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Motivation: Patients with novel coronavirus disease 2019 (COVID-19) worsen into

critical illness suddenly is a matter of great concern. Early identification and effective

triaging of patients with a high risk of developing critical illness COVID-19 upon admission

can aid in improving patient care, increasing the cure rate, and mitigating the burden

on the medical care system. This study proposed and extended classical least absolute

shrinkage and selection operator (LASSO) logistic regression to objectively identify clinical

determination and risk factors for the early identification of patients at high risk of

progression to critical illness at the time of hospital admission.

Methods: In this retrospective multicenter study, data of 1,929 patients with COVID-19

were assessed. The association between laboratory characteristics measured at

admission and critical illness was screened with logistic regression. LASSO logistic

regression was utilized to construct predictive models for estimating the risk that a patient

with COVID-19 will develop a critical illness.

Results: The development cohort consisted of 1,363 patients with COVID-19 with

133 (9.7%) patients developing the critical illness. Univariate logistic regression analysis

revealed 28 variables were prognosis factors for critical illness COVID-19 (p < 0.05).

Elevated CK-MB, neutrophils, PCT, α-HBDH, D-dimer, LDH, glucose, PT, APTT, RDW

(SD and CV), fibrinogen, and AST were predictors for the early identification of patients

at high risk of progression to critical illness. Lymphopenia, a low rate of basophils,

eosinophils, thrombopenia, red blood cell, hematocrit, hemoglobin concentration,

blood platelet count, and decreased levels of K, Na, albumin, albumin to globulin

ratio, and uric acid were clinical determinations associated with the development of

critical illness at the time of hospital admission. The risk score accurately predicted

critical illness in the development cohort [area under the curve (AUC) = 0.83, 95%

CI: 0.78–0.86], also in the external validation cohort (n = 566, AUC = 0.84).

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2022.880999
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2022.880999&domain=pdf&date_stamp=2022-05-24
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles
https://creativecommons.org/licenses/by/4.0/
mailto:liuronghyw@csu.edu.cn
mailto:csuzhangwei@csu.edu.cn
https://doi.org/10.3389/fpubh.2022.880999
https://www.frontiersin.org/articles/10.3389/fpubh.2022.880999/full


Fu et al. Early Prediction Model for COVID-19

Conclusion: A risk prediction model based on laboratory findings of patients with

COVID-19 was developed for the early identification of patients at high risk of progression

to critical illness. This cohort study identified 28 indicators associated with critical illness

of patients with COVID-19. The risk model might contribute to the treatment of critical

illness disease as early as possible and allow for optimized use of medical resources.

Keywords: COVID-19, risk factors, critical illness, machine learning, LASSO regression

INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic is
spreading worldwide. As a communicable disease, COVID-19
is caused by severe acute respiratory syndrome coronavirus
2. Until 14 February 2022, the WHO reported 412,044,520
COVID-19 confirmed cases globally, with an average mortality
rate of 1.4%. The clinical spectrum of COVID-19 infection
ranges from asymptomatic infection, and mild upper respiratory
tract illness to critically ill cases (1). It has been reported that
about 5% of patients with COVID-19 infection experience rapid
deterioration from the onset of symptoms into critical illness (2)
and with a mortality rate of 61.5% for critical ones within 28 days
of hospital admission (3). Treatment of patients with critical
illnesses constitutes great pressure on medical services, especially
results in the lack of intensive care resources. Therefore, early
identification and effective triaging of patients with a high risk of
developing critical illness COVID-19 upon admission can aid in
improving patient care, increasing the cure rate, and mitigating
the burden on the medical care system.

The risk factors for critical illness are not well-revealed.
Previous reports have identified that older age, organ
dysfunction, neutrophilia, preexisting concurrent cardiovascular
or cerebrovascular diseases, coagulopathy, amounts of
CD3+CD8+ T cells, and elevated D-dimer levels are associated
with the development of acute respiratory distress syndrome
and increased mortality risk (1, 4–9). A limited number of
publications have identified chest radiographic abnormality,
older age, hemoptysis, dyspnea, unconsciousness, number of
comorbidities, cancer history, neutrophil-to-lymphocyte ratio
(10), lactate dehydrogenase (LDH), and direct bilirubin are risk
factors associated with the development of critical illness (11, 12).
Clinical scores for predicting which patients with COVID-19
will develop critical illness were developed with these above 10
factors (11, 12), which show well-discrimination. In addition, an
integrated model was developed with patient history, laboratory
markers, and chest radiography at hospital admission to predict
critical illness by Schalekamp et al. (13). However, in these
models, some diagnoses of co-existing illness and symptoms
were from patients’ self-reports at admission, which might lead
to recall bias.

Mathematical modeling with appropriate inputs can make
predictions in the dynamics and control of the infectious disease.
A series of mathematical models have been developed on the
transmission dynamics and control of COVID-19 or SARS-CoV-
2 virus in different countries (14–24), namely, Wuhan, Italy, and
the USA. In this retrospective multicenter study, we proposed

and extended classical least absolute shrinkage and selection
operator (LASSO) logistic regression for the early identification
of patients at high risk of progression to critical illness. We
systematically analyzed the accessible laboratory findings of
confirmed 1,929 patients with COVID-19 having clear prognostic
information in 32 hospitals in Hubei and Hunan provinces of
China and identified robust and meaningful factors associated
with a critical illness. The laboratory findings were measured
objectively. A risk prediction model was constructed according
to LASSO logistic regression to help identify patients at the time
of hospital admission who are at high risk of developing a critical
illness. This model aims at distinguishing patients at imminent
risk of critical illness, thereby optimizing the allocation of limited
healthcare resources and potentially lowering the mortality rate.

METHODS

Data Collection
This study has been proved by the Institute of Clinical
Pharmacology, Central South University. For the urgent need
to collect and analyze data on this emerging pathogen, the
ethics committee of the Institute of Clinical Pharmacology,
Central South University granted a waiver of written informed
consent from study participants. Medical records of hospitalized
patients with COVID-19 diagnosed in 31 hospitals in China
(4 hospitals in Hubei Province and 27 hospitals in Hunan
Province) were collected. All patients who were diagnosed with
COVID-19 by positive high-throughput sequencing or real-
time reverse-transcription PCR (RT-PCR) assay for nasal and
pharyngeal swab specimens were screened, our study enrolled
all adult inpatients (≥18 years old) who were hospitalized for
COVID-19 and had an explicit outcome of critical illness. The
data were cross-checked by experienced respiratory clinicians.
All patients with data on clinical status at hospitalization
(laboratory findings, critical illness, and discharge status)
were included.

Clinical Outcome
The outcome of this study is a critical illness, which is defined
as a composite of invasive ventilation, admission to the intensive
care unit (ICU), or fatal of patients with COVID-19 (25). The
follow-up time was calculated from the first day of hospitalization
to the date of death or discharge, or the censored date (12th
April 2020 for the development cohort and 11 June 2020 for the
validation cohort).
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Potential Predictive Variables
Demographic variables and laboratory findings of patients
at hospital admission were collected as potential predictive
variables. Demographic variables included age and gender.
Laboratory findings were conducted as the first measurement
within 2 days after at admission, laboratory indexes with
complete measurements for more than 50% of the patients in
the development cohort were collected: hematologic (hematokrit,
basophils, eosinophils, lymphocytes, monocytes, neutrophils,
mean corpuscular volume, hemoglobin concentration, coefficient
of variation [CV] and SD of red blood cell volume distribution
width [RDW], blood platelet count, thrombocytocrit, red blood
cell, and white blood cells), biochemical [levels of glucose,
K, Na, total Ca, Cl, total protein, lactate dehydrogenase
(LDH), glutamic-pyruvic transaminase, creatine kinase, aspartate
transaminase (AST), creatine kinase muscle-brain isoform (CK-
MB), creatinine, ureophil, albumin, globulin, albumin to globulin
ratio, and glomerular filtration rate (GFR)], coagulation function
indexes [levels of D-dimer and fibrinogen, activated partial
thromboplastin time (APTT), and prothrombin time (PT)],
infection-related indices [levels of C-reactive protein (CRP),
procalcitonin (PCT), and alpha hydroxybutyrate dehydrogenase
(α-HBDH)], and also the level of uric acid. For the complete
laboratory findings and corresponding ratio of missing values,
please refer to Supplementary Table 1.

Statistical Analysis
Continuous and categorical variables were presented as mean, SD
[interquartile range (IQR)], and n (%), respectively.

A total of 1,255 patients hospitalized with COVID-19 in
the development cohort were included for variable selection.
To access the association between the quantitative laboratory
findings described above and the occurrence of critical illness, a
univariate logistic regression analysis was conducted. Since the
odds ratio (OR) is interpreted per unit change, to standardize
ORs between variables with a different range, logistic regression
analysis was applied to dichotomies data (1 = with the
occurrence of critical illness and 0 = without the occurrence of
critical illness) with quartiles of each of the 38 laboratory findings
modeled as continuous (<25% quartile = 1; ≥25% and <50%
quartile = 2; ≥50% quartile and <75% quartile = 3; and ≥ 75%
quartile= 4). The associations between the occurrence of critical
illness and age (≥55 vs. <55 years) were also evaluated.

The statistically significant 28 covariates (p < 0.05) in the
univariate logistic analysis were selected as candidates for risk
score development of critical illness. A total of 1,064 patients with
at least 80% data completeness of the above 28 variables were
utilized for model establishment. We applied predictive mean
matching to impute numeric features (laboratory findings) with
“mice” packages in R for these 1,064 patients.

Prediction models were developed with the LASSO logistic
regression, support vector regression (SVR), artificial neural
network (ANN), regression tree (RT), and multivariate adaptive
regression splines (MARS) machine learning techniques. We
used the “glmnet” (14) package for LASSO, “e1071” package
for SVR, “RSNNS” package for ANN, “rpart” package for
RT, and “earth” package for MARS. Default parameters were

used. L1-penalized least absolute shrinkage and selection
regression augmented with 1,000-fold cross-validation for
internal validation was utilized. LASSO logistic regression is a
logistic regression model that penalizes the absolute size of the
coefficients of a regression model according to the value of λ. In
the process of LASSO regression coefficients, some unimportant
regression coefficients can be directly reduced to 0 to achieve
the function of variable screening. In comparison to the ridge
regression model, the penalty term in the LASSO regression is
an absolute value, namely, L1 regular. The estimates of weaker
factors shrink toward zero with larger penalties, then only the
greatest predictors were left in the model. We select the most
predictive covariates by the minimum value of λ. Subsequently,
variables identified by LASSO regression analysis were used to
construct the risk score with their coefficients:

Risk Score(RS) =

n∑

i=1

(Valuei ∗ Coei) (1)

where n stands for the number of prognostic variables in
the model; Valuei is the original value of variablei; and Coei
is the estimated coefficient of Valuei in the LASSO logistic
regression model. The probability of developing critical illness
was calculated with the following formula: probability = exp
(RS)/[1+ exp(RS)].

We used receiver operating characteristic (ROC) curves to
compare the sensitivity and specificity of scores generated with
different machine learning techniques. The abscissa and ordinate
coordinates of ROC curves are false-positive rate and true
probability, respectively. The points of ROC curves reflect the
susceptibility to the same signal stimulus. By comparing the false-
positive and true numbers, ROC curves show the performance
of a classification model at all classification thresholds. The area
under the receiver operating characteristics (AUROC), namely,
the entire two-dimensional area underneath the entire ROC
curve, was used as the precision measurement. AUROC shows
howmuch the model is capable of distinguishing between classes.
The larger the AUROC value, the better will be the model at
predicting different classes. R-package “ROCR” was utilized for
the calculation of the AUROC curve.

To explore temporal changes in laboratory findings during
hospitalization, differences between critical illness groups during
follow-up in laboratory findings were estimated from linear
mixed models with R package “nlme.”

Details of samples used at each stage of statistical analysis
were depicted in Figure 1. All statistical analysis was conducted
with R software (version 3.6.2, R Foundation), and p-values were
computed from two-tailed tests of statistical significance with a
type I error rate of 5%.

External Model Validation
To validate the generalizability of the risk scores, we used
an independent cohort from hospitals in Hunan province
including 566 patients. We collected the same variables required
for calculating the risk score from the validation cohort and
cross-checked them. The 432 patients with at least 80% data
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FIGURE 1 | Study flowchart detailing which samples were utilized at each phase of statistical analysis. COVID-19: severe coronavirus disease 2019.

completeness of the 28 variables used for model development
were selected. The laboratory findings were imputed and the risk
score was calculated as described for the development cohort. To
assess the discriminative ability, the AUCs were evaluated.

RESULTS

Characteristics of the Cohorts
The development cohort with 1,363 patients, of which a total of
133 patients eventually developed critical illness (9.8%), from 4
hospitals in Hubei. The median follow-up time for patients was
14 days. The average (SD) age of patients in this cohort was 57.84
(16.29) years; 634 patients (46.52%) were men. The validation
cohort included 566 patients with a mean (SD) age of 45.94
(15.33) years, 291 (51.41) were men. The median follow-up time
for patients was 13 days. The critical illness eventually developed
in 28 (4.24%) of these patients.

Prognostic Factors of Critical Illness
A total of 39 features were tested for associations with critical
illness in the development cohort with univariate logistic
regression analysis. The results of the 1,255 patients showed that

28 variables were prognosis factors for critical illness COVID-
19 (p < 0.05, Table 1, Figure 2). The odds of critical illness
were higher in patients older than 65 years. Laboratory results
show that elevated CK-MB, neutrophils, PCT, α-HBDH, D-
dimer, LDH, glucose, PT, APTT, RDW (SD and CV), fibrinogen,
and AST were associated with a critical illness. Patients in
the critical illness group showed lymphopenia and had a low
rate of basophils, eosinophils, thrombopenia, red blood cell,
hematocrit, hemoglobin concentration, and blood platelet count
and represented decreased levels of K, Na, albumin, albumin
to globulin ratio, and uric acid, compared with the non-critical
illness group.

Longitudinal Observations of Laboratory
Variables
To determine the major clinical features that appeared during
COVID-19 disease progression, the dynamic changes in 28
clinical laboratory parameters were measured within 2 days after
hospital admission and associated with critical illness, namely,
hematological and biochemical parameters, were recorded from
day 3 to day 25 after hospital admission. The temporal changes
in laboratory findings during hospitalization were explored
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TABLE 1 | Laboratory characteristics among patients who did not or did develop critical illness in the development cohort.

Laboratory tests Total, mean (SD)

[Interquartile range]

Critical illness (n =

1,255)

No (n = 1,130) Yes (n = 125)

Hematologic

Lymphocytes, ×109/L 1.32 (0.67) [0.86–1.66] 1.36 (0.67) [0.9–1.69] 0.94 (0.47) [0.6–1.23]

Eosnophils, ×109/L 0.08 (0.14) [0–0.1] 0.08 (0.14) [0.01–0.11] 0.05 (0.13) [0–0.05]

Basophils, ×109/L 0.02 (0.02) [0.01–0.03] 0.03 (0.02) [0.01–0.04] 0.02 (0.03) [0.01–0.02]

Neutrophils, ×109/L 4.19 (2.85) [2.54–4.76] 4.03 (2.61) [2.5–4.66] 5.57 (4.24) [2.84–7.97]

Blood platelet, ×109/L 219.31 (84.12) [161–266] 220.91 (83.06)

[164.75–267.25]

205.43 (91.92) [135–263.25]

Thrombocytocrit, % 0.22 (0.08) [0.16–0.27] 0.22 (0.08) [0.17–0.27] 0.19 (0.08) [0.14–0.24]

RDW (CV),% 12.91 (1.45) [12–13.3] 12.86 (1.41) [12–13.3] 13.37 (1.75) [12.22–14.03]

RDW (SD), fL 41.59 (4.48) [38.7–43.7] 41.4 (4.21) [38.7–43.6] 43.27 (6.22) [39.8–45.48]

Hematokrit, % 37.74 (6.04) [34.4–41.5] 37.89 (5.97) [34.7–41.62] 36.32 (6.53) [31.4–40.48]

Hemoglobin concentration, g/L 126.56 (18.71) [116–139] 127.17 (18.37) [117–139] 121.15 (20.8) [107–135]

Red blood cells, ×1012/L 5.12 (11.5) [3.7–4.63] 5.04 (10.56) [3.72–4.66] 5.79 (17.68) [3.35–4.45]

Biochemical

AST, U/L 29.04 (21.34) [16.7–33.35] 28.51 (21.03) [16.5–32.8] 33.46 (23.4) [18.4–41.5]

CK-MB, U/L 9.51 (9.13) [5–11.4] 9.14 (9.28) [5–10.85] 11.99 (7.56) [7–13.5]

Albumin to globulin ratio, % 1.34 (0.34) [1.11–1.54] 1.35 (0.34) [1.12–1.56] 1.26 (0.34) [1.08–1.44]

Albumin, g/L 37.1 (5.58) [33.4–41.3] 37.27 (5.52) [33.67–41.4] 35.62 (5.92) [31.82–39.5]

LDH, U/L 224.76 (117.43) [153–254] 217.94 (111.64) [151–240] 270.02 (142.8) [173–331.5]

Glucose, mmol/L 6.49 (2.91) [4.93–6.93] 6.37 (2.78) [4.91–6.79] 7.49 (3.66) [5.5–8.09]

K, mmol/L 4.12 (0.54) [3.8–4.44] 4.13 (0.53) [3.8–4.45] 3.98 (0.59) [3.68–4.32]

Na, mmol/L 139.91 (4.29)

[137.6–142.7]

140.05 (4.14) [138–142.8] 138.73 (5.34) [135.55–142]

Infection-related indices

CRP, mg/L 28.8 (41.98) [2.4–40.6] 26.09 (38.96) [2.2–38] 53.9 (57.96) [13.25–64.4]

PCT, ng/ml 0.28 (1.7) [0.04–0.09] 0.17 (0.63) [0.04–0.08] 1.04 (4.38) [0.05–0.22]

α-HBDH, U/L 173.23 (85.83) [120–192] 166.55 (79.52) [117–186] 210.97 (108.1) [145.75–261.75]

Coagulation function

D-dimer, µg/mL 2.09 (7.43) [0.26–1.45] 1.8 (6.61) [0.24–1.3] 4.29 (11.79) [0.46–3.12]

PT, s 11.57 (1.09) [10.9–12] 11.49 (0.97) [10.8–12] 12.18 (1.61) [11.2–12.6]

APTT, s 28.12 (6.21) [24.4–30.7] 27.78 (6.04) [24.4–30.3] 30.58 (6.89) [25.5–33.9]

Fibrinogen, g/L 3.18 (1.21) [2.31–3.69] 3.15 (1.23) [2.29–3.64] 3.39 (1.06) [2.65–3.98]

Uric acid, umol/L 283.57 (108.58) [212–332] 284.9 (105.29)

[214.25–336]

272.18 (133.43) [200–291.5]

RDW, red blood cell volume distribution width; AST, aspartate aminotransferase; CV, coefficient of variation; SD, standard deviation; AST, aspartate aminotransferase; CK-MB, Creatine

kinase muscle-brain isoform; LDH, lactate dehydrogenase; CRP, C-reactive protein; PCT, Procalcitonin; PT, prothrombin time; APTT, activated partial thromboplastin time.

(Figure 3). Baseline lymphocyte count was significantly lower
in critical illness than in non-critical illness patients. Levels of
CRP, D-dimer, LDH, and glucose were clearly elevated in the
critical illness group compared with the non-critical illness group
throughout the clinical course either in the developing dataset.
Furthermore, we found that compared to that in the non-critical
illness group, neutrophils, α-HBDH, and globulin were increased
in the critical illness group, while eosinophils and albumin were
decreased in the critical illness group.

Construction of the Risk Models and their
Performances
A total of 28 variables determined at hospital admission and
associated with a critical illness (Figure 2) were included in
the model development. Prediction models were constructed
using LASSO logistic regression, SVR, ANN, RT, and MARS,

their performance was evaluated by the ROC analysis (Figure 4).
Although the predictive ability of ANN and SVR in the
development cohort was better than other algorithms, the
predictive ability using models of LASSO logistic regression
and ANN outperformed the other algorithms in the validating
dataset (Figure 4D). The LASSO logistic regression model was
selected by us for its high predictive power and interpretability.
In LASSO regression, after excluding irrelevant and redundant
features (Figures 4A,B), 21 features remained for LASSO
regression analysis, including age, whether take ARB drugs
and blood test results, lymphocytes, neutrophils, blood platelet,
thrombocytocrit, RDW (CV and SD), hematocrit, hemoglobin
concentration, AST, CK-MB, albumin, LDH, glucose, K, Na, CRP,
PCT, PT, APTT, fibrinogen, and uric acid. The risk score was
constructed based on the coefficients from the LASSO logistic
model (Table 2) and then converted into a probability with
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FIGURE 2 | Prognostic associations of clinical characteristics and laboratory findings in the development dataset. Unadjusted ORs (boxes) and corresponding 95%

CIs (horizontal lines) for variables associated with the development of critical illness are represented. Box size is inversely proportional to the standard error of OR. The

variables are stratified as quartiles. OR, odds ratio. CI, confidence interval.

formulas presented in the method and materials section. By
internal 100 times bootstrap validation, the mean AUC based on
data from the development cohort was 0.83 (95% CI, 0.78–0.86)
(Figure 4C). Variables utilized in the risk score for the validation
cohort are shown in Table 3. The accuracy of the COVID risk
score in the validation cohort was like that of the development
cohort with an AUC in the validation cohort of 0.84 (Figure 4D).

DISCUSSION

Early identification of patients with COVID-19 at risk of
progression to critical illness disease will aid in better patient
management and effective usage of healthcare resources. In
this study, we unraveled that older age and higher levels of
laboratory test indexes such as CRP, LDH, and glucose, and
lower levels of laboratory findings such as lymphocytes and

albumin on admission were associated with higher probabilities
of critical illness COVID-19. In addition, a clinical risk score
based on LASSO logistic regression was developed to predict
the development of critical illness patients with COVID-19 with
satisfactory accuracy according to AUC (0.83). Generally, the 21
variables required for estimating the probability of developing
critical illness can be easily obtained from routine tests at hospital
admission. The robustness and applicability of the risk score were
confirmed in the independent validation dataset (AUC= 0.84).

Univariate analyses revealed that factors, namely, age,
neutrophils, D-dimer, LDH, CRP, glucose, APTT, fibrinogen,
AST, and several other biochemical parameters were associated
with a critical illness. In addition, the dynamic profile of the
significant laboratory findings was tracked. Levels of LDH, D-
dimer, glucose, CRP, α-HBDH, and globulin are higher in the
critical illness group compared with the non-critical illness
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FIGURE 3 | Temporal changes in laboratory findings from illness onset in patients hospitalized with COVID-19. Temporal changes in neutrophils (A), lymphocytes (B),

eosinophils (C), D-dimer (D), alpha hydroxybutyrate dehydrogenase (E), lactate dehydrogenase (F), C-reaction protein (G), albumin (H), and glucose (I) in the

development dataset were presented. Differences between critical illness patients and non-critical illness patients were demonstrated with p-values calculated with

mixed linear models. The dashed lines in black and red color show the lower and upper normal limits of each laboratory finding.

group. And neutrophil counts and albumin are lower in the
critical illness group compared with the non-critical illness
group. A prediction model for critical illness was developed with
21 predictors that were found to be independently correlated
with critical illness via multivariate LASSO logistic regression
analysis. Previous studies have found several of these variables
to be prognosis factors for patients with COVID-19. It has been
reported that elderly patients were more commonly critically
ill with COVID-19 (3, 26, 27) and have a higher probability
of a death outcome (28, 29). Modelli and colleagues revealed
that the 28-day fatality rate was associated with increasing
age, hypertension, cardiovascular disease, and higher body mass
index (17), in agreement with the previous work.

Lymphopenia, leukocytosis (with increased absolute
neutrophil counts), eosinopenia, neutrophilia, increased
CRP and PCT which reflects a persistent state of inflammation
(30) may be related to cytokine storm and cellar immune
deficiency induced by virus invasion (27, 31). Zhou et al. found
lower lymphocyte counts and higher LDH in patients who

died from COVID-19 (1). Injured alveolar epithelial cells could
lead to the infiltration of lymphocytes, resulting in persistent
lymphopenia (32, 33). Lymphopenia is a common characteristic
in patients with COVID-19 and might play an important role
in the disease process (34, 35). Zhang et al. noted that 53%
of patients admitted with COVID-19 had eosinopenia on the
day of hospital admission (36). Calabrese et al. reported that
lymphocyte and platelet counts were the most important features
able to stratify patients into different clinical clusters (37).
Ewan et al. demonstrated that risk stratification was improved
by blood and physiological parameters (C-reactive protein,
neutrophil/lymphocyte ratio, and neutrophil count) measured at
hospital admission (20). Such findings were consistent with this
work. A higher level of LDH was an indication of the activity
and severity of idiopathic pulmonary fibrosis and is one of the
most important prognostic biomarkers of lung injury (37). LDH
was reported to be higher in severe and patients who received
ICU treatment with COVID-19 than in mild and non-ICU
patients (27, 30, 38, 39), which is utilized as a valuable prognosis
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FIGURE 4 | Feature selection using the least absolute shrinkage and selection operator (LASSO) logistic regression model. (A) LASSO coefficient profiles of the 29

baseline features. (B) Tuning parameter (λ) selection in the LASSO model used 1,000-fold cross-validation via minimum criteria. Receiver operating characteristic

curve for the performance of different machine learning techniques to distinguish individuals with COVID-19 from those with critical illness COVID-19 in the training

cohort (C) and validation cohort 1 (D), respectively. AUC, area under the receiver operating characteristic curve. The true positive rate represents module sensitivity,

whereas the false positive rate is one minus the specificity.

predictor (40, 41). In addition, patients with elevated CK-MB
levels on hospital admission were at significantly increased risk
of critical illness. Li and colleagues found that cardiac injury
(elevated LDH and CK-MB levels) were associated with severe

disease or ICU admission and death in patients with COVID-
19 (42). Increased PT and APTT, decreased blood platelet,
thrombocytocrit, and fibrinogen which reflect the coagulation
activation might be associated with the sustained inflammatory
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TABLE 2 | Coefficients of LASSO logistic regression model for predicting

development of critical illness in 1,064 patients hospitalized with COVID-19 in the

development dataset.

Laboratory tests Coefficient

Lymphocytes, ×109/L −1.0049

Neutrophils, ×109/L 0.085

Blood platelet, ×109/L 0.017

Thrombocytocrit, % −19.7385

RDW(CV),% 0.0601

RDW(SD), fL 0.0395

Hematokrit, % −0.003

Hemoglobin concentration, g/L −0.0015

Glucose, mmol/L 0.1131

K, mmol/L −0.3833

Na, mmol/L −0.0187

AST, U/L −0.0026

CK-MB, U/L 0.0037

Albumin, g/L 0.0096

PT, s 0.1381

APTT, s 0.0148

Fibrinogen, g/L −0.1319

CRP, mg/L 0.0033

PCT, ng/ml 0.1068

α-HBDH, U/L 0.0005

Uric acid, umol/L −0.0025

RDW, red blood cell volume distribution width; AST, aspartate aminotransferase; CV,

coefficient of variation; SD, standard deviation; AST, aspartate aminotransferase; CK-

MB, Creatine kinase muscle-brain isoform; LDH, lactate dehydrogenase; CRP, C-

reactive protein; PCT, Procalcitonin; PT, prothrombin time; APTT, activated partial

thromboplastin time.

response. Banoei et al. noted that prothrombin and lactate were
the most differentiating biochemical markers in the mortality
prediction model (18).

Since hyperglycemia is harmful to the management of
inflammation and viremia, the association between the level
of glucose and critical illness in COVID-19 viral infections
is not surprising. Based on big data analysis with a cohort
with 7,337 COVID-19 cases, Zhu et al. revealed that diabetics
with better-controlled blood glucose were associated with a
decreased death risk than diabetics with poorly controlled
blood glucose (43). Banoei and colleagues demonstrated that
disease, coronary artery disease, dementia, age > 65, and
altered mental status were the topmost differentiating mortality
predictors (22).

Previous studies have identified that 15–53% of cases
reported abnormal levels of AST during disease progression
(44–47). In a study conducted by Huang et al. (48), the
elevation of AST was found in 8 (62%) of 13 patients in
the ICU compared with 7 (25%) of 28 COVID-19 infected
cases who did not need ICU care. Abnormal liver tests occur
in most hospitalized patients with COVID-19 and may be
associated with ICU admission, mechanical ventilation (48),
and death (28, 48). Liver damage (decreased albumin and

increased globulin) in patients with COVID-19 infections
might be associated with the direct effect of the viral
infection of liver cells, drug hepatotoxicity, or immune-mediated
inflammation (37), such as cytokine storm and pneumonia-
associated hypoxia.

Prediction models for the dynamic and control of COVID-
19 infection found broad similarities with the features retained
in our models, particularly regarding aging, hypertension, CRP,
LDH, prothrombin, lactate, and neutrophil levels (14–24). The
main advantage of the LASSO logistic regression is that the
variable with a large parameter estimation is compressed to a
smaller variable, while the variable with the smaller parameter
estimate is compressed to 0. The parameter estimation of the
LASSO analysis is continuous, which is suitable for model
selection with high-dimensional data.

In the development dataset, we found that the discriminative
abilities of SVR, ANN, RT, and MARS were outperforming that
of LASSO logistic regression as evaluated by AUCs. However,
in the independent validation dataset, the predictive ability of
LASSO logistic regression was the best within all algorithms
and was selected by us. The phenomenon that the model
that incorporates the highest level of non-linearity displayed
better in-sample prediction, but also yielded the worse out-of-
sample performances may account for the over-fitting problem
of the ANN, RT, MARS, and SVR algorithms (45). The
linear Kernel function utilized in LASSO logistic regression
performed badly in-sample but generated the best out-of-
sample predictions.

There are inevitably limitations in our retrospective study.
The primary one is incomplete laboratory findings in the
electronic database and the lacking of CT images, which
decreases the statistical power of the LASSO logistic regression
model. Therefore, important information might be missed
and further prospective studies are required. However, our
model has a certain tolerance to missing data, as high
performance as measured by AUC on the developing and
external validation dataset for samples missing 20% of the
predictors was achieved. Second, since the algorithms we tried
are purely data-driven, the performances of these models may
vary if developed with different datasets. We believe that
more accurate models can be obtained with the increasing
of available datasets. Third, the data for risk probability
development and validation are from two provinces of China,
which could potentially limit the generalizability of the risk
model. Further studies on different populations all over the
world with larger patient cohorts are needed to validate
our findings.

CONCLUSION

In summary, this study identified 28 indicators (such as age,
LDH, CRP, and lymphocytes) associated with critical illness of
patients with COVID-19. The longitudinal laboratory variables
were explored. A risk score to estimate the risk of developing
critical illness among patients with COVID-19 was developed
based on 21 variables independently associated with critical
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TABLE 3 | Laboratory characteristics of patients with COVID-19 in validation cohort.

Laboratory tests Total, mean (SD)

[Interquartile range]

Critical illness (n = 566)

No (n = 538) Yes (n = 28)

Hematologic

Lymphocytes, ×109/L 1.23 (0.57) [0.82–1.55] 1.26 (0.57) [0.86–1.58] 0.78 (0.35) [0.53–1.03]

Neutrophils, ×109/L 3.71 (2.66) [2.19–4.23] 3.61 (2.60) [2.15–4.16] 5.52 (3.11) [2.97–8.07]

Blood platelet, ×109/L 192.7 (74.34) [139–233] 194.46 (74.95) [139–234.25] 144.38 (25.92) [131–154]

Thrombocytocrit, % 0.2 (0.07) [0.15–0.24] 0.2 (0.07) [0.15–0.24] 0.17 (0.05) [0.14–0.2]

RDW(CV),% 12.39 (1.24) [11.8–12.7] 12.37 (1.21) [11.8–12.7] 12.88 (1.63) [11.9–13.45]

RDW(SD), fL 39.65 (3.28) [37.5–41.4] 39.61 (3.25) [37.5–41.4] 40.67 (3.81) [38.1–43.08]

Hematokrit, % 37.39 (10.86) [35.3–42.9] 37.52 (10.9) [35.38–43] 35.05 (10.05) [33.58–39.08]

Hemoglobin concentration, g/L 132.59 (21.4) [122–147] 133.1 (20.97) [122–147] 123.96 (26.73) [119–141]

Biochemical

Glucose, mmol/L 7.19 (3.41) [5.34–7.87] 7.08 (3.26) [5.31–7.7] 9.03 (5.23) [6.26–9.19]

K, mmol/L 3.97 (0.47) [3.64–4.24] 3.98 (0.46) [3.67–4.24] 3.79 (0.65) [3.44–4.13]

Na, mmol/L 138.9 (3.42) [137–140.91] 139.01 (3.42) [137.2–141] 136.61 (2.63) [136–137.8]

AST, U/L 29.75 (15.4) [20–34] 29.06 (14.75) [20–33] 43.06 (21.16) [24.1–54.6]

CK-MB, U/L 13.83 (6.78) [9.99–16.73] 13.67 (6.74) [9.8–16.12] 16.83 (6.87) [13–20.11]

Albumin, g/L 40.81 (5.03) [37.92–44.1] 41.05 (4.93) [38.3–44.4] 36.16 (4.75) [33.5–40.2]

Infection-related indices

CRP, mg/L 22.55 (30.41) [2.9–28.3] 20.48 (28.26) [2.67–26.1] 59.27 (42.61) [25.27–95.5]

PCT, ng/ml 0.08 (0.13) [0.04–0.08] 0.07 (0.09) [0.04–0.08] 0.21 (0.37) [0.04–0.18]

α-HBDH, U/L 200.1 (81.44) [149.68–229.1] 193.16 (76.59) [144.5–221.75] 273.63 (98.73) [203.57–307.15]

Coagulation function

PT, s 11.81 (2.29) [10.7–12.7] 11.69 (1.38) [10.7–12.7] 13.95 (7.69) [11.62–13.2]

APTT, s 31.63 (7.9) [27.55–35.8] 31.28 (7.33) [27.2–35.5] 37.42 (13.41) [31.12–41.9]

Fibrinogen, g/L 6.74 (34.13) [2.93–4.54] 6.89 (35.15) [2.92–4.5] 4.22 (1.24) [3.5–4.99]

Uric acid, umol/L 265.51 (89.47)

[202.05–319.18]

267.98 (88.84) [206.1–320.52] 217.79 (89.99) [154.9–254]

RDW, red blood cell volume distribution width; AST, aspartate aminotransferase; CV, coefficient of variation; SD, standard deviation; AST, aspartate aminotransferase; CK-MB, Creatine

kinase muscle-brain isoform; LDH, lactate dehydrogenase; CRP, C-reactive protein; PCT, Procalcitonin; PT, prothrombin time; APTT, activated partial thromboplastin time.

illness and commonly measured on hospital admission. The
risk model is especially valuable for early detection and
intervention of the incidence of critical illness COVID-19, thus
making improvements to clinical strategies against COVID-
19, optimizing the use of healthcare resources, and potentially
reducing mortality in patients with COVID-19.
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