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Abstract

Isolation-by-distance is a widespread pattern in nature that describes the reduction of genetic 
correlation between subpopulations with increased geographic distance. In the population ancestral 
to modern sister species, this pattern may hypothetically inflate population divergence time estimation 
due to allele frequency differences in subpopulations at the ends of the ancestral population. In 
this study, we analyze the relationship between the time to the most recent common ancestor and 
the population divergence time when the ancestral population model is a linear stepping-stone. 
Using coalescent simulations, we compare the coalescent time to the population divergence time 
for various ratios of the divergence time over the population size. Next, we simulate whole genomes 
to obtain single nucleotide polymorphisms (SNPs), and use the Bayesian coalescent program 
SNAPP to estimate divergence times. We find that as the rate of migration between neighboring 
demes decreases, the coalescent time becomes significantly greater than the population divergence 
time when sampled from end demes. Divergence-time overestimation in SNAPP becomes severe 
when the divergence-to-population size ratio < 10 and migration is low. Finally, we demonstrate the 
impact of ancestral isolation-by-distance on divergence-time estimation using an empirical dataset 
of squamates (Tropidurus) endemic to Brazil. We conclude that studies estimating divergence times 
should be cognizant of the potential ancestral population structure in an explicitly spatial context or 
risk dramatically overestimating the timing of population splits.

Subject area: Tree of Life: Population structure, phylogeography and phylogenomics
Keywords: phylogenetics, multispecies coalescent, pairwise divergence, Tropidurus

A major goal in phylogenetic and phylogeographic studies is the 
estimation of species divergence times. The topic has a long and 
contentious history largely centered around questions of how to ap-
propriately apply fossil calibrations (e.g., Heath et al. 2014; Brown 
and Smith 2018), rate heterogeneity (Pond and Muse 2005), rate of 
morphological evolution (Lynch 1990), and selecting an adequate 
clock model (Douzery et al. 2004; Lepage et al. 2007).

Beyond methodological concerns are those that emerge from the 
nature of the data itself. Most phylogenetic models assume that fixed 
differences between species are the result of genetic drift, and under 
the neutral theory of molecular evolution (Kimura 1968; King and 
Jukes 1969) the rate of evolution (or substitution rate) is equal to 
the per generation neutral mutation rate, μ (Kimura 1983). For well-
calibrated molecular clocks (e.g., Knowlton and Weigt 1998; Weir 
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and Schluter 2008; Herman et al. 2018), we can estimate the time of 
divergence (usually in years) as π 12 / 2μ, where π 12 is the pairwise se-
quence divergence between species 1 and 2. However, in general we 
are not interested in estimating the divergence time of specific genetic 
variants, but rather the time of population divergence (TD). For ex-
ample, we might be interested in estimating the timing of a vicariant 
event that we suspect corresponds to a past geological upheaval.

There is a known discrepancy between the coalescent time of 
neutral genetic variants (TMRCA) and TD (Nei and Li 1979; Nei and 
Takahata 1993). The degree of this discrepancy is determined by the 
ratio of TD / Ne, where Ne is the effective population size (Edwards 
and Beerli 2000; Rosenberg and Feldman 2002). This is because 
lineages must first be within the same population, which occurs TD 
generations in the past, followed by coalescence, which on average 
requires 2Ne generations. Therefore, for a completely panmictic 
population: TMRCA = TD + 2Ne. The expected amount of pairwise se-
quence divergence is

E (π12) = 2µ [TD + 2Ne] (1)

(Wakeley 2000). When the ratio of TD / Ne is large, the bias in co-
alescent time in the ancestral population is minimal compared to TD 
(Edwards and Beerli 2000; Arbogast et al. 2002). However, as TD / 
Ne becomes small, 2Ne plays a major role in the overall sequence 
divergence between species. Rosenberg and Feldman (2002) evalu-
ated the relationship between TMRCA and TD in a simple 2 popula-
tion split model using coalescent simulations. They found that TMRCA 
converged on TD when the ratio of TD / Ne ≈ 5. Importantly, the Ne 
in these models is that of the ancestral population; therefore, the 
extent of overestimation is the result of demographic conditions pre-
sent in the ancestor. Demographic conditions that inflate Ne, such as 
ancestral population structure or a bottleneck following the split, 
are expected to have a major impact on divergence-time estimation 
(Gaggiotti and Excoffier 2000; Arbogast et  al. 2002; Angelis and 
Dos Reis 2015).

Wakeley (2000) demonstrated that in descendant species who 
share an ancestor whose population dynamics are characterized by 
an island model (Wright 1931) with free migration between demes, 
overestimation of divergence-times are on the order of 2NeD[1 + 1/
(2M)] where M = 2NemD/(D − 1), m is the migration rate and D is 
the number of demes. The expected amount of pairwise sequence 
divergence is therefore

E (π12) = 2µ
ï
TD + 2NeD

Å
1+

1
2M

ãò
. (2)

Population subdivision initially leads to shallow coalescent times 
where individuals within a shared deme rapidly find ancestors (the 
“scattering phase”; Wakeley 1998). However, since ancestral lin-
eages must be in the same deme to coalesce, the rate in the “col-
lecting phase” is characterized by the migration rate that shuffles 
ancestors around the range, reducing the probability that lineages 
coalesce (Wakeley 1998, 1999).

In the context of real populations, the island model of migra-
tion rarely applies (Whitlock and McCauley 1999; Meirmans 2012). 
Instead, population structure is the product of the spatial distribution 
and dispersal potential of the organism in question. Often this struc-
ture is in the form of isolation-by-distance (IBD). IBD is a widespread 
pattern in natural systems, characterized by a reduction in the prob-
ability of identity by descent (Wright 1943) or genetic correlation 

(Malécot 1968) with geographic distance. Patterns of IBD are most 
pronounced in stepping-stone models (Kimura 1953; Kimura and 
Weiss 1964) in which migration is restricted to neighboring demes. 
In this way, demes in close proximity share a greater proportion of 
migrants than they do with more distant demes. Distributions of co-
alescent times in stepping-stone models have been studied both in 
the context of 1-dimensional and 2-dimensional models that are cir-
cular or toroidal (Maruyama 1970a, 1970b; Slatkin 1991), and in 
continuous models with joined ends (Maruyama 1971) or with dis-
crete edges (Wilkins and Wakeley 2002). Slatkin (1991), using a cir-
cular stepping-stone model, showed that the probability for 2 genes 
sampled i steps apart have an average coalescent time:

TMRCA= 2NeD+
(D− i)i

2m
 (3)

Therefore, the amount of expected pairwise sequence divergence is:

E (π12) = 2µ
ï
TD + 2NeD+

(D− i)i
2m

ò
 (4)

The circular stepping-stone model should overestimate TD more dra-
matically as the number of demes becomes large and the distance 
between them increases. However, like the island model of free mi-
gration, circular ranges are likely rare in nature. Instead, natural 
populations are characterized by discrete range edges where end 
demes may only receive migrants from one direction (e.g., Peterson 
and Denno 1998; Broquet et  al. 2006; Aguillon et  al. 2017). Hey 
(1991) showed analytically in the case of a linear stepping-stone 
model that the distribution of coalescent times of 2 alleles from 
demes at the extremes of the range should coalesce much deeper 
than any 2 alleles chosen randomly from the population.

Vicariant speciation is considered one of the most common 
forms of allopatry (Coyne and Orr 2004), and results from the ces-
sation of gene flow at some discrete barrier in a species range. This 
form of speciation has been invoked across many empirical sys-
tems (e.g., Riddle et al. 2000; Van Bocxlaer et al. 2006; Hancock 
et al. 2019). Vicariant speciation in organisms with low dispersal 
abilities may maintain strong allelic differences at the range edges 
ancestrally consistent with a pattern of IBD. For example, Hancock 
et al. (2019) found that sister species of beach amphipods in the 
Gulf of Mexico with large ranges showed patterns of IBD within 
species. In addition, they identified a distinct barrier to gene flow 
(the Mississippi River) and posited that this resulted in vicariant 
speciation. Since both IBD and vicariant speciation are presumed 
common in nature, biases in divergence-estimation based on π 12 
could be widespread.

Ultimately, the degree to which TMRCA impacts phylogenetic 
inference and divergence-time estimation is dependent on its im-
pact on π 12. Given that lower migration rates lead to greater TMRCA 
(Hey 1991), we expect that differentiation (π 12) between end 
demes compared to center demes will become more pronounced at 
smaller m. If the difference between the TMRCA of central demes and 
end demes is dramatic enough, we expect that divergence dating 
of species that arose from ancestral end demes may significantly 
overestimate TD.

In this study, we estimate mean TMRCA for 2 genes sampled in 
descendant species (either from the ends or the center of the an-
cestral range) in which the ancestral population is characterized 
by a stepping-stone model with discrete ends using a simulation 
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approach. In particular, we are interested in what value of TD / ND 
we expect TMRCA to converge on TD. We use ND (the product of the 
census size and deme number) as our expected Ne under panmixia 
(Wakeley 2009). Next, we examine the distribution of π 12 across 
the genome under different simulated migration conditions to com-
pare with expectations under a panmictic model. We then test the 
performance of the phylogenetic inference program SNAPP (Bryant 
et  al. 2012) on simulated single nucleotide polymorphism (SNP) 
data to evaluate how these trends may bias our inference of spe-
cies divergence times. SNAPP is a BEAST (Bouckaert et  al. 2014) 
package that operates under an explicit coalescent framework, 
inferring gene trees from individual SNPs. The program is ideal for 
phylogeographic studies that utilize RADseq and other genotype-by-
sequencing (GBS) technologies to generate thousands of SNPs across 
the genome (e.g., Manthey et al. 2015; Dowle et al. 2017; Manthey 
et al. 2017; Leslie and Morin 2018), and has been used explicitly 
in divergence-time dating previously (Strange et  al. 2018; Spalink 
et al. 2019; Fang et al. 2020). Finally, we illustrate how ancestral IBD 
can inflate divergence-time estimates on an empirical phylogenomic 
dataset of lizards (Domingos et al. 2017).

Methods

In the following methods, we use the term “deme” to represent a 
subpopulation of randomly mating individuals within a broader col-
lection of demes that we refer to as the “population.” To be a part 
of the population, a deme must be able to share migrants with other 
demes within the population. We use the term “species” to represent 
an isolated randomly mating unit that no longer shares migration 
with other populations or demes. This is not meant to reflect any 
species definition. Finally, we use the term “end species” and “center 
species” to refer to a set of sister species that either descend from 
demes on opposite ends of the ancestral range (end species) or des-
cend from neighboring demes in the range center (center species). 
Our focus below is on evaluating the coalescent times, pairwise dif-
ferences, and estimated divergence times between these sister spe-
cies (i.e., the outgroup – “sp3” in Figure 1a—is only meant to root 
the tree).

For all simulation models, we used the product of the census 
population size (N) and the deme number (D) to evaluate the re-
lationship of TD / N (Rosenberg and Feldman 2002). Since sp1 and 
sp2 (Figure  1) transition to panmixia following the split at time 
TD, ND should approximate Ne, though there will be a period of 
nonequilibrium immediately following divergence. Therefore, the 

contribution to π 12 from TD is on the order of ND. The ancestral 
contribution of π 12 will necessarily be some value greater than ND 
due to population structure (i.e., Ne > ND; Wakeley 2000). Our 
interest here is explicitly on how much greater this contribution is 
relative to TD.

Coalescent Simulations
To evaluate the relationship between TD / N and (TMRCA – TD) / TD 
when the ancestral population is characterized by a stepping-stone 
model of migration, we used fastsimcoal2 (Excoffier et  al. 2013) 
simulations over a wide range of TD / N values. Specifically, starting 
at time 0 and going backwards, each simulation consisted of initially 
2 species with no migration between them until time TD in the past. 
At TD, these 2 species merge into an ancestral population with 10 
demes (D) following a linear stepping-stone migration model. For 
simulations of end species, the ancestral deme of each species was on 
opposite ends of the range (i.e., demes 1 and 10 in Figure 1a). For the 
center species, the ancestral demes were neighboring and in the range 
center. For each of these 2 models, we sampled k = 2 individuals to 
coalesce, and each simulation terminated upon coalescence.

In the ancestral population, center demes received migrants 
from neighboring demes at rate 2m, whereas demes at the end of 
the range received migrants at rate m. This is due to the fact that 
end demes have only a single neighbor, whereas all center demes 
have 2 neighbors (Figure 1a). The ancestral population was simu-
lated for migration rates of 0.1, 0.01, and 0.001, and a range of TD / 
ND values from 0.01–10. In addition, we simulated an island model 
of migration for comparison with the stepping-stone model. In the 
island model, the ancestral population consisted of 10 demes with 
free migration between each at rate m. This resulted in a total of 84 
distinct simulation scenarios, and each were replicated 1000 times. 
We did not explicitly model chromosomes; instead, replicates were 
treated as independent loci.

To statistically compare between the 3 models (end species sam-
pled in stepping-stone, center species in stepping-stone, and the island 
model), we subset ratios of TD / ND to values of 10, 5, 2, 1, 0.5, and 
0.1. Resulting TMRCA distributions for each population model were 
compared using a pairwise Wilcoxon test in the R platform (R Core 
Team 2019), as the resulting distributions were non-normal.

Genome Simulations
To evaluate how ancestral IBD impacts pairwise sequence diver-
gence (π 12), genome-wide coalescent times (TMRCA), and divergence-
time estimation, we performed hybrid simulations that combined the 

Figure 1. Population model for SLiM simulations. (a) Three-taxon species tree: 1) coalescent simulations in msprime with N = 2000; 2) ancestral stepping-stone 
conditions begin (see b); 3) N = 1000, panmictic; 4) population split, leaving end or center species surviving as sp1 and sp2. (b) Ancestral population dynamics. 
Circles designated “1” and “10” are end species; center species are “5” and “6.”
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coalescent simulator msprime (Kelleher et al. 2016) and the forward-
time simulator SLiM v3.3 (Haller and Messer 2019). Since forward-
time simulators begin with individuals that are completely unrelated, 
often a neutral burn-in period is required to allow coalescence or 
mutation-drift equilibrium to occur (Haller et  al. 2019). This can 
be computationally costly and time-consuming; however, using 
tree-sequence recording methods in SLiM (Haller et al. 2019), we 
can bypass the need to equilibrate during the forward-time simula-
tion. To generate a panmictic ancestral population with a coalescent 
history, we simulated 2000 individuals (Ne = 4000) using msprime 
with genome sizes of 10 Mb and a recombination rate of 10–8 (~0.1 
recombination events per individual per generation). The resulting 
coalescent trees were then imported into SLiM as the basis for the 
starting population.

In SLiM, the initial population was split into 2 populations 
of N  =  1000: 1)  an outgroup that remained panmictic (“sp3” in 
Figure 1a) and 2) the ancestral population of the sister species “sp1” 
and “sp2,” which was subdivided into 10 demes (N = 100 per deme) 
in a linear stepping-stone model (Figure 1a). These dynamics per-
sisted for 50 000 generations, after which the ancestral population 
was split into either end species or center species (Figure 1a). This 
was done by removing the intermediate demes and instantaneously 
adjusting N for the 2 species to 1000 so that the census size remained 
constant. The resulting 3-species were then allowed to evolve for TD 
generations before the simulation was terminated. Five different TD 
values were simulated, which correspond to TD / ND ratios of 50, 25, 
10, 5, and 1 (TD values of 50 000, 25 000, 10 000, 5000, and 1000 
generations). These values of TD / ND were chosen based on the re-
sults from the coalescent simulations in fastsimcoal2 (see Results); 
for values >10, TMRCA is expected to converge on TD, whereas values 
<10 are expected to overestimate TD regardless of migration rates.

The resulting tree-sequences from the SLiM simulation were im-
ported into Python 3 using pyslim, and we overlaid neutral muta-
tions (μ = 10–7 per base per generation) onto the trees using msprime. 
Pairwise divergence (π 12) was then estimated across the genome in 
windows of 100  kb for both end demes and center demes. These 
values were also converted into generations using π 12 / 2μ, which 
gives a rough estimate of divergence time per window.

Equation 1 primes our expectation for the amount of sequence 
divergence expected given some value of TD and ancestral Ne. By re-
arranging equation 1, we can naively calculate the ancestral Ne from 
genome-wide π 12 as:

Ne =
π12 − 2TDµ

4µ
 (5)

From this, we plot estimated ancestral Ne within 100 kb windows 
across the genome to compare with the known census population 
size (Nc = 1000), and to evaluate the relationship between Ne and Nc 
in the presence of IBD.

Next, we plotted the distribution of coalescent times (TMRCA) 
across the genome to visualize differences between TMRCA of end and 
center species. Median TMRCA for each ratio and migration rate was 
compared via a Kruskal-Wallis test and a pairwise Wilcoxon rank 
test in R due to the data violating normality.

Each simulation produced >200 000 SNPs. For divergence-time 
analysis, we randomly sampled 3000 SNPs—a number found by 
Strange et al. (2018) to optimally perform in SNAPP. Each run con-
sisted of 10 individuals from species sp1 and sp2, and 1 individual 
from the outgroup population, sp3 (Figure 1). Unlike other fully co-
alescent models, SNAPP does not sample from gene trees directly to 

estimate the species tree, but instead integrates over all possible gene 
trees using biallelic SNPs. The method has been found previously 
to perform well on both simulated and empirical data (Bryant et al. 
2012; Strange et al. 2018). We designated a gamma-distributed prior 
on θ (=4Neμ) with a mean equal to the expected π 12 (equation 1). 
Forward (u) and backward (v) mutation rates were estimated within 
BEAUti (Bouckaert et al. 2014) from the empirical SNP matrix using 
the tab Calc_mutation_rates, and these values were sampled during 
the MCMC. The rate parameter λ, which is the birth-rate on the Yule 
tree prior, was gamma-distributed with α = 2 and β = 200, where the 
mean is α / β (Leaché and Bouckaert 2018).

SNAPP is designed to handle incomplete lineage sorting (ILS), but 
to minimize its effects—since we are not interested in the program’s 
ability to estimate topology but rather branch-lengths—we applied a 
fixed species tree. Branch-lengths in SNAPP do not scale to time, but 
instead are measured in number of substitutions. Given a fixed mu-
tation rate, we convert the number of substitutions separating sp1 
and sp2 to the number of generations as g = s / μ, where s is branch-
lengths in units of substitutions (Bouckaert and Bryant 2015). The 
MCMC chain length was 10–50 million sampling every 1000 with a 
burn-in of 10%, ensuring that ESS values of interest were all >200. 
Runs were performed on the high-performance computing cluster 
CIPRES (www.phylo.org; Miller et al. 2010).

MCMC log files were then downloaded and analyzed in R. The 
performance of SNAPP was evaluated by comparing traces of end 
and center species across migration rates and TD / ND values. Results 
were evaluated by first randomly sampling 1000 rows for each mi-
gration rate, and then performing a Kruskal-Wallis test. Trees from 
the MCMC were summarized in TreeAnnotator v.2.6.0 (Bouckaert 
et al. 2014) and visualized in R using the package ggtree (Yu et al. 
2017). Branch colors were scaled by estimated median θ per branch.

To ensure the trends observed were the result of inflated π 12 when 
TD / ND and migration rate is low and not an issue unique to SNAPP, 
we performed pairwise FST tests of end and center demes that were 
used in the divergence-time estimation (Supplementary Material; 
Supplementary Figure S10). These tests were performed using tskit. 
All SLiM recipes, python and R code, and xml files can be found at 
https://github.com/hancockzb/ancestralIBD.

Empirical Dataset
To evaluate how ancestral patterns of IBD may impact divergence-
time estimation in practice, we analyzed the phylogenomic dataset 
of endemic squamates from Domingos et al. (2017). The dataset con-
sists of 12 species (including the identified cryptic lineages) sampled 
broadly across the geographic range of Tropidurus itambere, which 
is native to the Cerrado, a tropical savanna in Brazil that stretches 
across the states of Goiás, Mato Grosso do Sul, Mato Grosso, 
Tocantins, Minas Gerais, and the Federal District. Domingos et al. 
(2017), using anchored hybrid enrichment, identified 5 cryptic spe-
cies they designated A–E within T.  itambere. Each of these species 
were sampled across multiple localities with some locations spatially 
nearer to their close relatives than others (see figure 1 in Domingos 
et al. 2017).

This geographically broad sample scheme is ideal to test the im-
pact of IBD on divergence-time estimation. If ancestral IBD has in-
fluenced π 12, we expect species localities more distant to one another 
to be more deeply diverged than when 2 species are sampled from 
locations nearby. Importantly, this pattern should only hold if the 
range was once continuous (as in our simulations above); otherwise, 
there should be no difference in π 12 between species even if there 
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are current patterns of IBD within species. Ongoing gene flow be-
tween the spatially close localities could also generate this pattern, 
but Domingos et al. (2017) found no evidence for this.

The alignments used in the coalescent species delimitation in 
Domingos et  al. (2017) were downloaded from https://datadryad.
org/stash/dataset/doi:10.5061/dryad.1hs2m. We randomly selected 
10 loci conditional on them containing samples from all locations 
(total length = 15 303 bp). We generated 2 separate alignment files 
based on the sampled locality’s distance from their nearest relative. 
Preliminary analyses, including the entire dataset, showed that spe-
cies (DE) were sister to A, and B was sister to C (which was also 
found from the entire concatenated dataset in Domingos et  al. 
2017). Therefore, the first dataset we designated as “far,” and it in-
cluded only the location of E that was most distant from A (i.e., São 
João D’Aliança; roughly 1000 km), and the location of C that was 
the most distant to B (i.e., Ribeirão Cascalheira; ~1000 km). The 
second dataset was designated “near” which included localities of E 
geographically closest to A (Brasilia and Pirenópolis; ~160 km) and 
C to B (Barra do Garças; ~600 km).

Phylogenetic inference was performed using the fully coalescent 
software *BEAST (Heled and Drummond 2010). For each locus, 
we applied the HKY model (Hasegawa et  al. 1985)  and a strict 
molecular clock. We also performed runs with a relaxed lognormal 
clock for each locus to ensure age differences across the tree were 
not the result of restricting substitution rate variation. Domingos 
et  al. (2017) only focus on topology and time is not considered; 
therefore, we estimate branch-lengths in units of substitutions per 
site. We use an arbitrary rate of mutation (10–8) to convert substi-
tutions to generations. This analysis is not meant to be a rigorous 
evaluation of the true time of divergence but merely a demonstra-
tion of the impacts of ancestral IBD on empirical data. Each ana-
lysis was run for 100 million generations with a burn-in of 10%. 
Estimated divergence times between the 2 models were compared 
using a 2-way ANOVA in R.  Differences in the densities of esti-
mated gene trees from the posterior were visualized using DensiTree 
(Bouckaert 2010).

Results

Coalescent Simulation Results
The coalescent simulations produced trends superficially similar to 
those found by Rosenberg and Feldman (2002). At the lowest TD / 
ND, the proportion of deep coalescence was dramatically greater 
than at higher values with the curve producing a similar logarithmic 
relationship (Supplementary Figure S1). However, TD and TMRCA 
did not necessarily converge when TD / ND  = 5. Instead, the rate 
of convergence was dependent on both the deme sampled and the 
migration rate.

When migration was high (m = 0.1) and TD / ND was less than 
0.5, there was no significant difference between center or end species 
in the stepping-stone model or the island model. However, for values 
of TD / ND > 0.5, the TMRCA of end species became significantly dif-
ferent from both island (P < 0.02) and center species (P < 0.01; see 
Supplementary Table S1). When migration was reduced below 0.1, 
this pattern became more extreme. End species were significantly dif-
ferent in all pairwise comparisons of models (P < 0.000001), and 
center species differed from the island model at TD / ND ratios of 
0.5, 2, and 10 (P < 0.03) when m = 0.01. At the lowest migration rate 
simulated (m = 0.001), all pairwise model comparisons were signifi-
cantly different when TD / ND > 0.5 (P < 0.001; see Supplementary 
Table S1).

Genome Simulation Results
Results from the genome simulation approach corroborated those 
found with fastsimcoal2. Regardless of TD / ND, when m = 0.1 the 
difference between center and end species was less severe relative to 
when m < 0.1 (Supplementary Table S2). Across the simulated gen-
omes, TMRCA became dramatically deeper between end than center 
species as migration fell below 0.01. For the genome-wide divergence 
estimates, the degree of overestimation depended on the ratio of TD 
/ ND. While all scenarios where m = 0.001 overestimated the true 
TD, when TD / ND < 10 end species were 5–60 times more diverged 
than expected (Supplementary Figure S3). This is a direct result of 
the deeper coalescent times between end species when m < 0.1, as 
these longer branches provide more time for mutations to occur and 
accumulate (Supplementary Figure S2).

Genome-wide coalescent times (TMRCA) are shown in 
Supplementary Figure S2. When m = 0.1, only TD / ND = 25 and 
10 were significantly different between end and center species 
(P < 0.005). Regardless of TD / ND, the variance in TMRCA steadily in-
creased with decreasing m. Indeed, the increase in mean TMRCA when 
m = 0.001 appears largely driven by an increase in the variance at 
this lower rate. Due to this, we find that ancestral Ne dramatically 
exceeds Nc when m = 0.001 (Figure 3).

Despite the potential for divergence-time overestimation to be 
extreme, SNAPP was relatively resilient when TD / ND > 10 and 
when m > 0.001. When TD / ND = 50, SNAPP was overly conser-
vative and underestimated the number of substitutions expected to 
occur (Figure 2). When TD / ND = 25, the mean estimate of both 
center and end species when m > 0.001 either underestimated 
the true age or was within 5%. However, for end species where 
m = 0.001 the estimated divergence time exceeded the true age by 
~80% (Supplementary Table S3). A similar trend occurred when TD 
/ ND = 10 and 5. Here, both center and end species overestimated 
the true age, but the end species did so more dramatically (138% 
the true age versus 81% for 10; 184% versus 67% for 5). The most 
dramatic overestimation occurred between end species when TD / 
ND = 1 at ~700% the true age. Importantly, this was not merely 
the result of a low TD / ND ratio, as the other migration regimes 
performed well. In fact, most were closer to the true TD than the ex-
pected π 12, accounting for 2N (Supplementary Table S3).

Estimated θ for each branch is shown in Figure  4 for TD / 
ND  = 10, and in Supplementary Figures S4–S7 for the remaining 
ratios. For all TD / ND values except 1, the median ancestral θ was 
higher for end species than center when m = 0.001, and the estimated 
θ for the descendant species (sp1 and sp2 in Figure 1) was consid-
erably lower than for the ancestor or the outgroup, sp3 (Figure 4; 
Supplementary Figures S4–S7). These patterns are consistent with a 
population bottleneck, despite N being maintained throughout the 
simulation.

Empirical Results
The estimated divergence-time for the clades ((DE)A) and (BC) 
were significantly older when samples were from geographic-
ally distant localities as opposed to those nearby (p  < 0.00001; 
Figure  4c). For the ((DE)A) clade, the “far” dataset inferred an 
age of divergence of 270 000 generations, which was 40 000 gen-
erations (or ~14%) higher than the “near” estimate. The (BC) di-
vergence was even more extreme, with the “far” being ~24% older 
than the “near” (Figure 4c). Interestingly, despite the fact that all 
other samples were included in both analyses, the “far” dataset 
estimated older ages for most of the other nodes in the tree as 
well (Figure  4). The total tree height of the “far” was 220  000 
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generations deeper in time than the “close” (or ~ 9%). The re-
laxed clock estimates were more extreme, with all node heights 
being higher in the “far” versus “near” datasets (Supplementary 
Figure S11).

Discussion

Macroevolutionary patterns are ultimately governed by microevo-
lutionary processes (Li et al. 2018), an observation Lynch (2007), 
extending Dobzhansky’s (1973) maxim, summed up as “nothing in 

evolution makes sense except in light of population genetics.” In 
this light, we have demonstrated that the population genetic envir-
onment of the ancestor shapes the genetic landscape of descendant 
species. This has been known to impact tree topology when ILS is 
common (Kubatko and Degnan 2007) and overestimate divergence 
times in the presence of population structure caused by an island 
model of migration (Edwards and Beerli 2000; Wakeley 2000). 
Extensive prior work has shown that the stepping-stone model of 
migration reduces genetic correlation between demes (Kimura and 
Weiss 1964; Maruyama 1970a) and that demes farther apart should 

Figure 2. Box plots of the estimated TMRCA by SNAPP; ns = “not significant,” P < 0.05 (*), P < 0.001 (**), P < 0.0001 (***), P < 0.00001 (****). Dashed lines represent 
when the estimated age converges on the true age (i.e., at 0). Note that the y axis is different between the panels. Center species are on the left, end species on 
the right (see online version for full color).
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Figure 3. Density plot of scaled ancestral Ne (/1000) based on mean π 12 across genomic windows of 100kb. Dashed line is when Ne / Nc = 1.

Figure 4. Estimated divergence-times for the Domingos et al. (2017) dataset. (a) the “near” trees from the posterior distribution; (b) the “far” trees; (c) boxplot of 
the 2 nodes of focus, where ADE is for clade ((DE)A) and BC is (BC); (d) map of included sites from Domingos et al. (2017). Significance is as in Figure 2. Numbers 
at nodes represent the median height in units of millions of generations ago (mga) (see online version for full color.)
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coalesce deeper in time than those geographically closer (Hey 1991; 
Slatkin 1991). However, to our knowledge, the impact of ancestral 
IBD has not been evaluated in the context of divergence-time esti-
mation previously.

Rosenberg and Feldman (2002) found previously that when TD 
/ N = 5, TMRCA and TD largely converged in a simple population split 
model. However, when in the presence of ancestral IBD we found 
that convergence was dependent on the migration rate (i.e., the 
strength of ancestral IBD) and whether surviving species neighbored 
each other or were at the range ends in the ancestral population.

When TD / ND > 10, the ancestral dynamics contribute little to the 
divergence-time estimate differences between center and end species. 
However, as this ratio decreases the contribution of 2Ne to overall 
sequence divergence becomes non-trivial. The probability that gen-
etic variants share an ancestor just prior to the population split is 
higher between species that were geographically closer than those 
more distant in the ancestral population. This is mediated by the mi-
gration rate, which, when high enough, can largely erase the differ-
ences between center and end demes. When migration is high (10%, 
or m = 0.1), individuals move well between demes and the coalescent 
times largely converge (though deeper in time depending on the ratio 
of TD / ND). However, as m falls below 1% (m = 0.01), or less than 
one migrant per generation being shared between demes, dispersal 
cannot keep up with genetic differentiation. Despite all migration re-
gimes producing similar patterns of IBD (Supplementary Figure S9), 
FST becomes dramatically higher as migration drops below 1%. This 
differentiation in the ancestor contributes to the overall sequence 
divergence (π 12) between species, which drives an overestimation of 
the time of the population split (TD) when surviving lineages descend 
from demes on the opposite ends of the range.

As expected, ancestral IBD skews π 12 and TMRCA away from ex-
pected values in a panmictic population, and this caused an infla-
tion in Ne relative to Nc. For TD / ND = 50 and m = 0.1, the mean 
π 12 for end species was 0.010459 and 0.010419 for center species. 
Using equation 5, ancestral Ne was 1147.5 for end species and 
1047.5 for central. However, when m = 0.001, π 12 for end species 
was 0.012948, an ancestral Ne = 7370. Center species, on the other 
hand, only increased to Ne = 1255. As with the coalescent times, at 
lower migration rates the variance in Ne becomes exceedingly large, 
driving up the mean. Importantly, mean genome-wide Ne always ex-
ceeds Nc in the presence of ancestral IBD at a level dictated by the 
migration rate.

This feature of ancestral IBD has important consequences for 
conservation genetics. Many studies use Ne as a rough biological 
measure of population size (Turner et  al. 2002; Hare et  al. 2011; 
Rieman and Allendorf 2011), and therefore a metric of the health of 
a population. However, a common phenomenon in range contrac-
tions is fragmentation and isolation (Ceballos et  al. 2017), which 
may result in IBD. If many of the demes once contributing to the con-
nectivity of the population have become extinct, and Ne is estimated 
based on the surviving demes, it will overestimate the actual number 
of individuals within the population (i.e., the census size, Nc). Thus, 
we might incorrectly conclude that a species has a larger population 
size than it actually does, which may lead to mismanagement.

Since Ne is inflated in the ancestral lineage, the descendant 
species appear to pass through a bottleneck despite N remaining 
constant (Supplementary Figures S4–S8). Estimated θ in SNAPP 
captured this dynamic with more extreme differences in θ (i.e., 
more dramatic bottlenecks) being inferred between end species 
and when m  = 0.001. Population bottlenecks have been found to 

cause divergence-time overestimation due to random differential 
survival of ancestral alleles into the descendant species (Gaggiotti 
and Excoffier 2000). In the presence of IBD, this differential allelic 
persistence between species is mimicking a bottleneck—when demes 
were far apart, this pattern is more extreme as they already maintain 
different allelic patterns ancestrally. However, because this pattern is 
recognizable (Supplementary Figures S4–S8), it can be used to signal 
when ancestral IBD may be impacting our divergence-time estima-
tion. Unfortunately, without prior range-size knowledge, it may be 
impossible to differentiate between ancestral IBD and a bottleneck 
since these produce virtually identical genetic patterns. However, it 
may not be necessary to do so for simple divergence estimates.

Demes need not necessarily go extinct for ancestral IBD to still 
influence π 12, as seen from the results of the empirical dataset; how-
ever, the persistence of demes into the present allows for a geo-
graphically aware sampling scheme. Since Domingos et  al. (2017) 
sampled broadly across the range of T. itambere, they would be well-
positioned to identify inflated π 12 resulting from ancestral structure. 
For example, as we have done here, by subsetting the dataset by geo-
graphic proximity one can explicitly test for ancestral IBD. For an-
cestrally structured populations, geography should dictate the degree 
of π 12. Importantly, this also requires that species diverged via vic-
ariance (Coyne and Orr 2004)—the splitting of a once larger range 
by a discrete barrier—and not some other means, such as population 
expansions following divergence from a more restricted habitat.

The broader impact of ancestral IBD on divergence-time estima-
tion when in the context of large phylogenies is beyond the scope 
of this work, but it is conceivable that the longer than expected 
branches between sister species might bias rate estimation (Aris-
Brosou and Excoffier 1996; Magallón 2010). In the case of ancestral 
IBD, the inflated Ne is mimicking a pattern of substitution rate in-
crease. Under neutrality, the rate of substitution is equal to the per 
generation mutation rate, μ (Kimura 1983); however, in the presence 
of population structure, substitutions may occur in the ancestral lin-
eages between demes separated by large geographic distances. If the 
true age of the sister taxa is known but ancestral structure is not ac-
counted for, the substitution rate will be upwardly biased. We found 
some evidence for this in the T. itambere dataset, in which we found 
higher estimates of π 12 in the “far” versus the “close” dataset even 
for nodes more distantly related to the focal clades (Figure 4).

Ancestral structured populations leave their imprint on des-
cendent species in the form of greater coalescent times, and therefore 
larger than expected pairwise divergences between species. Further, 
these patterns cause inflated Ne relative to census sizes. Since ances-
tral IBD mimics the signature of a population bottleneck, coalescent 
methods that co-estimate θ along with the topology and π 12, such as 
SNAPP and *BEAST, may be the best suited to reveal this potential 
source of bias. However, fully coalescent models such as these are 
infamously computationally costly and not presently used for whole-
genome sequence data or for phylogenies with large numbers of tips. 
Indeed, SNAPP becomes prohibitively slow when the number of tips 
is ~30 (Leaché and Bouckaert 2018).

In the context of larger phylogenies or organisms in which 
little is known about their ancestral range, it may be impossible 
to know if extant species descend from range centers or ends, or 
the level of IBD present in the ancestor. The genetic consequences 
of ancestral structure therefore behave much like “ghost” popula-
tions (Slatkin 2005); despite being extinct, their influence haunts 
our ability to adequately assess the phylogenetic history of their 
descendants.
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