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Prostate cancer (PRAD) is a major cause of cancer-related deaths. Current monotherapies
show limited efficacy due to often rapidly emerging resistance. Combination therapies
could provide an alternative solution to address this problem with enhanced therapeutic
effect, reduced cytotoxicity, and delayed the appearance of drug resistance. However, it is
prohibitively cost and labor-intensive for the experimental approaches to pick out
synergistic combinations from the millions of possibilities. Thus, it is highly desired to
explore other efficient strategies to assist experimental researches. Inspired by the
challenge, we construct the transcriptomics-based and network-based prediction
models to quickly screen the potential drug combination for Prostate cancer, and further
assess their performance by in vitro assays. The transcriptomics-based method screens
nine possible combinations. However, the network-based method gives discrepancies for
at least three drug pairs. Further experimental results indicate the dose-dependent
effects of the three docetaxel-containing combinations, and confirm the synergistic
effects of the other six combinations predicted by the transcriptomics-based model.
For the network-based predictions, in vitro tests give opposite results to the two
combinations (i.e. mitoxantrone-cyproheptadine and cabazitaxel-cyproheptadine). Namely,
the transcriptomics-based method outperforms the network-based one for the specific
disease like Prostate cancer, which provide guideline for selection of the computational
methods in the drug combination screening. More importantly, six combinations (the three
mitoxantrone-containing and the three cabazitaxel-containing combinations) are found to be
promising candidates to synergistically conquer Prostate cancer.
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INTRODUCTION

In the past decades, the drug development has been dominated by
one-target one-drug strategy. Although the targeted therapy has
dramatically changed the treatment of cancer, confining the drug
to a single target fails to consider the complexity of causative
factors. Furthermore, cancer cells easily develop resistance to
single-drugs through activating other pathways due to their
heterogeneous mutation and functional redundancy (Al-
Lazikani et al., 2012; Lavecchia and Cerchia, 2016; Liu et al.,
2019). Conversely, combinatorial therapies exhibit significant
advantages in overcoming drug resistance, reducing toxicity
and improving curative effects, thus attracting considerable
interests from researchers and drug companies (Bayat
Mokhtari et al., 2017; Liu et al., 2019). Considering high
attrition rates in the development of new drugs, one tempting
option for exploring combinatorial therapies in tumor is to
consider drugs already on the market, due to their well-
documented safeties (Huang et al., 2019).

In spite of the successes of combinatorial therapies, most of
them were derived from the clinical experience and serendipitous
discovery, only covering a tiny fraction of the large-scale
combinatorial space (Al-Lazikani et al., 2012). In fact, besides
more than 200 currently approved cancer agents, there are several
thousand drugs under investigation. Consequently, the number
of combinations to be tested could reach millions (Ding et al.,
2020). It is prohibitively cost and labor-intensive for the
experimental approaches to pick out synergistic combinations
from the millions of possibilities (Regan-Fendt et al., 2019). Thus,
it is highly desired to introduce some effective and robust
approaches to significantly narrow down the candidate space
of drug combinations for wet-lab experimental validations, in
turn facilitating the process of drug synergy prediction.

To mitigate these challenges, various computational methods
are coming up recently to assist the combination therapies.
Although the predictive ability of these methodologies is
significantly better than random, some limitations should be
mentioned. Firstly, many existing computational methods (Li
et al., 2015; Chen et al., 2016; Regan-Fendt et al., 2019) are based
on a similarity comparison between the query combinations and
the known ones, thus needing a lot of known drug combinations.
However, the number of synergistic combinations known is
much less than that of the unknown ones. Secondly, most of
the developed predictive models (Zhao et al., 2011; Li et al., 2015;
Li et al., 2017; Celebi et al., 2019) require multiple kinds of
features, such as physicochemical properties of drugs,
interactions between biological entities. In fact, too many
features as input would limit the applicability of the method,
because the prediction of new drug combination will depend on
the same descriptors for each component in the combination
(Mason et al., 2018). However, some data may be non-existent or
difficult to obtain, in particular for new agents (Chen et al., 2016).
In addition, some features may not contribute much to
elucidating the underlying mechanisms of drug synergy. As
accepted, drug-induced gene expression profiles can be a
snapshot of the biological effects induced by drug treatments,
thereby benefiting in the recognition of mechanisms of drug

action (Lamb et al., 2006; Bansal et al., 2014; Huang et al., 2019).
Some studies indicated that gene expression profiles play a
significant part in drug predictions (Sun et al., 2015; Celebi
et al., 2019; Zhu et al., 2020). Furthermore, there is an
growing number of databases which describe biological
entities, chemical agents or genomic data and their
relationships being produced and available to the public like
the Cancer Genome Atlas (TCGA) (Chang et al., 2013) and the
Library of Integrated Network-based Cellular Signatures (LINCS)
(Subramanian et al., 2017; Keenan et al., 2018; Koleti et al., 2018).
The predictive power of transcriptomics-based methods will gain
further improvement owing to the availability of such databases.
For example, Stathias et al. (Stathias et al., 2018) integrated gene
expression data from Cancer Genome Atlas, Library of Integrated
Network-based Cellular Signatures, and the Brain Tumor PDX
national resource to build a computational platform named
SynergySeq in order to identify synergistic combinations in
glioblastoma multiforme (GBM). As a result, they identified
compounds that synergize with BET inhibitors and further
validated their synergistic effects in reducing glioblastoma
multiforme cell expansion experimentally. In addition, in the
last few years, network-based models were developed to enable
researchers to screen synergistic pairs and examine the
mechanisms of them, given that both physiological states and
biological processes are modulated by a large interactive network
with many signaling pathways (Jia et al., 2009; Barabási et al.,
2011; Ryall and Tan, 2015; Wu et al., 2018; Cheng et al., 2019;
Zhou et al., 2020). For example, according to the approved
combinatorial therapies of hypertension and cancer, Cheng
et al. (Cheng et al., 2019) quantified the distance between drug
targets and disease proteins in the human protein-protein
interaction network (PPI), and suggested that a drug
combination is effective when meets the criteria of
“Complementary Exposure” pattern: the target modules of
each drug locates separately within or adjacent to different
parts of the disease module. Using hypertension data as a
validation set, this network-based predictor achieved 59%
accuracy, outperforming traditional cheminformatics and
bioinformatics approaches. The work exhibits the role of the
network-based information in identifying efficacious
combination therapies. However, most of the current models,
including the network-based one (Cheng et al., 2019), were
constructed using data from various diseases (Bansal et al.,
2014; Sun et al., 2015). The models involved in multiple
diseases do not take the context specificity into account, while
synergy and antagonism have shown to be strongly context-
dependent compound-pair properties (Bansal et al., 2014; Yin
et al., 2014; Sun et al., 2015). Therefore, it is highly desired to
study the context-specific therapies on drug combination
prediction.

Prostate cancer (Prostate cancer) has remained an important
public health concern since it is the most frequently diagnosed
cancer and the second common reason for cancer death in men,
which is predicted to have 191,930 new cases and 33,330 deaths in
2020 (Siegel et al., 2020). In 1941, Charles Huggins (Huggins and
Hodges, 1941) reported androgen deprivation therapy (ADT)
suppressing androgen receptor activity, which has played an
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important role in treating Prostate cancer. To date, ADT has been
used as a standard treatment for Prostate cancer patients.
Although ADT exerts certain remissions for 1–2 years for
most patients, they still progress to castration-resistant
Prostate cancer later, leading to the lethal condition in
Prostate cancer. To overcome resistance to monotherapy,
some clinical trials like the CHAARTED (Sweeney et al., 2015)
and STAMPEDE (James et al., 2015), have shown a survival
advantage when combining androgen deprivation therapy with
chemotherapy, showing a promise of drug combination in the
treatment of Prostate cancer. However, there are only a few
approved and investigational drug combinations for Prostate
cancer and the success of current Prostate cancer combination
therapies are limited (Lee and Kantoff, 2019). Hence, the
development of new combinations for Prostate cancer is of
great importance.

Inspired by the challenge, we construct a computation-based
strategy to screen potential drug combinations for Prostate
cancer. Considering high attrition rates in the new drug
development, herein, we focus on FDA approved drugs with
potential to be repurposed with an existing Prostate cancer single-
agent, due to their well-documented safeties. Our prediction
framework mainly includes three parts (Figure 1): 1)
Transcriptomics-based ranking: computing the synergistic
potential for drug pairs by integrating disease transcriptional
data with drug-perturbated transcription profiles; 2) Network-
based assessment: quantifying the network-based relationship
between drug targets of the top ranked pairs and Prostate
cancer proteins, in order to assess the predicted drug pairs
from a network perspective; and 3) Experimental validation:
using cell viability assays to further evaluate the accuracy of

the predicted results. The comparison of the two computational
results also provides guidelines for selection of the computational
methods when applied to a specific disease.

MATERIALS AND METHODS

Collection and Preprocessing of Gene
Expression Datasets
In this study, we used two gene expression databases: 1) RNA-Seq
data for Prostate cancer tumors and controls were downloaded
from Cancer Genome Atlas database (Chang et al., 2013); and 2)
the drug-perturbated profiles were downloaded from the Library
of Integrated Network-based Cellular Signatures project
(Subramanian et al., 2017; Koleti et al., 2018). Specifically, we
downloaded the Level 4 panel standardized data from the Phase II
L1000 dataset released from the Broad Institute Library of
Integrated Network-based Cellular Signatures Data Generation
Center through the GEO portal [https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc�GSE70138]. By reannotating all probe sets
on different platforms, 12,299 genes shared between the two
databases were retained.

Computation of Disease Signature
Prostate cancer RNA datasets publicly available through Cancer
Genome Atlas were downloaded using GenomicDataCommons
download tool (Grossman et al., 2016). We obtained 52
prostate cancer and 52 matched normal controls. Then
thresholds of |log2FC| > 1 and FDR < 0.1 were used to select
genes that differentially expressed between tumor and normal
samples, leading to the Prostate cancer gene-expression signature.

FIGURE 1 | Overview of the design strategy proposed for generating Prostate cancer-specific drug combinations, including three main frameworks: (A)
Transcriptomics-based ranking, (B) network-based assessment, and (C) experimental validation.
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Collection and Preprocessing of Gene
Expression Datasets
As described in the SynergySeq (Stathias et al., 2018), each
compound will be assigned a transcriptional consensus
signature (TCS) by utilizing the quantitative gene expression
data measured before and after drug perturbation. Then the
concordance ratio (CR) and the disease discordance ratio (DR)
are calculated for each drug pair (Stathias et al., 2018). Herein, CR
denotes the ratio of a compound’s genes in the same direction as
the reference signature to those in the opposite directions (Eq. 1).
For DR, its definition is based on a comparison between the genes
in TSC of a compound and the disease signature genes that are
missing in the reference signature. Consequently, DR could be
obtained as the ratio of differentially expressed genes induced by
drug in an opposite direction to ones in the same direction
(Eq. 2):

CR � ∑number of genes
i�1 [ai]∑number of genes
i�1 [bi]

with ai � { 1, if zi · ri > 0
0, if zi · ri < 0 and bi

� { 1, if zi · ri < 0
0, if zi · ri > 0 , (1)

DR � ∑number of genes
i�1 [bi · ci]∑number of genes
i�1 [ai · ci]

with ai � { 1, if zi · di > 0
0, if zi · di < 0 , bi

� { 1, if zi · di < 0
0, if zi · di > 0 , and ci � { 1, if ri � 0

0, if ri ≠ 0
, (2)

where z, d, and r denote the TCS vectors of the L1000 compound,
the disease and the reference compound signature, respectively.

Combining CR with DR, the orthogonality of each compound
to the transcriptional impact caused by the reference compound
can be measured by a single value, Orthogonality Score (OS)
(Stathias et al., 2018).

OS �
��������������
(1 − CR)2 + DR2

√
. (3)

Construction of Human Protein-Protein
Interaction Network
Here, we construct a comprehensive human PPI network by
using high-quality protein-protein interaction data from different
bioinformatics and systems biology databases (Cheng et al.,
2019): 1) binary interactions from yeast two-hybrid high-
throughputs; 2) binary, physical PPIs derived from protein 3D
structures; 3) kinase-substrate pairs; 4) signaling interactions, and
5) literature-curated interactions. As a result, the final human PPI
network consists of 217,109 edges and 15,911 nodes.

Network Configurations of
Drug–Drug–Disease Combinations
We assemble Prostate cancer-gene annotation data from eight
different bioinformatics data sources: OMIM (Amberger et al.,
2015), CTD (Davis et al., 2015), ClinVar (Landrum et al., 2014),
GWAS Catalog (Welter et al., 2014), GWASdb (Li et al., 2016),

PheWAS Catalog (Denny et al., 2013), HuGENavigator (Yu et al.,
2008), and DisGeNET (Piñero et al., 2015). In addition, we collect
the target information of the approved drugs by searching in
DrugBank (Law et al., 2014), and drug target interactions meeting
three criteria were used (Cheng et al., 2019): 1) binding affinities
≤10 μM; 2) the manually verified target stored in the UniProt
with unique identifiers.

In the human PPI network, when a drug targets the
corresponding subnetwork of a disease or its adjacent
communities, the drug is more likely to have therapeutic
effects on the disease than other drugs with targets far from
the disease subnetwork (Cheng et al., 2018; Cheng et al., 2019).
Z-score is a reliable index to measure the network proximity
between a drug (X) and a disease (Y), which is based on the
shortest path lengths d(x, y) between drug targets (x) and disease
proteins (y):

d(X, Y) � 1

‖Y‖ ∑
y ∈ Y

minx ∈ Xd(x, y), z � d − μ

σ
. (4)

Select a random group of proteins each time, the size and
degree distribution of which matches the ones of disease proteins
and drug targets, repeat 100 times, and then the mean µ and
standard deviation σ were calculated. If the drug targets and the
disease proteins separate from each other from a network-based
perspective, their corresponding z ≥ 0; otherwise, z < 0.

In addition, the isolated target protein modules between two
drugs in the human PPI network indicating that they act in
different ways, and the network-based separation is an effective
measurement for this (Menche et al., 2015):

sAB � 〈dAB〉 − 〈dAA〉 + 〈dBB〉
2

, (5)

where <d> represents the shortest path between two nodes. If the
two drug–target modules isolate from each other in the network,
their corresponding sAB ≥ 0; otherwise, sAB < 0.

Cell Lines and Reagents
PC-3 cells were purchased from the Wuhan Bafeier Biological
Co., Ltd. and grown in F12K mediums supplemented with 10%
FBS and 1% penicillin-streptomycin at 37 under 5% CO2.
Docetaxel (D807092) was purchased from Macklin (Shanghai,
China). Imatinib (I0906), cabazitaxel (C3390), and mitoxantrone
(M3133) were purchased from Tokyo Chemical Industry (TCI,
Shanghai, China). Indinavir sulfate (HY-B0689A) and
cyproheptadine hydrochloride sesquihydrate (HY-B1165) were
purchased from MedChemExpress (MCE, Shanghai, China).
MTT (3580MG250) was purchased from BIOFROX
(Guangzhou, China).

MTT Assay
Cells were seeded into 96-well plate at a density of 4.0 × 103 cells/
well in growth medium, cultured for 24 h, and then the indicated
drugs were added and co-cultured for 72 h. For each
concentration gradient, set three replicates, and a well without
culture medium was set as control. Then 10 μl MTT solution was
added to each well. After 4 h, the cell medium was removed and
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150 μl/well of DMSO was added. Relative cell viability was
obtained by measuring absorbance at 570 nm in a microplate
reader (Flexstation® 3, Molecular Device, United States).

RESULTS

Transcriptomics-Based Ranking
In the area of recognizing the mechanisms of human diseases and
drug actions, RNA-seq plays a significant role (Lamb et al., 2006;
Rees et al., 2016; Wang et al., 2016). Advances in sequencing
techniques have generated large-scale omics data, which provide
opportunities for drug discovery. As aforementioned, Stathias
et al. (Stathias et al., 2018) proposed a method termed SynergySeq
to screen drug pairs acting in a synergistic way, in order to combat
the resistance of BET inhibitors in glioblastoma multiforme. By
assessing the expression of 978 representative landmark
transcripts in glioblastoma multiforme and small molecule
compounds, they screened some synergistic combinations with
a reference compound (BET) from 285 L1000 compounds, and
these combinations were further validated by both the external
databases and various assays. Herein, we also applied SynergySeq
to Prostate cancer. Different from (Stathias et al., 2018), we
reannotated the probes on Cancer Genome Atlas and Library
of Integrated Network-based Cellular Signatures platforms,
resulting in 12,299 common genes, covering a more
comprehensive gene space, and the compound library was
expanded to 918 approved drugs, much more than 285 in the
previous work (Stathias et al., 2018).

Compound-Specific Transcriptional Consensus
Signatures
In order to predict drug combinations for Prostate cancer, we first
need to generate drug-perturbated transcription profiles of
Prostate cancer cells from a large-scale database which collects
gene expression data before and after drug perturbation across
multiple cancer cell lines. For each compound, the Library of
Integrated Network-based Cellular Signatures L1000 project
provides data on gene expression measured at different time
points and doses before and after treatment of multiple cells
(Keenan et al., 2018). However, some compounds didn’t treat any
Prostate cancer cell lines, so there is a need to establish the
respective transcriptional consensus signatures (TCS) for each
compound. In the work of Stathias (Stathias et al., 2018), they
introduced TCS to represent the transcription profiles of
compounds in glioblastoma multiforme cells under the
condition that most Library of Integrated Network-based
Cellular Signatures L1000 compounds lack profiles from any
glioblastoma multiforme cell, and demonstrated that TCSs
could represent the compound used to perturb the cells, and
be independent of the cell type. Following the work, we calculated
TCS for each compound, based on the chemical perturbation
experiments data across multiple cell lines. If a gene is observed to
be consistently up or down regulated in multiple types of cancer
cell lines after the compound disturbance, we deduce that the
gene also produces the same transcriptional changes in the
prostate cancer cells.

In order to confirm the assumption, correlation coefficients
between all pairs of compounds were calculated using TCS and
hierarchical clustering was then performed. As a result, various
compound classes are aggregated respectively, as shown in
Figure 2 and Supplementary Table S1. Figure 2 shows that
compounds with highly correlated consensus signatures (Pearson
Correlation > 0.7) could be incorporated into a subnetwork
reflecting their mechanism of action, confirming that TCS
could well characterize the transcriptomic changes induced by
drugs. In addition, the observation further supports the idea that
compounds with similar mechanisms produce similar gene
expression changes (Lamb et al., 2006; Rees et al., 2016;
Regan-Fendt et al., 2019).

Reference Compounds
Herein, we need to identify available Prostate cancer drugs from
the Library of Integrated Network-based Cellular Signatures
L1000 dataset as reference candidates and then repositioned
other marketed drugs to find the ones, which could produce
synergistic effects with the reference compound selected. For
Prostate cancer, only thirteen drugs are selected as preliminary
reference candidates in the work, as they are approved drugs for
Prostate cancer and also have experimental data for treating
Prostate cancer cell lines in the Library of Integrated Network-
based Cellular Signatures project. For the thirteen reference
compounds, we only focused on genes that induce consistent
transcriptional changes in at least half of the PC-3 cells to obtain
robust reference signatures (Stathias et al., 2018). Because a high
TCS gene score (max score � the number of the cell lines used)
indicates that more genes over/under-expressed in different PC-3
cells, three compounds (mitoxantrone, cabazitaxel, and
docetaxel), which exhibit significantly higher TCS scores than
the other Prostate cancer drugs (vide Supplementary Table S2),
are selected as final reference compounds.

In fact, mitoxantrone, cabazitaxel, and docetaxel are all
conventional chemotherapeutics to treat Prostate cancer.
Mitoxantrone was the only chemotherapeutic drug approved
for the treatment of Prostate cancer before 2004. As a DNA
intercalating agent and topoisomerase II inhibitor, it has been
routinely used for the treatment Prostate cancer since its palliative
benefit could enhance clinical remission of the Prostate cancer
patients. However, it was also reported that the mitoxantrone
failed to confer any survival advantage, and most patients
frequently developed therapeutic resistance to the treatment
(Song et al., 2018). In 2004, the docetaxel was approved by
FDA, which brought certain improvements for the treatment
of Prostate cancer patients. Thus, it became the standard
chemotherapy treatment for castration-resistant prostate
cancer (Song et al., 2018). Unfortunately, many patients did
not respond to the therapy and all patients ultimately
developed resistance to the docetaxel (Hwang, 2012; Song
et al., 2018). Thus, many efforts have been devoted to
overcome chemoresistance to docetaxel. Consequently,
multiple novel anti-tumor agents were developed, including
the cabazitaxel. The cabazitaxel, as the second taxane, could
extend survival and is currently used as a single agent (Madan
et al., 2011). Despite the antitumor activity of the cabazitaxel in
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docetaxel-resistance models, cabazitaxel resistance was still
proved both in vitro and in vivo and the resistance
mechanisms are still unclear (Natsagdorj et al., 2019; Ylitalo
et al., 2020). As known, the cabazitaxel is often administered
as a last resort after patients develop resistance to docetaxel. Once
the resistance to cabazitaxel is acquired, there are limited
therapeutic options. Therefore, it is important to explore the
combination therapy based on the three reference compounds to
improve survival or clinical outcomes, in turn providing more
options for the treatment of Prostate cancer.

Prediction of Synergic Effects Based on
Transcriptome-Based Data
As accepted, a drug might have the potential to treat a certain
disease if its treatment could reverse the gene signature of the
disease (Li et al., 2020). Thus, an ideal Prostate cancer drug should
has a TCS, which could reverse all abnormally expressed genes in
Prostate cancer (Stathias et al., 2018). In the other words, we hope
to select the combination of drugs, which could to the largest
extent reverse the abnormally expressed genes in Prostate cancer.

Using Cancer Genome Atlas RNA-Seq datasets for Prostate
cancer tumors and controls, we identified 1283 differentially
expressed genes to comprise the Prostate cancer disease
signature. Then we prioritized the compounds based on how
much they differ from the reference compounds and how much
they reverse the disease signature. First, we calculated CR in terms
of Eq. 1, which denotes the overlap between a reference small
molecule and the Library of Integrated Network-based Cellular
Signatures L1000 one. The higher the CR value is, the more
similar the transcriptional responses induced by the two
compounds. In other words, they are more likely to target the
same disease pathway. Then, DR was estimated by Eq. 2, which
gives the reversal degree of disease signature caused by a small
molecule different from a reference drug (Stathias et al., 2018).

These genes in DR are absent from the Prostate cancer reference
signature. The compound has higher DR than the other,
suggesting that it has more discordant genes with respect to
the Prostate cancer differentially expressed genes. Finally,
combining CR and DR, each compound can be scored by a
single value (OS; Eq. 3) to quantify its orthogonality to the
reference-induced transcriptional effect.

In order to select compounds with great potential, we did a
scatterplot for each reference compound, as shown by Figure 3.
According to the criteria that drug pairs with therapeutic effects
tend to have high OS, three compounds located in the upper left
corner, which have significantly higher OS scores than the
others, were selected for each reference compound, leading to
nine drug combination candidates. It can be seen from Figure 3
that the top three combined objects are the same for each
reference compound, which are indinavir, imatinib and
cyproheptadine.

Network-Based Assessment
It was indicated from the network analysis that a combinatorial
therapy is efficacious only when it follows the “Complementary
Exposure” pattern, namely, the target modules of each drug in the
combination locates separately within or adjacent to different
parts of the disease module (Cheng et al., 2019). Therefore, we
further constructed the network-based model to assess the drug
combinations predicted by the transcriptomics-based method. To
achieve this goal, we quantified the network-based relationship
between Prostate cancer disease module and two drug-target
modules in order to observe if the nine drug combinations fall
into the Complementary Exposure category. The results are
shown as follows:

For indinavir, the network configuration between it and the
three reference compounds are failed to be calculated because the
target protein of the indinavir only has Pol polyprotein reported.

FIGURE 2 | The clustering of small molecules according to their L1000 consensus signatures. (A) Correlation matrix of the 918 consensus signatures. Blue to red
denotes the correlation coefficient between the two compounds from −1 to 1, namely, from completely negative correlation and the completely positive one. The red
clusters along the diagonal denote compounds with high transcriptional similarities (Pearson Correlation > 0.7). (B) Networks of highly correlated Library of Integrated
Network-based Cellular Signatures compounds. The nodes in the network represent L1000 small molecules. If the correlation coefficient between two compounds
is greater than 0.7, they are connected by a line. The color of the network is corresponding to the cluster annotation in (A). For example, blue nodes in (B) are Proteasome
inhibitors, corresponding to the blue cluster in (A). Compound names and mechanisms of action are shown in Supplementary Table S1.
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However, the pol polyprotein is marked as “unreviewed” in the
UniProt database. In other words, there is lack of reliable data
regarding the target protein for the indinavir so that the network
relationship could not be calculated. This is a limitation for
application of the network analysis in practice, which requires
specific target proteins.

For the imatinib-containing combinations, our network
analysis shows that imatinib and the three reference
compounds all target different parts of the Prostate cancer-
related subnetwork by “Complementary Exposure” pattern.
Specifically, the relative proximity between the four drugs
(imatinib and three reference compounds) and the Prostate
cancer module is negative, z < 0, suggesting that the drug
target modules in the combination overlap with the disease

module. In addition, the network proximity between imatinib
and the three reference compounds is positive (sAB ≥ 0),
indicating that the two drug targets are topologically
separated. Thus, the network analysis further supports that the
imatinib-containing combinations may be potential for the
treatment of Prostate cancer (Figure 4A), in line with the
prediction of the transcriptomics-based analysis above.

For the cyproheptadine-containing combinations, although
the cyproheptadine hits different targets from the reference
compound (sAB ≥ 0), it failed to hit the disease module (z >
0). Cheng reported that the efficacy of the combinatorial therapy
isn’t better than the single-agent therapy if at least one agent
locates far from the disease subnetwork (Cheng et al., 2019).
Judged from the network-based result, the cyproheptadine-

FIGURE 3 | Ranking of the 918 Library of Integrated Network-based Cellular Signatures compounds based on their orthogonality to the signatures of the three
references (mitoxantrone, docetaxel and cabazitaxel). X-axis and Y-axis denote the CR and DR values, respectively.

FIGURE 4 | Network configurations of drug–drug–disease combinations. (A, B) The network-based relationship between two drug–target modules and one
disease module on imatinib-reference drug- Prostate cancer (A) and cyproheptadine-reference drug-Prostate cancer (B). (C, D) The exposure mode of the Prostate
cancer-associated protein module to the pairwise drug combinations: the three imatinib-containing combinations (C), and the three cyproheptadine-containing
combinations (D). The z-scores measure the drug–disease separation. The s-scores denote the topological relationship between two drug target modules.
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containing combinations should be ineffective for Prostate
cancer, which is opposite to the transcriptomics-based prediction.

Experimental Validation of the Predictions
As observed above, there are some discrepancies between the
transcriptomics-based prediction and the network-based one.
Thus, we further used the experimental method to validate the
prediction results from the two methods. Herein, we used the
MTT assay, which is a popular tool in measuring the metabolic
activity of living cells, to estimate the cytostatic effects of a
monotherapy or a combination of them on PC-3 cells (vide
Supplementary Table S3). In order to assess the degree of
synergy or antagonism, the combined effects of a drug pair are
usually compared to the theoretically expected values using a
reference mode, with the assumption that there is no interaction
between the components of the combination. The reference
models employed here are Bliss (Bliss, 1939) and ZIP (Yadav
et al., 2015) models, which are implemented in SynergyFinder
web-application (https://synergyfinder.fimm.fi; ref (Ianevski et al.
, 2017)).

Synergy scores are listed in Table 1, which are derived from
the dose-matrix combinations. Figure 5, Supplementary Figures
S1, S2 show the 2D and 3D synergy heat maps for the Bliss and
ZIP models of the interactions, through which the combined
effects of the nine drug combinations against PC-3 cells (vide)
could be obtained. The results shown in Figure 5A revealed that
the docetaxel-containing combinations inhibit PC-3 cell
proliferation in a dose-dependent manner. In other words, the
combination could produce different effects on PC-3 cells due to
the different concentration of its components, including
antagonistic, addictive, or synergistic effects. Specifically, there
is antagonism between the docetaxel and the indinavir when the
concentration of the docetaxel is between 40 and 500 nM. The
combination of the docetaxel and the imatinib also exhibits
antagonism when the concentration of the docetaxel is higher
than 100 nM. For the docetaxel-cyproheptadine, this pair
presents antagonism when concentration of indinavir is lower
than 50 nM, and cyproheptadine is greater than 50 nM. While at
other range of drug doses pairs, the docetaxel-containing
combination induces additive/synergistic effects. Different
from the dose-dependent effects of the combinations
containing docetaxel, the three combinations containing
mitoxantrone all show overall synergistic effects within the

experimental dose range, judged from Figure 5B). In addition,
it can be observed from Figure 5C that the three combinations
containing cabazitaxel show the strongest synergistic effects. In a
whole, the experimental results almost support the
transcriptomics-based predictions, but exhibit some
discrepancies with the network-based predictions for the
mitoxantrone-cyproheptadine and cabazitaxel-cyproheptadine.

DISCUSSIONS

Drug combinations play a major part in combating various
complex diseases due to increased therapeutic efficacy,
decreased toxicity and counter drug resistance. And
computational methods bypass the combinatorial explosion
problem by greatly reducing the search space and prioritizing
combinations. Among these approaches, the transcriptomics-
based and the network-based methods have attracted much
attention and achieved remarkable performance. In addition,
most existing methods focused on multiple diseases. However,
the drug synergy is a strongly context-dependent property. Thus,
it is highly desired to explore disease-specific synergy
combinations. Prostate cancer is a primary factor of male
morbidity and mortality, and the inevitable drug resistance to
exiting monotherapies highlights the need of new combination
therapies. Therefore, we hope to establish a synergistic drug
prediction model for Prostate cancer in the work. We firstly
employ a transcriptomics-based approach to reposition 918
approved drugs in combination for Prostate cancer, through
which the nine synergistic combinations are identified. To
compare the performance of different computational methods
to predict the drug pair of Prostate cancer, we further utilize the
network-based method proposed by Cheng et al. (Cheng et al.,
2019) to assess the synergistic potential of the six drug
combinations from the transcriptomics-based prediction,
excepting for the three indinavir-containing combinations,
since the indinavir lacks reliable drug targets. The network-
based results show that the three imatinib-containing
combinations fall into the Complementary Exposure category
with the Prostate cancer disease module. Thus, the network-based
method show that they are effective combinations for Prostate
cancer, in line with the transcriptomics-based prediction.
However, the three cyproheptadine-containing combinations

TABLE 1 | Synergy scores for each drug combination according to Bliss model.

Drug combination Synergy score Most
synergistic area score

Model

docetaxel-indinavir 2.49 3.11 Bliss
docetaxel-imatinib 1.55 2.66 Bliss
docetaxel-cyproheptadine 0.42 1.61 Bliss
mitoxantrone-indinavir 3.56 5.28 Bliss
mitoxantrone-imatinib 4.19 5.88 Bliss
mitoxantrone-cyproheptadine 3.91 5.63 Bliss
cabazitaxel-cyproheptadine 13.76 15.03 Bliss
cabazitaxel-imatinib 9.98 10.63 Bliss
cabazitaxel-cyproheptadine 11.34 13.66 Bliss
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are predicted as nonsynergistic combinations, which conflicts
with the transcriptomics-based results. To validate the
computational results, we further conduct in vitro

experiments. The in-vitro results show that the combined
effects of the three docetaxel-containing combinations are in a
dose-dependent manner while the other six combinations could

FIGURE 5 | The 2D and 3D heat maps of the combination responses for docetaxel-containing (A), mitoxantrone-containing (B) and cabazitaxel-containing
combinations (C) according to Bliss model. Red represents the synergistic interaction while green denotes the antagonistic interaction.
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synergistically inhibit the growth of PC-3 cells, thus supporting
the transcriptomics-based predictions. However, the two
combinations (cyproheptadine-mitoxantrone and
cyproheptadine-cabazitaxe), which are predicted to be
nonsynergistic by the network-based method, present strongly
synergistic in the in-vitro experiment instead. Only the network-
based predictions of imatinib-mitoxantrone and imatinib-
cabazitaxel are consistent with the in-vitro results.

Specifically, the two imatinib-containing combinations
(mitoxantrone-imatinib and cabazitaxel-imatinib), which are
consistently predicted as synergistic combinations in the
transcriptomics-based and the network-based analysis, are
further proved in vitro and exhibit highly potential for the
combination therapy of Prostate cancer. In fact, it is revealed
that imatinib could inhibit PDGFR, a potential therapeutic target
in Prostate cancer (Pinto et al., 2012). Unfortunately, the efficacy of
single-agent PDGFR inhibitors in patients with metastatic Prostate
cancer appears limited. Interestingly, it was observed that
combining imatinib with other anticancer drugs might increase
the effectiveness of the single-agent PDGEF inhibitor (Kim et al.,
2012). Moreover, the imatinib was found to decrease interstitial
fluid pressure in solid tumors so that it could improve tumor
delivery of anticancer drugs in vivo (Vlahovic et al., 2007). All the
evidences also provide further support for the potential of the
imatinib in combination therapy for Prostate cancer. The two
cyproheptadine-containing combinations (mitoxantrone-
cyproheptadine and cabazitaxel-cyproheptadine), which are
predicted to be synergistic combinations in the transcriptomics-
based prediction but nonsynergistic in the network-based analysis,
show to inhibit the proliferation of PC-3 cells synergistically in vitro.
Although the therapeutic effect of cyproheptadine in Prostate
cancer has never been reported, the use of cyproheptadine in the
treatment of multiple malignancies, such asmyeloma, leukemia and
hepatocellular carcinoma (Rosenberg and Mathew, 2013), to some
extent suggest the effect of cyproheptadine in combating cancers.
Therefore, it is reasonable for the two cyproheptadine-containing
combinations to be potential for the Prostate cancer treatment. The
two indinavir-containing combinations (mitoxantrone-indinavir
and cabazitaxel-indinavir), which failed to conduct the network-
based analysis, also were experimentally confirmed to be synergistic
combinations. Indinavir is a human immunodeficiency virus
protease inhibitor (HIV PIs), which was proved in vitro and in
vivo to slow down the proliferation, promote the apoptosis and
inhibit the growth of tumor cells (Toschi et al., 2011; Barillari et al.,
2014; Maksimovic-Ivanic et al., 2017). The anti-tumor activity of
HIV PIs has also reported in many studies on treating tumors like
Kaposi’s sarcoma, lymph-gland tumor, or Prostate cancer (Toschi
et al., 2011; Barillari et al., 2014; Maksimovic-Ivanic et al., 2017). In
addition, the CYP3A4 participates in the process of metabolism and
the development of resistance (Ikezoe et al., 2004; Van Eijk et al.,
2019), while indinavir as a potent inhibitor of CYP3A4 is thought to
enhance the therapeutic effects of anticancer drugs in androgen-
independent prostate cancer cells.

Judged from the experimental results, the transcriptomics-based
predictor performs better than the network-based analysis, at least
for Prostate cancer One reason may be that this network approach
used in the work is based on the analysis of hypertension and

pan-cancer data while the models built on data from a variety of
diseases are more likely to miss some important features that being
beneficial for capturing unique combinations with therapeutic
effectiveness for a specific disease like Prostate cancer (Sun et al.,
2015). As an attempt, we reconstructed a tissue specific Prostate
interactome. Specifically, we first calculated the median expression
of each gene in the tumor or normal samples from the prostate
tissue, after downloading gene expression and phenotype data of
Cancer Genome Atlas (Chang et al., 2013) and GTEx (Consortium,
2013). And then, proteins with median expression >1 Transcripts
Per Million (TPM) (Sriram et al., 2019) were screened, which are
considered to express in the prostate commonly. Finally, the full
human PPI network is narrowed down to a subnetwork specific to
the prostate, with 214,351 edges and 15,784 nodes. Then, we
calculated the configurations of the six drug-drug- Prostate
cancer combinations (vide Supplementary Figure S3) are
the same as those obtained by the full network calculation
(vide Figure 4). The result implies that it may be difficult for
the network topology to capture the characteristic of the
specific disease. In contrast, the information from the
transcriptional level of the specific disease (Prostate cancer)
could reflect individual characteristics. In addition, as
proposed by Cheng (Cheng et al., 2019), some factors, the
incompleteness of the human PPI network and the limited
knowledge of proteins associated with the disease and drugs,
may impose restrictions on the performance of the current
network-based approaches used to develop therapeutic
strategies. For example, some drugs have no target proteins
available for the network calculation like the indinavir under
study. Therefore, researchers should be more cautious when
purely using network-based methods to predict drug
combinations for a specific disease.

Also, it is noted that the reference signatures used in the
transcriptomics-based model is derived from perturbational
gene-expression data on PC-3 cell lines, which may not match
the disease signature perfectly. But, only the PC-3 cell-line is
disturbed by all the 13 approved prostate cancer drugs in the
GSE70138 dataset while the LNCAP one is disturbed by one drug
(mitoxantrone). For the DU-145 cell-line, there is no profiles
induced by any of the 13 drugs. As known, the PC-3 cell-line is
derived from metastatic prostate cancer and has been served as
standard cell in the drug research on the prostate cancer. To
maintain the consistency between the calculation and the
experiment, we validated the predictive combinations by in vitro
experiment only on the PC-3 cells. Additionally, we did a
computational comparison. We used the gene expression
profiles of LNCAP cells induced by the mitoxantrone to
perform transcriptome-based predictions. As shown by
Supplementary Figure S4, the three candidates (imatinib,
indinavir and cyproheptadine) also rank the top, in line with the
prediction from the PC-3 cell, implying to some extent consistency
between the two cell-lines. In fact, many drug predictionmodels are
also based on pan-cancer data without considering cancer types due
to the limited data available for each cancer type, but they still
achieved satisfactory performance when applied to specific cancer
(Geeleher et al., 2014; Sun et al., 2015; Cheng et al., 2019), implying
that there are some features shared across different cancers, which
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contribut to drug predictions. In this study, we only studied one
cancer type (i.e., Prostate cancer). Although the patient samples and
cancer cells belong to different stage, it should be reasonable to
assume that there are some characteristics shared between different
stages of the prostate cancer. In addition, it is found from some
previous literatures (Mao et al., 2008; Kim et al., 2012; Barillari et al.,
2014; Hsieh et al., 2016; Sun et al., 2016; Takemoto et al., 2016;
Maksimovic-Ivanic et al., 2017; Van Eijk et al., 2019) that the three
drugs (i.e., indinavir, imatinib, and cyproheptadine) predicted as
one component of the drug combination exhibited anticancer
impact on various cancers, including prostate cancer, which also
to some extent supports the rationality of using perturbational
gene-expression data on PC-3 cell lines to predict drug
combinations for the prostate cancer. However, more in vitro
and in vivo experiments will be needed to further validate the
therapeutic efficacy of our predictive drug combinations for the
prostate cancer.

Despite fascinating advantages of combination therapies, there
are still some limitations and challenges needed to be addressed.
Firstly, using multiple drugs in the combination may precipitate
undesired side effects, and make it difficult to identify which drug
is responsible for the effects (Kavanagh et al., 2018). Secondly, the
determination of drug dose and ratio in combination therapy is
much more complicated than that of monotherapy, because the
solubility, stability, pharmacodynamics, and pharmacokinetics of
different drugs may vary greatly (Sun et al., 2016). In addition,
most of the existing drug combination predictive models are
based on omics and drug response data. There has been lack of
sufficient data to model the unique characteristics of patients
(Kening et al., 2020), which is a major limitation of current
researches, including our study. Overcoming these limitations
will further increase the value of combination therapies, which
requires the joint efforts of researchers across various disciplines,
such as biology, chemistry, medicine, and computer science.

CONCLUSIONS

In summary, our results show that the transcriptomics-based
strategy is more suitable for the specific disease than the
network-based one, at least for Prostate cancer, which will

assist in decision making for the usage of the computation
methods in the drug combination prediction. More importantly,
six drug combinations (i.e., the three mitoxantrone-containing and
the three cabazitaxel-containing combinations) are found to be
potential to synergistically conquer prostate cancer, which offer
promising candidates for preclinical testing. Despite the
encouraging results, our findings still require further preclinical
testing and clinical trials.
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(2018). Network-based approach to prediction and population-based validation
of in silico drug repurposing. Nat. Commun. 9, 2691. doi:10.1038/s41467-018-
05116-5
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