to the disruption of the

colonic microbiome that mediates colonization resistance against this pathogen [11]. Antibiot-

ics lead to dramatic alterations to the colonic metabolome and, importantly, bile acid profiles

[12–14]. Bile acids are steroid-like molecules that are synthesized in the liver using cholesterol

as a precursor and, when secreted into the gut, aid in the absorption of fats and cholesterol

[15]. In the liver, the rate limiting step of bile acid synthesis is the cytochrome P450 7A1

(CYP7A1) enzyme which catalyzes the addition of 7α-hydroxyl to cholesterol [15] and is criti-

cally regulated by farnesoid X receptor (FXR) and downstream FGF19 signaling (Fig 1A).

Later in the bile acid synthesis pathway, cholic acid (CA) is generated by CYP8B1 adding a

12α-hydroxyl group [15]. In the absence of CYP8B1 activity, only chenodeoxycholic acid

(CDCA) derivatives are generated [15,16]. These two major bile acids are then further modi-

fied by conjugation of an amino acid (i.e., taurine or glycine) to the carboxyl (Fig 1B) [15].

Cholic acid-class bile acids activate C. difficile spore germination [8,10] and chenodeoxy-

cholic acid-class bile acids are competitive inhibitors of cholic acid-mediated spore germination

[8,9,17,18]. C. difficile spores can use different amino acids as cogerminants with cholic acid-

derivatives to stimulate spore germination, with varying efficiencies [7]. Bile acid germinants

are recognized by the CspC pseudoprotease germinant receptor [8] and the cogerminants (e.g.,
glycine) are recognized by the CspA pseudoprotease germinant receptor [19]. Recent work has

shown that glycine is an important in vivo spore cogerminant and consumption of glycine by

one C. difficile strain prevents spore germination (and colonization) by an invading strain [20].

During digestion, most of the bile acid pool is reabsorbed by the gut and recycled to the

liver to aid in new rounds of digestion [21]. However, approximately 10% of the total bile acid

pool escapes enterohepatic recirculation and enters the colon where microbiota deconjugate

the taurine or glycine from the primary bile acid [21]. Subsequently, the deconjugated bile

acids are taken up by a few members of the normal, healthy, microbiota where they are metab-

olized to generate secondary bile acids. In a series of enzymatic steps, these bacteria remove

the 7α-hydroxyl group to generate deoxycholate (DCA) from CA and lithocholate (LCA) from

CDCA [21]. The generation of these secondary bile acids is hypothesized to protect against the

invasion by several human pathogens [22–25].

It is well-established that a microbiota containing secondary bile acid-producing bacteria

(e.g., Clostridium scindens, a member of Clostridium Cluster XIVa) and that is dominated by

secondary bile acids is an environment that resists C. difficile invasion [12,26–30]. The prevail-

ing model is that the generation of secondary bile acids prevents C. difficile colonization due to

the toxicity of these bile acids towards in vitro C. difficile vegetative growth (S1A Fig)

[12,26,29,31–35]. Antibiotic treatment of healthy hosts eliminates both secondary bile acid

production and the bacteria that produce these molecules (S1B Fig) [12,26]. Interestingly,

fidaxomicin is a narrow spectrum antibiotic approved to treat CDI and has a lower recurrence

rate than other antibiotics [36]. Importantly, fidaxomicin does not target members of Clostrid-

ium Cluster XIVa, further highlighting the importance of these organisms in the prevention of

CDI [37]. Despite these studies, the data that support the hypothesis that secondary bile acid
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Fig 1. Bile acid regulation. A) Bile acids are synthesized in the liver and secreted into the GI at a concentration of

nearly 10 mM. During GI transit, approximately 90% is actively reabsorbed and recycled into the liver to be used in

new rounds of digestion. During this recycling, bile acids signal through FXR, FGF19/15 and FGFR4 to regulate the

rate limiting step of bile acid synthesis, CYP7A1. B) Bile acids are synthesized in two pathways. In the alternative

pathway, only CDCA (chenodeoxycholate) derivatives (in humans) and CDCA / MCA (muricholate) derivatives (in

mice) are made. In the classical pathway, both CDCA and CA (cholate) derivatives are formed. CA synthesis is

dependent on CYP8B1 and the absence of CYP8B1 leads to only CDCA (and MCA) formation.

https://doi.org/10.1371/journal.ppat.1010015.g001
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production and their in vivo toxicity towards C. difficile growth only are supported by correla-

tive studies.

Here, we test the impact of cholic acid-class bile acids on the initiation of C. difficile disease

and how members of the colonic microbiota that can metabolize primary bile acids to second-

ary bile acids protect against CDI in the absence of cholic acid. Our results suggest that second-

ary bile acid generation is dispensable for providing protection against C. difficile invasion and

that the microbiome protects against CDI by consuming nutrients that are important for C.

difficile colonization.

Results

Bai-encoding bacteria protect against C. difficile infection

To investigate if secondary bile acid production by the microbiota is essential for establishing

an environment that resists C. difficile invasion, we monoassociated germ- free mice with

either Clostridium hiranonis 10542, Clostridium leptum ATCC29065, or C. scindens VPI12708.

These organisms have been reported to metabolize deconjugated primary bile acids and gener-

ate secondary bile acids [21,38]. We first confirmed that these organisms encode an orthologue

of the bile acid 7α-dehydroxylation pathway, the 7α-dehydratase, baiE (S2 Fig) [21]. Germ-

free or mice monoassociated with the indicated strain were infected with 104 C. difficile
VPI10463 spores, a highly pathogenic C. difficile strain that is also as sensitive to bile acids as

other C. difficile strains (S1 Table) [9]. C. hiranonis or C. leptummonoassociated mice were

protected against infection, and did not show significant clinical symptoms until clindamycin

was administered to induce disease recurrence (Fig 2A–2D) [39]. Notably, C. scindens-mono-

associated mice were completely protected against primary or recurrent CDI, with mice show-

ing no signs of disease (Fig 2E and 2F). Quantitative analysis of bile acid profiles in these

monoassociated mice, demonstrated very little secondary bile acids compared to large

amounts of primary bile acids (S3 Fig and S2 Table). This is likely due to the production of

conjugated bile acids by the host and the inability of these organisms to deconjugate the bile

acids prior to 7α-dehydroxylation [21,40]. However, in one C. hiranonis-colonized mouse, we

observed CA present and in one C. scindens-colonized mouse DCA was present, suggesting

that C. hiranonis and C. scindensmay have deconjugated TA to CA. Thus, we tested the ability

of C. hiranonis and C. scindens to deconjugate TA (S4 Fig). When C. scindens and C. hiranonis
were grown for 24 hours in medium supplemented with TA, we did not observe C. scindens-
mediated deconjugation of TA to CA indicating that C. scindens VPI12708 does not deconju-

gate primary bile acids. However, C. hiranonis did deconjugate the majority of TA to CA. This

in vitro data thus suggest that in the C. hiranonis-colonized mouse the presence of CA could

be due to deconjugation of TA by the bacterium. Conversely, because C. scindens could not

deconjugate TA to CA, the DCA found in the C. scindens-colonized mouse likely was due to a

small amount of CA made by the host that was then 7α-dehydroxylated by C. scindens.

Absence of cholic acid does not impact the colonic microbiome

Despite the small amount of secondary bile acids produced in the monoassociated mice, we

wanted to eliminate the production of the predominant secondary bile acid, DCA, proposed to

exert protection against CDI. Cyp8b1-/- mice do not synthesize CA and, thus, the precursor for

DCA production by the microbiota is not present. Li-Hawkins et al. [16] first described this

animal model and heterozygous / homozygous mice are indistinguishable from the wildtype

strain. Bile acid analysis of conventionally raised, wildtype, heterozygous and homozygous

mutant mice revealed that fecal samples from both wildtype and heterozygous mice were dom-

inated by the primary bile acids taurocholate (TA) and β-muricholate (BMCA; a CDCA

PLOS PATHOGENS Protection against C. difficile infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010015 October 19, 2021 4 / 23

https://doi.org/10.1371/journal.ppat.1010015


derivative found in mice that is also toxic to C. difficile vegetative growth but the concentration

found in these mice is below the minimal inhibitory concentration [9]) and the secondary bile

acids DCA and LCA (Table 1). However, fecal samples from Cyp8b1-/- mice did not contain

CA-derivatives or secondary bile acids (Table 1) as reported previously [16].

Table 1. Bile acid profiles of conventionally raised wildtype, CYP8B1 heterozygous and CYP8B1 homozygous mice.

Concentration (nmol / g)

Primary Bile Acids Secondary Bile Acids

TA CDCA AMA BMA DCA LCA OMA

Wildtype 26.9 - 12.7 29.8 - - -

Wildtype 34.4 - - 6.4 33.5 62.0 10.4

CYP8B1 HET 108 13.7 - 18.8 - 55.6 -

CYP8B1 HET 34.9 - - 12.1 83.9 - 111.3

CYP8B1 HOM - - 151.5 50.4 - - -

CYP8B1 HOM - 18.0 - 41.0 - - -

taurocholate (TA), chenodeoxycholate (CDCA), alpha-muricholate (AMA), beta-muricholate (BMA), deoxycholate (DCA), lithocholate (LCA), omega-muricholate

(OMA)

below the limit of detection

Limit of detection for Sedere Sedex model 80 LT- ELSD was calculated to be 0.2 nmol.

GCA, CA, TCDCA, GCDCA were below the limit of detection

https://doi.org/10.1371/journal.ppat.1010015.t001

Fig 2. Monoassociation of germ-free mice with bile acid metabolizing bacteria protects against CDI. Monoassociation of germ-free

mice with (A) and (B) C. hiranonis 10542 (N = 6), (C) and (D) C. leptum ATCC29065 (N = 6) or (E) and (F) C. scindens VPI12708 (N = 11)

protects mice against CDI. Black line denominates monoassociated mice, red line denominates germ-free mice. On days 6 and 7 post CDI,

monoassociated mice were given a single i.p. dose of clindamycin to induce recurrence [39]. A, C and E represent the average daily weights

of the infected mice. B, D and F represent the Kaplan-Meier survival.

https://doi.org/10.1371/journal.ppat.1010015.g002
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The loss of a major bile acid class could greatly impact the colonic microbiome, pre- or

post-antibiotic treatment. To understand this, we collected fecal samples from Cyp8b1+/- and

Cyp8b1-/- mice and their microbiome profiles were determined. Interestingly, these mice had

no significant differences in their microbiome and, when treated with the broad-spectrum

antibiotic, cefoperazone, their microbiomes were equally disrupted (Fig 3A–3D). These results

Fig 3. Microbiome analyses of Cyp8b1+/- and Cyp8b1-/- mice. A) Alpha-diversity analysis with Shannon index of fecal microbiome of heterozygous(N = 5) (HTZ) and

homozygous (HMZ) (N = 5) mice treated with or without cefoperazone (CPZ)(N = 5); two tailed Mann-Whitney test was used for two-group comparison; B)

Taxonomic abundance at family rank for mouse fecal microbiome; C) Beta-diversity analysis with Bray-Curtis dissimilarity distance metric and non-metric

multidimensional scaling (NMDS); non-parametric statistical test for group comparisons was conducted with analysis of similarities (ANOSIM) method; D) Principal

component analysis for PICRUSt2-based metabolic pathway abundance inferred from 16S amplicon data.

https://doi.org/10.1371/journal.ppat.1010015.g003
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indicate that the loss of one major bile acid class does not adversely affect host microbiome

composition.

Bile acid-mediated germination is not essential for infection in germ-free

mice

Bile acids are essential for in vitro germination of C. difficile spores [8,10] and signal through the

CspC germinant receptor [41], with taurocholic acid being the primary activating ligand. In a

hamster model of CDI, spores derived from a C. difficile cspC::ermB (JSC10) mutant strain were

still partially virulent, indicating that some basal level of spontaneous spore germination occurs in
vivo [8]. Because the Cyp8b1-/- strain does not synthesize CA derivatives (i.e., taurocholate) we

tested the importance of bile acid- mediated germination from the host side. Germ-free wildtype,

Cyp8b1+/-, and Cyp8b1-/- mice were infected with C. difficileVPI10463 spores. Surprisingly,

despite the absence of a potent C. difficile spore germinant (taurocholic acid), C. difficile spores

germinated and caused disease equally in the homozygous and heterozygous strains (Fig 4A).

We next tested if the disease we observed for the Cyp8b1-/- strain was due to an autogermina-

tion process of the inoculated spores, as we reported in prior work [8]. We infected Cyp8b1 homo-

zygous mutant mice with spores derived from C. difficile JSC10 (cspC::ermB) and the C. difficile
UK1 parental strain. Because the bile acid germinant receptor is inactivated in this strain, spores

are unable to respond to bile acids and, instead, germinate in a bile acid-independent manner.

Infection of germ-free Cyp8b1-/- mice with spores derived from the C. difficile JSC10 strain

resulted in identical clinical symptoms (Fig 4B), and fulminant disease as the C. difficileUK1

strain (Fig 4C). These results suggest that at the dose used for these mouse experiments (106

spores), bile acid-mediated germination plays little role in colonization and disease pathogenesis.

Secondary bile acids are not essential to protect against C. difficile infection

Next, we monoassociated germ-free heterozygous and homozygous Cyp8b1mutant mice with

C. scindens. Analysis of colonization levels indicated that C. scindensmonoassociation was not

perturbed in the absence of CA synthesis by the host (S3 Table). Oral administration of C. diffi-
cile VPI10463 spores resulted in no disease in C. scindens colonized animals (Fig 5), whereas

germ-free Cyp8b1mice rapidly succumbed to infection irrespectively of genotype (Fig 4A).

Analysis of colonization levels 4 days post infection demonstrated that C. scindens abundance

was reduced with C. difficile still being detectable (S3 Table). This suggests either that C. scin-
dens or C. difficile compete for niche or nutrients during colonization, or that secondary bile

acids have accumulated and hinder C. difficile growth. To understand their bile acid profiles,

we extracted cecal samples from C. scindensmonoassociated heterozygous or homozygous

mice (Table 2). As expected, no cholate derived secondary bile acids were observed in C. scin-
dens colonized Cyp8b1-/- mice before, whereas heterozygous animals possessed some DCA in

the presence of C. difficile (Table 2). Because we did not observe differences in protection

between C. scindensmonoassociated Cyp8b1-/- and Cyp8b1+/- strains, production of secondary

bile acids have no or minimal impact in establishing colonization resistance and host protec-

tion occurs in a bile acid-independent manner.

Cholic acid-class bile acids are not essential for successful FMT

Direct infusion of a healthy microbiota into a dysbiotic colonic environment is well established

to restore colonization resistance. This fecal microbial therapy (FMT) is thought to provide a

quick restoration of the diversity needed to provide colonization resistance to the host. Again,

the most commonly stated mechanism is that the FMT restores the production of secondary

bile acids (e.g., DCA) that hinders the establishment of C. difficile in the gut [42]. To
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understand if FMT can protect against CDI in Cyp8b1-/- mice, we inoculated these germ-free

mice with human donor stool preparations used in clinical FMT procedures and assessed if

the resulting humanized microbiota was still protective in the absence of bile acids (Fig 6).

Germ-free Cyp8b1-/- mice infused with germ-free cecal content were not protected against

CDI. However, infusion of stool from two different healthy FMT donors (either directly or as

a slurry with germ-free cecal content as a control) completely protected the Cyp8b1-/- from dis-

ease (Fig 6A–6C). These results demonstrate translational relevance by showing that cholic

acid-class bile acids are dispensable for successful FMT using human microbiota.

Stickland metabolites are altered in monoassociated mice

Based on our findings that secondary bile acid production is not the mechanism by which bile

acid metabolizing bacteria protect against CDI, we explored whether silencing of downstream

Fig 4. Cholic acid derivatives are not required to initiate C. difficile infection. A) Germ-free wild type (N = 3),

CYP8B1 +/- (N = 3) or CYP8B1 -/- (N = 3)were infected with 105 C. difficile VPI10463 spores and monitored for signs

of disease. Weight loss (B) or Kaplan-Meier survival plot (C) of CYP8B1 -/- mice infected with wildtype C. difficile
UK1 or C. difficile JSC10 (cspC::ermB).

https://doi.org/10.1371/journal.ppat.1010015.g004

Fig 5. Cholic acid derivatives are not required for protection against CDI. C. scindens-monoassociated CYP8B1 +/-

(N = 3) and CYP8B1 -/- (N = 4) mice were infected with C. difficile VPI10463 and monitored for signs of disease.

https://doi.org/10.1371/journal.ppat.1010015.g005
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FXR signaling could account for host protection. Using conventional FXR-/- mice, we demon-

strated that a similar CDI disease course was evident in FXR-depleted and wild type littermates

orally administered C. difficile VPI10463 (S5 Fig). Furthermore, FXR signaling did not appear

to be significantly altered in patients with active CDI disease since no differences were evident

in downstream serum FGF-19 levels when compared with age-matched hospitalized controls

without diarrhea (S6 Fig). Surprisingly, this finding was made despite measuring significantly

altered primary and secondary bile acid profiles that are associated with CDI susceptibility in

patients (S6 Fig).

Table 2. Bile acid profiles of C. scindens colonized CYP8B1 heterozygous and CYP8B1 homozygous mice.

Concentration (nmol / g)

Primary Bile Acids Secondary Bile Acids

TA CA BMA DCA LCA OMA

CYP8B1 HET 1.0 - 10.0 39.7 - 92.1

CYP8B1 HET 7.1 21.2 44.1 24.9 - -

CYP8B1 HET - 18.2 115.1 27.4 - -

CYP8B1 HOM - - 4.0 - - 6.7

CYP8B1 HOM - - 39.3 - - -

CYP8B1 HOM - - 6.9 - - -

taurocholate (TA), chenodeoxycholate (CDCA), alpha-muricholate (AMA), beta-muricholate (BMA), deoxycholate (DCA), lithocholate (LCA), omega-muricholate

(OMA)

below the limit of detection

Limit of detection for Sedere Sedex model 80 LT- ELSD was calculated to be 0.2 nmol.

GCA, TCDCA, GCDCA, CDCA, AMA were below the limit of detection

https://doi.org/10.1371/journal.ppat.1010015.t002

Fig 6. Fecal microbial therapy protects mice independent of cholic acid class bile acids. Germ-free Cyp8b1-/- given cecal contents derived from a germ-free

donor (GFCC) (N = 3) or mice colonized with human stool donor #1 with (N = 3) or without GFCC (N = 3) and human stool donor #2 with (N = 2) or

without GFCC (N = 1) were infected with 104 spores derived from the C. difficile VPI10463 strain. Weight loss (A) or Kaplan-Meier survival curve (B) or

disease scores (C) are illustrated.

https://doi.org/10.1371/journal.ppat.1010015.g006
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To discover alternate bile-acid independent disease mechanisms, we performed unbiased

global metabolomics on fecal samples from CDI patients and in mice monoassociated with C.

scindens, C. hiranonis, C. leptum, and conventional and germ- free controls. A prior report

found that C. difficile and C. scindens compete in vitro [43]. In this report C. scindens was

found to produce and secrete the tryptophan-derived antibiotic 1-acetyl-β-carboline [43].

However, 1-acetyl-β-carboline alone did not inhibit C. difficile growth unless added at high

concentrations and required synergy with secondary bile acids to confer significant anti- C.

difficile activity. Our metabolomics interrogation using purified standards did not measure

detectable 1-acetyl-β-carboline in fecal specimens from C. scindensmonoassociated mice or in

healthy subjects who are resistant to C. difficile colonization. We confirmed these findings by

targeted selected-reaction monitored mass spectrometry (sensitivity >1 nM in fecal speci-

mens), indicating that production of this tryptophan-based antibiotic is likely not contributing

to protection in our animal models or in patients.

In monoassociated animals, the Stickland substrates, proline and glycine (and prolylgly-

cine), were lower in colonized mice suggesting that the amino acids were being consumed (S7

Fig). Conversely, the Stickland metabolic product, 5-aminovalerate, was significantly enriched

(Fig 7A). Stickland metabolism is a major metabolic pathway for C. difficile [44–46]. In Stick-

land metabolism, amino acids are decarboxylated or deaminated, reducing NAD+ to NADH

in the process [46]. In the reductive branch of the pathway, NAD+ is regenerated by the seleno-

proteins, proline reductase (PrdB) and glycine reductase (GrdA) [44–46]. In this process pro-

line and glycine are consumed and 5-aminovalerate and acetate are generated, respectively. C.

scindens and C. hiranonis, are predicted to encode the selenoprotein, PrdB, that produces

5-aminovalerate in the reductive branch of the Stickland pathway. Thus, it would be likely that

5-aminovalerate production would be high in both animal models that are resistant to CDI (i.
e., C. scindens-produced) and in patients experiencing CDI (i.e., C. difficile-produced). Indeed,

fecal 5-aminovalerate and glycine levels were significantly enriched in patients with CDI com-

pared with hospitalized controls without diarrhea (Fig 7B), whereas the abundance of proline

was not different between the two clinical groups (Fig 7C and 7D).

To test our hypothesis that consumption of proline / glycine or production of 5-aminovale-

rate (e.g., through Stickland metabolism) leads to an environment that protects against CDI,

we monoassociated germ-free, wildtype, mice with Paraclostridium bifermentans and infected

these mice with C. difficile VPI10463 spores. Importantly, P. bifermentans cannot 7α-dehy-

droxylate bile acids but can perform Stickland metabolism [47]. P. bifermentans-colonized

mice displayed mild disease when infected with C. difficile spores (Fig 8A). Upon a single dose

of clindamycin to induce recurrence, these mice were completely protected against recurring

disease (Fig 8B).

Finally, Cyp8b1-/- mice were monoassociated with Anaerobutyricum hallii. A. hallii cannot

7α-dehydroxylate primary bile acids and does not encode enzymes required for Stickland

metabolism (i.e., proline reductase or glycine reductase) and, thus, should not protect against

CDI. Cyp8b1-/- mice were monoassociated with A. hallii due to a prior report showing that this

organism can aid the microbiome in producing secondary bile acids (specifically, taurodeoxy-

cholic acid) and the Cyp8b1-/- strain alleviates any potential effect of cholic acid-derivatives

[48]. Indeed, A. hallii-colonized mice rapidly succumbed to C. difficile disease at a rate indis-

tinguishable from germ-free controls (Fig 8C and 8D).

Taken together, our data indicate that, despite secondary bile acid production by a healthy

microbiota being a useful biomarker for colonization resistance against C. difficile [12,26,31],

secondary bile acid production and downstream FXR-FGF19 signaling does not appear to be

the primary mechanism by which the microbiota protect the host against C. difficile coloniza-

tion and infection.
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Discussion

CDI remains a major healthcare problem that is associated with poor antimicrobial steward-

ship leading to disruption of the gut microbiota and loss of 7α-dehydroxylating bacteria

[12,14,26,29,31,49]. Germination of previously dormant C. difficile spores is considered the

first step in pathogenesis. This step is potentiated, in vitro, by cholic acid class bile acids and

amino acids. In a recent study, Leslie and colleagues demonstrated that consumption of the

glycine cogerminant can block the colonization of C. difficile by reducing spore germination

[20]. Though we find that C. scindens, C. hiranonis and C. leptum reduce the abundance of gly-

cine, proline and prolylglycine in monoassociated mice (S7 Fig), we do observe C. difficile col-

onization but lack of disease (S3 Table). These results are similar to prior observations [26]. In

Fig 7. Untargeted metabolomics implicates Stickland metabolism / metabolites in colonization resistance. A) Cecal contents from

the indicated mouse samples (number of samples in parentheses) were sent for untargeted metabolomics. The abundance of

5-aminovalerate (B), proline (C) and glycine (D) in human stools samples derived from hospitalized controls (HC; N = 23) and CDI

positive patients (N = 29) is quantified. Two-tailed Mann-Whitney test was used for group comparison: NS, not significant; �� p< 0.01;
��� p< 0.0001.

https://doi.org/10.1371/journal.ppat.1010015.g007
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prior work, colonization of mice with C. scindens, or a consortium of 4 bacteria, protected

against CDI but still led to colonization of mice with C. difficile [26]. This suggests that in

monoassociated mice, germination of dormant C. difficile spores still occurs but competition

between the two strains prevents disease.

Prior work tested the importance of cholic acid recognition by C. difficile spores using a

mutant C. difficile strain whose spores could not respond to cholic acid-class bile acids [8].

Infection of antibiotic treated hamsters with spores derived from the C. difficile cspC::ermB
strain led to a reduction in disease to 50% of the infected hamsters [8]. With the generation of

a cholic acid-deficient mouse strain, we tested if cholic acid production by the host is necessary

for infection. Similar to the prior work, Cyp8b1-/- mice still supported infection by C. difficile
spores. Infection of these mice with spores derived from the C. difficile cspC::ermB mutant

strain resulted in disease. Together, these results suggest that cholic acid-mediated spore ger-

mination enhances the efficiency of in vivo spore germination but a small amount of spores

Fig 8. Stickland metabolism is important for colonization resistance. Spores derived from the C. difficile VPI10463

strain were inoculated into germ-free (N = 3) or mice monoassociated with (A) and (B) P. bifermentans (N = 11) or (C)

and (D) A. hallii (N = 4). On day 6 post CDI, monoassociated mice were given a single i.p. dose of clindamycin to induce

recurrence [39]. A and C represent the average weights of the infected mice. B and D represent the Kaplan-Meier survival.

https://doi.org/10.1371/journal.ppat.1010015.g008
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germinate in a bile acid independent manner and lead to colonization. Importantly, though, inhi-

bition of bile acid-mediated germination can reduce CDI in animal models indicating that inhibi-

tors of germination may overcome the in vivo autogermination of C. difficile spores [50–52].

Use of C. difficile targeting antibiotics to treat CDI leads to continued perturbation of the

colonic microbiota and can contribute to recurrent disease. Despite the availability of anti-C.

difficile antibiotics, the most effective treatment for recurrent and refractory disease is FMT.

However, this experimental therapy is still the subject of intense FDA scrutiny because of the

risk of other multidrug resistant infections [53]. To establish safer microbial treatment there

therefore is a need to better understand how FMT provides clinical efficacy, currently assumed

to be mediated by secondary bile acids reestablishing colonization resistance in the susceptible

host [42]. This assumption is based on donor FMT preparations containing 7α-dehydroxylat-

ing bacteria which restore the balance of colonic secondary bile acid levels in patients and ani-

mal models. These largely correlative findings led to the hypothesis that secondary bile acid

production by the colonic microbiota contributes to an environment that is toxic for C. difficile
growth in vivo [34,35].

Our data suggest that 7α-dehydroxylation by the protective microbiota is not the primary

mechanism by which these bacteria prevent infection. Deoxycholate is the major secondary

bile acid in mice and is toxic to C. difficile growth in vitro [9,10]. A recent report tested the abil-

ity of different commensal strains to inhibit C. difficile growth [54]. The authors found that C.

scindens efficiently inhibited C. difficile growth and this was correlated with high amounts of

DCA. In this study, C. hiranonis did not inhibit C. difficile growth in vitro [54]. In the current

study, monoassociation of germ-free mice with C. scindens, C. hiranonis, or C. leptum pro-

tected against CDI in the absence of secondary bile acid formation. Further, we demonstrate

clinical translation of these reductionist models using human FMT donor microbiota prepara-

tions with proven efficacy in CDI patients, showing excellent protection in mice lacking cholic

acid-class bile acids. Our collective data strongly supports a bile-acid independent mechanism

of protection by 7α-dehydroxylating bacteria that does not involve previously reported CDI-

directed antimicrobials.

Metabolomic profiling of patients and monoassociated germ-free mice led to our identifica-

tion of Stickland metabolism as a likely contributor to protection against CDI, as previously

reported [55]. Both C. scindens and C. hiranonis encode proline / glycine reductases but we

could not find these orthologues in C. leptum. However, all 3 strains consume proline / glycine

and produce 5-aminovalerate (Fig 7). Consumption of proline in Stickland metabolism gener-

ates 5-aminovalerate [45,46] production by the microbiota that may lead to either feedback

inhibition of C. difficile Stickland metabolism or the consumption of proline by these bacteria

would remove an essential amino acid for C. difficile Stickland metabolism. In the metabolo-

mics dataset, we did not observe a decrease in most other amino acids (S4 Table). However,

we did observe a lower abundance of threonine and serine. Interestingly, both of these are 1

enzymatic step from glycine and C. difficile encodes the enzymes that perform this reaction

(threonine aldolase and serine hydroxymethyl transferase, respectively). We interpret this to

mean that C. difficile consumes glycine, becomes starved for it and then converts Thr and Ser

to glycine to continue Stickland. Alanine was moderately low and can be used in Stickland

reactions to acetyl or propionyl-CoA [56]. Asparagine and glutamine were also lower (however

not to the levels observed for Thr, Ser, Gly or Pro). These amino acids are good sources of

nitrogen and we interpret this as such. Finally, valine was slightly reduced too. Valine can be

consumed in the oxidative Stickland branch but the Stickland product, isobutyrate, was not

present in the metabolomics dataset. This data contrasts with what was observed for amino

acid presence in prior work [55]. However, this work did not use monoassociated studies and

thus direct comparisons should not be made.
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Building upon this, the same prior study found that in germ-free mice colonized with a con-

sortia of bacteria derived from a dysbiotic gut, a C. difficile proline reductase mutant had diffi-

culties in colonization, suggesting the importance of Stickland metabolism for C. difficile
colonization [55]. In support of the hypothesis that Stickland metabolism (or the consumption

of proline / glycine and / or production of 5-aminovalerate) is important for protecting against

CDI, P. bifermentans-colonized mice (Stickland-positive, 7α-dehydroxylation-negative) were

protected against CDI but A. hallii-colonized (Stickland-negative, 7α-dehydroxylation-nega-

tive) mice were not. Importantly, the production of 5-aminovalerate by C. difficile could result

in these organisms being excluded from the diseased colon. Because our findings suggest that

secondary bile acid generation by a healthy microbiome is not the mechanism by which colo-

nization resistance is established, we propose that restoring Stickland metabolism (or bacteria

that consume proline / glycine and / or produce 5-aminovalerate independently of Stickland)

to the colonic microbiome should be a focus of ongoing efforts to re-establish colonization

resistance in susceptible hosts and that this should be investigated further in a larger cohort of

patients.

Materials and methods

Ethics statement

Ethical approval for the study was obtained from the Liverpool Research Ethics Committee

under reference numbers 08/H1005/32 and each patient provided written informed consent

prior to recruitment. Ethical approval for omics screening of patients was also granted by Bay-

lor College of Medicine and University of Houston Institutional Review Boards.

All animal studies were performed with prior approval from the Texas A&M University

Institutional Animal Care and Use Committee (IACUC# 2020–0025) and from the

Baylor University College of Medicine Institutional Animal Care and Use Committee

(IACUC# AN-914).

Growth conditions

C. scindens VPI12708, C. hiranonis 10542, C. leptum ATCC 29065, P. bifermentans
ERIN_30100, and A. halliiDSM3353 were grown on BHI medium (Brain heart infusion) until

reaching logarithmic phase. C. difficile was grown in BHIS medium for six hours. (Brain heart

infusion supplemented with 5 g / L yeast extract). All clostridial strains were grown in an

anaerobic environment (Model B, Coy Laboratories Grass Lake, MI) at 37˚C (85% N2, >3%

H2, and 5% CO2).

Deconjugation/dehydroxylation assay

C. scindens VPI12708 and C. hiranonis 10542 were grown on BHI medium for 16 hours. Cul-

tures were back diluted to 107 and a 1:10 dilution was added to BHI medium supplemented

with 1 mM taurocholate. Cultures were grown for 24 hours and then centrifuged for 5 minutes

at 4000 x g. Samples were then lyophilized. The presence of specific bile acids in samples was

measured as described below.

Bile acid extraction and separation

Bile acids were extracted from 200 mg lyophilized stool, as described previously [57]. The

extracted bile acids were separated by reverse-phase HPLC using a Shimadzu prominence

HPLC system. Twenty-five microliter samples were separated using a Synchronis C18 column

(4.6 by 250 mm; 5 μm particle size; ThermoFisher 97105–254630) using a mobile phase
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consisting of 53% methanol, 24% acetonitrile, 23% water and 30 mM ammonium acetate (pH

5.6) [58]. Bile acid peaks were detected using a Sedere Sedex model 80 LT- ELSD (low temper-

ature-evaporative light scattering detector) using an air pressure of 50 psi of Zero Grade air at

94˚C [58,59]. Different amounts of specific bile acids [taurocholic acid (Sigma Aldrich 86339-

25G), glycocholic acid (Sigma Aldrich G7132-1G), taurochenodeoxycholic acid (Sigma

Aldrich T6260-250MG), glycochenodeoxycholic acid (Sigma Aldrich G0759-500MG), hyo-

deoxycholic acid (Sigma Aldrich H3878-5G), chenodeoxycholic acid (Acros organics C9377-

25G), cholic acid (Sigma Aldrich C1129-100G), deoxycholic acid (Sigma Aldrich D2510-

100G), lithocholic acid (Acros organics L6250-5G), α-muricholic acid (Steraloids C1890-000),

β-muricholic acid (Steraloids C1895-000), ω-muricholic acid (Steraloids C1888-000)] were

separated as described above to generate standard curves. The area under each peak was calcu-

lated and plotted against the concentration of bile acid added and a trend line was generated

for each bile acid. A 10 nmol injection of all bile acids used on this study was done to generate

the bile acid chromatograph shown in S3 Fig. To specifically identify bile acids in the extracted

samples, aliquots of bile acid extractions were spiked with standards to assign peaks of specific

bile acids. Concentration of the bile acids in samples (nmol) was calculated using the standard

curves of pure bile acids and normalized with the added internal standard (HDCA) [59]. Bile

acid concentrations were divided by weight of sample used for extraction to calculate concen-

tration per gram of sample.

Quantitative PCR

Amplification and detection of specific DNA targets for C. difficile and C. scindens was per-

formed on QuantStudio Flex real-time PCR system. All samples were run in triplicate in fast

96-well plates (Applied biosystems 4346907). The PCR reaction was performed on a 10 μL vol-

ume. Species-specific genes were tested and selected for each bacterial species. The baiE gene

was used for C. scindens and the tcdA gene was used for C. difficile. Samples were normalized

to a concentration of 100 ng / μL; 1 μL per sample was used in the reaction along with 5 mM

forward and reverse oligonucleotides. PowerUP SYBR Green master mix (Thermo Scientific,

A25742) was used.

Minimum inhibitory concentration of deoxycholate and lithocholate

The minimal inhibitory concentrations of DCA and LCA were determined using standard

techniques. Cultures of C. difficile VPI10463 were grown overnight. The following day, cul-

tures were back diluted and grown until reaching an OD600 = 0.5 before inoculating into a

range of DCA / LCA concentrations. The minimum inhibitory concentration was determined

at the lowest dilution of DCA or LCA where C. difficile did not grow.

Mice experiments

The CYP8B1 mouse mouse C57BL/6N-Cyp8b1tm1(KOMP)Vlcg/MbpMmucd was purchased from

the Mutant Mouse Resource & Research Center at UC-Davis (Stock No. 047289-UCD). Het-

erozygous mice were rederived to germ-free status by the Baylor College of Medicine Gnoto-

biotics Core using the hysterectomy/cross-foster method. Mice were confirmed germ-free by

serial negative 16S qPCR and aerobic, anaerobic, and fungal culture over a 90 day period.

Germ-free mouse colonies were housed in sterile flexible film isolators (Class Biologically

Clean, Madison, WI). Monoassociated mice were gavaged with liquid cultures of C. scindens,
C. hiranonis, C. leptum, P. bifermentans or A. hallii at 106 CFU / mL and housed in positive

pressure individually ventilated cages (IsoCage P, Tecniplast, Buguggiate, Italy). Colonization

was confirmed with 16S PCR. Stably colonized mice or GF control mice were infected with 104
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C. difficile VPI10463 spores, or 106 C. difficileUK1 or JSC10 (cspC::ermB) spores (inoculum

was increased compared to VPI10463 due to reduced virulence of the UK1 strain compared to

the VPI10463 strain) [39]. Infected mice were monitored for weight loss and any clinical signs

of disease. When stated, an intraperitoneal injection of clindamycin (10 mg / kg) was adminis-

tered to test for disease recurrence. All animals were handled in accordance with the protocols

approved by the Institutional Animal Care and Use Committees at Texas A&M University and

at Baylor College of Medicine.

Microbiome sequencing and analysis

Amplicon data of 16S rDNA variable region of V4 was generated from MiSeq platform with

paired-end sequencing protocol (effective read length: 250 bp for V4). DADA2 package (ver-

sion 1.8) [60] was used for processing de-multiplexed raw sequencing reads following the

default parameter settings with minor modifications. Specifically, raw sequencing reads were

trimmed while maintaining the overlap regions for merging paired-end reads by VSEARCH

(version 2.9) [61]; sequencing primers in paired-end reads were stripped by the length of prim-

ers. IdTaxa function in DECIPHER package (version 2.6.0) [62] and its pre-built training set

(LearnTaxa function) of SILVA database (release 132) [63] was used for taxonomy assignment

(threshold: 0.5) of amplicon sequence variants (ASVs) from DADA2 output. ASVs that were

not classified as bacteria domain and that were identified as chimeras were removed. Samples

with less than 4,500 reads in the ASV matrix (median read count: 34,093) were excluded and

proportional transformation was applied to normalize feature data prior to downstream analy-

sis. Alpha-diversity indices including Shannon metric were calculated by Phyloseq package

(version 1.24.2) [64]. Beta-diversity analysis was performed with non-metric multidimensional

scaling (NMDS) of Bray-Curtis dissimilarity distance metric in the Vegan package (version

2.5–5) [65]. Non-parametric statistical test using ANalysis Of SIMilarities (ANOSIM) method

in vegan was used for comparing group difference using beta-diversity distance matrix. Raw

reads for the microbiome studies have been deposited in the sequence read archive at NCBI

(Accession number: PRJNA726993)

Patient cohort

Patients and age matched hospitalized controls (HC) were recruited from a large hospital set-

ting in Merseyside, UK. Consecutive patients with healthcare-associated diarrhea, which was

defined as�3 liquid stools passed per day in the 24 hours preceding assessment, an onset after

being in hospital for over 48 hours and recent exposure to either antimicrobials and/or proton

pump inhibitors, were eligible for inclusion. Relevant information on demographics, admis-

sion and clinical evaluation was collected for each patient who consented to participate and

recorded into an anonymised case report proforma. Patients were identified by a daily review

of C. difficile ELISA toxin tests performed by the clinical microbiology laboratories. Clinical

metadata collected on all patients included demographics (age and sex), comorbid conditions

(Charlson comorbidity index), use of antibiotics, and other medications. Fecal metabolome

analysis was performed on 29 CDI patients and 23 age matched hospitalized control (HC) sub-

jects. Serum FGF19 levels was measured in fasted, early morning blood draws in age matched

CDI patients (n = 29) and HC (n = 75). In order to minimize bias in reporting assay results,

specimens were assigned non-identifiable codes that were decoded after study completion.

FGF19 measurement and stool metabolome analysis

Fibroblast Growth Factor 19 (FGF19) from human serum samples was measured by ELISA

(R&D Systems). Human stool samples were sent to Metabolon inc. for untargeted
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metabolomics analysis. Raw intensity values of metabolites from Metabolon were transformed

with log10 scaling for downstream analysis, and missing values (non-detected) were imputed

with zero. Only primary and secondary bile acids and amino acids were included to meet the

scope of this study. Heatmap was used to visualize the transformed data between CDI and HC

subjects. Median absolute deviation, median, mean and standard deviation of each metabolite

in each group were calculated with base functions in R package. Benjamini-Hochberg (BH)

correction was applied for statistical analysis with two-sided Mann-Whitney-Wilcoxon test for

group comparison.

Supporting information

S1 Fig. Model for bile acid-mediated protection against CDI. A) In a healthy colonic envi-

ronment, the microbiome is hypothesized to inhibit C. difficile growth through the production

of secondary bile acids [e.g., deoxycholate (DCA)], an activator of C. difficile spore germination

but a potent inhibitor of in vitro C. difficile growth). B) In a dysbiotic colonic environment,

C. difficile spore germination is thought to be triggered by the combinatorial action of cholic

(CA) acid-class bile salts [e.g., taurocholate (TA)] and amino acids. Dormant spores white cir-

cles, germinated spores; dark circles, vegetative cells; rectangles.

(TIF)

S2 Fig. Confirmation of the baiE orthologue. The presence of a baiE orthologue was con-

firmed by PCR using oligonucleotides specific for each strain.

(TIF)

S3 Fig. Detection of bile acid standards using HPLC. The indicated bile acids were separated

by HPLC and detected using evaporative light scattering. A standard curve was generated

using this method and used to quantitate the bile acids.

(TIF)

S4 Fig. Bile salt hydrolase activity in C. scindens and C. hiranonis. The indicated strains

were grown for 24 hours in medium supplemented with taurocholate. The abundance of taur-

ocholate or cholate in the media fraction of the culture was determined by HPLC and

expressed as a percentage of the total input. Bars represent the average from three independent

experiments and error bars are the standard error of the mean. C. scindens generated no cho-

late in the experiments.

(TIF)

S5 Fig. FXR-/- are as susceptible as wildtype mice to C. difficile infection. Antibiotic-treated

wildtype (N = 7) and FXR-/- (N = 11) were infected with C. difficile VPI10463 spores. Animals

were monitored for disease symptoms and weighed daily for two days. Differences in weight

loss are non-significant.

(TIF)

S6 Fig. Bile acid, FGF19 and age of CDI patients and hospitalized controls. Stool primary

and secondary bile acids were profiled by Metabolon for 29 CDI patients and 23 hospitalized

control (HC) subjects. Serum FGF19 level was measured by ELISA for the same 29 CDI

patients and another 75 HC subjects of the same cohort. Two-tailed Mann-Whitney test was

used for group comparison: NS, not significant.

(TIF)

S7 Fig. Abundance of proline, glycine and prolylglycine in the untargeted metabolomics.

Cecal contents from germ-free, conventionally-raised, or monoassociated mice were sent for
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untargeted metabolomics and lipodomics. The abundance of A) proline, B) glycine and C) the

dipeptide, prolylglycine, is illustrated.

(TIF)

S1 Table. Minimal Inhibitory Concentration of secondary bile acids on C. difficile
VPI10463.

(DOCX)

S2 Table. Bile acid amounts in germ-free, C. scindens-, or C. hiranonis-, or C. leptum-colo-

nized mice.

(DOCX)

S3 Table. C. scindens and C. difficile colonization levels of Cyp8b1 pre- and post-infection.

(DOCX)

S4 Table. Full metabolomics dataset.

(XLSX)
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