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Abstract: Undaria pinnatifida (U. pinnatifida) is an edible brown seaweed with high health value. The
objective of this study was to evaluate the effect of traditional cooking methods (i.e., blanching,
steaming, boiling and baking) on the color, texture and bioactive nutrients of U. pinnatifida, so as to
screen out the traditional cooking methods more suitable for U. pinnatifida. In this study, methods of
blanching and boiling resulted in better reduction in total color difference (0.91 ± 0.58 and 0.79 ± 0.34,
respectively) and retention of chlorophyll A (62.99 ± 1.27 µg/g FW and 51.35 ± 1.69 µg/g FW),
along with better elevation of fucoxanthin content (increased by 11.05% and 18.32%, respectively).
Baking method got the best retention of total phenol content (1.62 ± 0.11 mg GAE/g DW), followed
by methods of boiling and blanching (1.51 ± 0.07 mg GAE/g DW and 1.43 ± 0.05 mg GAE/g
DW). Among these cooking methods, blanching and boiling seemed to be the more suitable for
U. pinnatifida compared to other methods. These results could help to determine the better cooking
methods for U. pinnatifida products and provide a scientific and theoretical basis for improving
human dietary health.

Keywords: U. pinnatifida; traditional cooking methods; quality characteristics; color; texture; bioactive nutrients

1. Introduction

A healthy diet has been a hot topic in recent years. As the public becomes more
health conscious, more and more vegetables are being considered as a part of a healthy
lifestyles. Therefore, there is a growing demand for high value-added vegetables. Un-
daria pinnatifida (U. pinnatifida) is a large annual temperate seaweed found mainly in the
coastal areas of China, Japan and South Korea [1]. U. pinnatifida has a high economic and
medicinal value and is rich in polysaccharides, protein, vitamins, minerals, polyphenols
and phytosterols [2]. The components of U. pinnatifida showed various biological activities,
such as hypolipidemic, antihypertensive, immunoregulation and antitumor activity [3].
In addition, the application of polyphenols and pigments in seaweeds has also become a
research hotspot in recent years. Utilizing their unique physicochemical properties and
health functions, they could be used as preservatives, antioxidants and colorants. In a
variety of foods, they could achieve the purpose of improving quality, extending storage
period and developing new health foods, and have broad application prospects in food
production.

In order to provide reasonable guidance for cooking food and improve the sensory
and nutritional characteristics of each meal, it is necessary to determine the optimal cooking
methods [4]. The color, texture, structural state and bioactive nutrients are the main factors
to measure the value of vegetables, and cooking methods greatly affect these important
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indicators. The cooking and processing methods of vegetables can preserve/improve the
nutrition and quality of vegetables to a certain extent [5]. Many studies have evaluated
the effects of different cooking methods on the qualities of vegetables [6,7]. In a study
on the effect of different baking conditions on the sensory quality of barley, it was found
that baking in the low to medium temperature range improved the sensory quality [8].
Red cabbage cooked by the sous-vide method was more purple and more flavorful than
traditionally cooked cabbage [9]. Akdaş and Bakkalbaşı [10] found that microwaving and
stir-frying increased the value of the greenness in kale. Additionally, cooking methods
have different effects on the bioactive ingredients in vegetables. They may increase the
bioavailability of polyphenols, fucoxanthin and chlorophyll; however, it may also lead to
a loss of their contents [11]. Moreover, the extent of these changes depends on a number
of factors, such as the type and quality of raw materials, the used methods, the degree
of heating, immersion in the processing medium, the extraction solvent, as well as the
pH [12–14]. Giusti et al. revealed that the contents of free and bound phenolic compounds
were greatly reduced during cooking and most of the phenolic compounds were leached
into water [15]. Compared with sous-vide and traditional processing, cook-vide had less
harm to the total phenol content of green bean. Moreover, sous-vide had better protective
effect on the total phenolic content of carotenes [16]. According to the study by Gu et al.,
the steaming process resulted in a significant loss of phenolic/flavonoid components while
the baking process had minimal impact on the active components [5].

At present, there are few studies within our knowledge comparing the effects of
different traditional cooking methods on the quality and bioactive nutrients of U. pinnatifida
and analyzing structural changes from a microscopic perspective. Therefore, in this study,
four traditional cooking methods (blanching, steaming, boiling and baking) were used to
compare the changes in characteristics (color, texture, moisture and microstructure) and
bioactive nutrients (total phenols, chlorophyll A and fucoxanthin) of U. pinnatifida. The
aims of this study were to: (1) compare the effects of four traditional cooking methods on
the color, texture and bioactive nutrients of U. pinnatifida; and (2) screen for better cooking
methods to preserve bioactive nutrients, texture and color in cooking. This study provides
useful guidance on cooking selection of U. pinnatifida, as well as a theoretical basis and
basic reference for cooking U. pinnatifida to improve human dietary health.

2. Materials and Methods
2.1. Materials and Reagents

The dried U. pinnatifida was supplied by Dalian LiaoHai Aquatic Food Trading Co.,
Ltd. (Dalian, China). It was stored in a sealing bag before analysis. Folin–Ciocalteu’s phenol
reagent was obtained from Sangon Biotech (Shanghai) Co., Ltd. (Shanghai, China). Fucox-
anthin (≥98%, HPLC grade), chlorophyll A (≥95%, HPLC grade) and gallic acid (≥98%,
HPLC grade) were provided by Sigma-Aldrich Co., Ltd. (Shanghai, China). Methanol
(HPLC grade) was purchased from Sibiquan Chemical Co., Ltd. (Shanghai, China). Acetone
(HPLC grade) was supplied by Sinopharm Chemical Reagents Co., Ltd. (Shanghai, China).
All other chemicals used for the analysis were analytical grade.

2.2. Preparation of U. pinnatifida Samples

The dried U. pinnatifida was immersed in deionized water until fully extended and
drained to remove excess water. The rehydrated U. pinnatifida was then cut into equal sizes
and used for subsequent experiments at 100 g per aliquot.

2.3. Conditions of Cooking Methods

Four traditional cooking methods were used in this study, including blanching, steam-
ing, boiling and baking. Initial tests were carried out on each sample to optimize the
cooking conditions. The shortest cooking times were used for all methods to achieve
adequate palatability and taste according to the Chinese eating habits.
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Blanching: 100 g of prepared U. pinnatifida sample was immersed in 1 L of boiling
water (100 ◦C) for 3 min, and the blanched sample was then wiped dry and cooled on ice.

Steaming: after the water in the steamer began to boil, the U. pinnatifida sample
(100 g) was placed in the steamer for 10 min and then quickly cooled on ice to prevent
further heating.

Boiling: the U. pinnatifida sample (100 g) was boiled in 1 L boiling water (100 ◦C) for
10 min in a covered stainless-steel pot, imitating traditional cooking methods. The boiled
samples were dried with kitchen papers and cooled on ice immediately.

Baking: the U. pinnatifida sample was baked in the oven (SCC WE 101, RATIONAL,
Landsberg a. Lech, Germany) for 10 min at 160 ◦C.

Partially cooled samples (approximately 10 g for each sample) were used for immediate
analysis of moisture, color, texture and chlorophyll A. Another portion (approximately 90 g
for each sample) was placed in a drying oven (PH-070A, Shanghai YiHeng Technology
Co., Ltd., Shanghai, China) at 50 ◦C for 16 h. The dried samples were crushed and passed
through a 200-mesh sieve. The dried powder was sealed in the vacuum bag and stored at
4 ◦C for further analysis. The raw U. pinnatifida was analyzed as the control.

2.4. Quality Characteristics
2.4.1. Color Analysis

The colors of the raw and cooked U. pinnatifida samples were measured using a
chromameter (UltraScan Pro, HunterLab, Reston, VA, USA). In the CIE color system,
the negative coordinates of a* and the positive coordinates of b* represent the green and
yellow intensities, respectively [17]. The calculation of the total color difference (∆E) was
performed according to the formula previously described by Armesto et al. [18]:

∆Eab =

√
(L2

∗ − L1
∗)2 + (a2∗ − a1

∗)2 + (b2
∗ − b1

∗)2

where L1*, a1*, b1* are the values of the raw sample. L2*, a2*, and b2* are the values of the
samples subjected to different cooking methods.

2.4.2. Texture Profile Analysis

For texture profile, the U. pinnatifida samples were analyzed by texture analyzer (TA-
XT plus, Stable Micro Systems Ltd., Vienna, UK) equipped with a 5 mm diameter (P/5)
probe. The parameters were set as follows: compression variable, 30%; pre-test speed,
2.0 mm/s; test speed: 1.0 mm/s; post-test speed, 2.0 mm/s, which was according to the
procedure described by Peng et al. [19].

2.4.3. Low-Field Nuclear Magnetic Resonance (LF-NMR) Measurement

The water state of raw and cooked samples was determined using a LF-NMR analyzer
(MesoQMR23-060H, Suzhou (Shanghai) Niumag Electronic Technology Co., Ltd., Shanghai,
China). The decay signal was acquired using the Carr–Purcell–Meiboom–Gill (CPMG)
pulse sequence. The main parameters were according to Jiang et al., as follows [20]: TE
(time echo) = 0.5 ms, TW (time waiting) = 4000 ms, NS (number of scan) = 8, NECH (number
of echo) = 8000.

2.4.4. Scanning Electron Microscope (SEM)

The microstructure of raw and cooked U. pinnatifida was observed using a SEM
(JSM-7800F, Tokyo, Japan). According to the method of Jiang et al., U. pinnatifida was
freeze-dried in a freeze-dryer at −80 ◦C for 48 h. The samples obtained were fractured in
liquid nitrogen and structural changes in the fracture surface were observed under SEM
with ×500 magnification [20].
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2.5. Bioactive Nutrients
2.5.1. Total Phenol

The total phenolic compounds were extracted with modifications as described by
Ummat et al. [21]. Briefly, U. pinnatifida sample powder was mixed with 50% ethanol (1:15,
w/v) and sonicated for 30 min at 25 ◦C. The mixture was incubated in a thermostatic shaker
(THZ-82, Zhibri Instruments Ltd., Changzhou, China) at 50 ◦C for 7.5 h at 120 rpm, then
filtered through Whatman #1 filter paper (Whatman International Co., Ltd., Maidstone,
UK) and the supernatant was collected. The extracts were then stored at 4 ◦C in the dark
until analysis.

Total phenol content (TPC) was determined using the modified Folin–Ciocalteau
method [20]. First 600 µL of deionized water and 50 µL of Folin–Ciocalteu phenol reagent
were added sequentially to 50 µL of the extract. Next, 20% sodium carbonate solution
(150 µL) was added after 1 min, then deionized water was added to the mixture to 1 mL and
incubated in the dark at 25 ◦C for 2 h. The microplate reader (Infinite 200, Tecan Austria
Co., Ltd., Grodig, Austria) was used to measure the absorbance at 760 nm. A standard
curve with continuous gallic acid solution was used for calibration. TPC was expressed as
gallic acid equivalent (GAE) per gram of dry weight (DW).

2.5.2. Fucoxanthin

The U. pinnatifida sample powder was mixed with 80% methanol (1:10, w/v) and
sonicated at room temperature for 30 min. The mixture was centrifuged at 3040× g for
10 min and the supernatant was evaporated in the rotary evaporator at 40 ◦C until dryness.
The same volume of methanol (HPLC grade) was used to redissolve and the resulting
solution was filtered through a 0.22 µm syringe filter to obtain the fucoxanthin extract.

The fucoxanthin was determined by HPLC according to the procedure described by
Sui et al. [22]. Methanol was used as the mobile phase in a C18 column (5 µm, 4.6 × 250 mm,
Shimadzu, Kyoto, Japan) at 40 ◦C with a flow rate of 0.5 mL/min. The injection volume was
10 µL, and the data acquisition time was 10 min. Detection of fucoxanthin was performed
at 450 nm and the results were expressed as µg per gram of DW.

2.5.3. Chlorophyll A

Chlorophyll A was extracted with modification as described by Havlíková et al. [23].
First, 5 mL acetone and 1 mL deionized water were mixed with 1 g of U. pinnatifida sample,
sonicated at room temperature for 2 h. Then the mixture was centrifuged at 3040× g for
10 min and the supernatant was collected. The supernatant (5 mL) was evaporated to
dryness in a rotary evaporator at 40 ◦C and redissolved with acetone (5 mL, HPLC grade).
The solution was filtered through 0.45 µm nylon microporous filter membrane to obtain
the chlorophyll A extract.

The chlorophyll A extract was also analyzed by Shimadzu HPLC series system. The
C18 column (5 µm, 4.6 × 150 mm, Shimadzu, Japan) was used to achieve the separation at
30 ◦C. The mobile phase was 100% methanol (HPLC grade) with a flow rate of 0.8 mL/min
and the total run time was 20 min. Detection was performed by a DAD at 430 nm and the
injection volume was 10 µL. The results were expressed as µg per gram of fresh weight (FW).

2.6. Statistical Analysis

All experiments were conducted at least in triplicate. Data are reported as means
± standard deviation. Statistical comparisons were performed by analysis of variance
(ANOVA) with Duncan’s multiple range tests, and the significant differences were identified
at a level of p < 0.05 using SPSS software (ver. 20.0; SPSS Inc., Chicago, IL, USA).
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3. Results and Discussion
3.1. Effects of Cooking Methods on Quality Characteristics of U. pinnatifida
3.1.1. Color of U. pinnatifida in Different Cooking Methods

Color plays an important role in the acceptability of vegetables after cooking [24]. The
effects of different cooking methods on color coordinates and total color difference (∆E)
were observed in Table 1. Cooking samples other than blanching significantly increased
the a* value compared to the raw sample, which meant the greenness was reduced. The
greenness of the blanching sample was increased, this result was consistent with the
previous reported results. Pellegrini et al. evaluated the effect of different cooking methods
on the color changes of three Brassica vegetables and the results showed that blanching
can prevent vegetables from discoloring after they were cooked to a certain extent [25].
Additionally, the result of the reduction in greenness by steaming was consistent with the
results reported by Zhong et al., who found that steaming broccoli florets lost the greenness
(increased a* values) [26]. For b* value and L* value, except the b* value of the baking was
significantly decreased, other cooking methods had no significant change compared with
the control group. The total color difference (∆E) of the samples with different cooking
methods was shown in Table 1, with the total color difference ranging between 0.79 ± 0.34
and 7.65 ± 0.49. The raw U. pinnatifida was considered as the control, baking had a
greater effect on the ∆E than steaming (1.76 ± 0.85), blanching (0.91 ± 0.58) and boiling
(0.79 ± 0.34), as the baking had a greater effect on the a* and b* values. Mashiane et al.,
found that steaming reduced the ∆E in both African pumpkin and pumpkin leaves, whilst
boiling resulted in greater ∆E compared to raw leaves, which was contrary to our results
and may be caused by differences in cooking conditions and raw materials [24].

Table 1. Influence of different cooking methods on the color of Undaria pinnatifida (U. pinnatifida).

Color Properties Raw Blanching Steaming Boiling Baking

L* 23.60 ± 0.56 ab 23.48 ± 0.90 ab 24.44 ± 0.98 a 24.04 ± 0.37 ab 23.07 ± 0.98 b

a* −4.27 ± 0.22 a −4.35 ± 0.25 a −3.52 ± 0.30 b −3.69 ± 0.19 b −1.04 ± 0.13 c

b* 8.58 ± 0.52 a 8.67 ± 0.57 a 8.95 ± 1.26 a 8.51 ± 0.21 a 1.73 ± 0.47 b

∆E — 0.91 ± 0.58 a 1.76 ± 0.85 b 0.79 ± 0.34 a 7.65 ± 0.49 c

Sample color

Data are expressed as mean ± standard deviation (n = 9). Different letters in the same row indicate significant
differences at (p < 0.05).

3.1.2. Effects of Cooking Methods on Texture of U. pinnatifida

Texture is an important sensory attribute affecting food acceptability [27]. The textural
parameters of U. pinnatifida samples by different cooking methods were shown in Table 2,
including the hardness, cohesiveness, chewiness and resilience. The results showed that
the samples with different cooking methods underwent significant changes compared
to the raw sample. Among them, the texture of the baking sample changed so much
that the parameters could not be detected in the same way as the others. From Table 2,
almost all texture parameters followed the same general trend, the degree of change
caused by cooking compared to the control group was blanching < boiling < steaming,
with the lowest change occurring in the blanching. Hardness, cohesiveness, chewiness
and resilience were significantly reduced after various cooking methods (p < 0.05). This
phenomenon may be due to impaired cell wall integrity, which in turn affects the textural
properties [28]. Hardness was probably the most relevant texture feature for solid foods
and played a key role in consumer acceptance and market value. Compared with the raw
U. pinnatifida (1353.11 ± 50.78), the hardness values of cooked U. pinnatifida decreased



Foods 2022, 11, 1078 6 of 11

significantly, with the steaming sample (1041.11 ± 96.87) the most obviously decreased in
all samples, followed by boiling (1172.61 ± 37.69) and blanching (1182.27 ± 110.77) samples.
Cohesiveness represents the internal force that holds the sample together until compression
reaches the sample fracture point and depends on the properties of the sample and external
factors such as humidity [29]. Chewiness referred to the energy required for chewing, which
was correlated with hardness and cohesiveness [20]. Therefore, the trend of chewiness
was consistent with the trends in hardness, i.e., raw (16,711.54 ± 3544.40) > blanching
(10,514.54 ± 2108.38) > boiling (800.02 ± 31.39) > steaming (621.74 ± 133.73).

Table 2. Influence of different cooking methods on the texture of U. pinnatifida.

Texture
Parameters Raw Blanching Steaming Boiling Baking

Hardness 1353.11 ± 50.78 a 1182.27 ± 110.77 b 1041.11 ± 96.87 c 1172.61 ± 37.69 b nd
Cohesiveness 16.86 ± 2.98 a 12.35 ± 1.54 b 1.03 ± 0.10 c 1.01 ± 0.02 c nd

Chewiness 16,711.54 ± 3544.40 a 10,514.54 ± 2108.38 b 621.74 ± 133.73 c 800.02 ± 31.39 c nd
Resilience 0.63 ± 0.04 a 0.53 ± 0.03 b 0.45 ± 0.05 c 0.43 ± 0.03 c nd

Data are expressed as mean ± standard deviation (n = 9). Different letters in the same row indicate significant
differences at (p < 0.05). nd: not detected.

3.1.3. LF-NMR Analysis

Different cooking methods can result in different moisture distribution changes, thus
affecting their physicochemical properties. The transverse relaxation time of LF-NMR can
reflect the water state and distribution. As shown in Figure 1, the T2 relaxation spectrum
was obtained by multi-exponential fitting of the CPMG raw data. The smaller the T2, the
tighter the bond between water and matter [30]. There were mainly three peaks in the
T2 relaxation curves. The details of three peaks were T21 (0.1–10 ms), T22 (10–100 ms)
and T23 (100–1000 ms) corresponding to the bound, immobilized and free water [31]. The
results showed that the moisture changes in the U. pinnatifida were the most significant
after baking, which showed a complete loss of free water from the baking sample and a
significant reduction in T22 and T21 compared to the control group, implying a decrease in
the mobility of immobilized and bound water. The fact was probably related to the higher
temperature promoting the internal water losses during baking [6]. While T23 shifted to
the right in the three cooking samples (i.e., blanching, steaming and boiling), indicating
that the free water mobility of samples was stronger than raw samples. Additionally, the
area of free water of the steaming sample was significantly reduced, which meant that the
way of steaming caused serious loss of free water in the U. pinnatifida.
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3.1.4. Scanning Electron Microscopy (SEM)

To investigate the effect of different cooking methods on the microstructure of raw
and cooked U. pinnatifida, freeze-dried samples were observed with scanning electron
microscopy (SEM). As shown in Figure 2, the structure of the fracture surfaces of raw
(Figure 2a), blanching (Figure 2b), steaming (Figure 2c), boiling (Figure 2d) and baking
(Figure 2e,f) samples were shown. The microstructure of U. pinnatifida was significantly
altered by the four different cooking methods. It could be seen that the pores of blanching
samples were uneven and loose, with collapsed pore walls and disorganized arrangements,
compared with raw samples. The structure of the steaming sample stuck together. After
boiling, the structure of the U. pinnatifida changed significantly, with a significant increase
in pore size and the formation of a larger cavity structure. The most pronounced changes
in the samples were observed after baking treatment, where the overall sample became
extremely thin and the structure was difficult to see even under multiple observations
under the same conditions (×500) as the other cooking conditions, therefore needed to be
observed at higher magnifications (×2000, Figure 2f). The porous structure of the baking
sample was completely transformed into a uniform dense scale-like structure. This may be
related to the severe loss of water from the sample during baking treatment. Yang et al. had
confirmed that the structure of food changes after thermal treatment, their results showed
that the surface of fried potato sticks changed under heating [32].
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Table 3. Effects of different cooking methods on the contents of total phenols, fucoxanthin and chlo-
rophyll A in U. pinnatifida. 

Cooking  
Methods 

Total Phenols  
mg GAE/g DW 

Fucoxanthin 
µg/g DW 

Chlorophyll A 
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Raw 1.91 ± 0.08 a 206.99 ± 7.43 c 83.43 ± 9.63 a 
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Boiling 1.51 ± 0.07 bc 244.91 ± 7.67 a 51.35 ± 1.69 bc 
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Figure 2. Representative scanning electron microscope (SEM) images of U. pinnatifida under different
cooking methods (10 µm length scale bar): (a) raw (×500); (b) blanching (×500); (c) steaming (×500);
(d) boiling (×500); (e) baking (×500); (f) baking (×2000).
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3.2. Effects of Different Cooking Methods on TPC of U. pinnatifida

The results of the evaluation of TPC in U. pinnatifida samples were shown in Table 3.
TPC of raw U. pinnatifida was 1.91 ± 0.08 mg GAE/g DW, which decreased significantly
after cooking (p < 0.05). This result indicated the breaking down of polyphenols in the
U. pinnatifida samples during cooking. Among the four cooking methods, it was observed
that the TPC in the steamed U. pinnatifida lost the most (32.46%), followed by the blanching
samples (25.13%), boiling samples (20.94%) and baking samples (15.18%). High temperature
oxidation, leaching during cooking and dissolution of phenolic compounds in hot water
may lead to the loss of polyphenols during the cooking [20]. Previous studies have also
reported the deleterious effects of different cooking methods on phenolic compounds in
vegetables. Armesto et al. investigated some of the effects of cooking methods on the
total phenol content of Galega kale [18]. It was found that all cooking methods (boiling,
microwaving steaming and pressure cooking) reduced the total phenol content of kale. Sun
et al. also found that the TPC in the sweet potato leaves after cooking (microwave, boiling
and frying) was significantly reduced compared to untreated sweet potato leaves [33].
Lemos et al. reported that baking, steaming and boiling resulted in the loss of the TPC [34].
Jiang et al. also found a reduction in the TPC of U. pinnatifida after air frying and microwave
cooking [20].

Table 3. Effects of different cooking methods on the contents of total phenols, fucoxanthin and
chlorophyll A in U. pinnatifida.

Cooking
Methods

Total Phenols
mg GAE/g DW

Fucoxanthin
µg/g DW

Chlorophyll A
µg/g FW

Raw 1.91 ± 0.08 a 206.99 ± 7.43 c 83.43 ± 9.63 a

Blanching 1.43 ± 0.05 c 229.86 ± 2.24 ab 62.99 ± 1.27 b

Steaming 1.29 ± 0.07 d 211.85 ± 2.04 bc 42.28 ± 2.13 c

Boiling 1.51 ± 0.07 bc 244.91 ± 7.67 a 51.35 ± 1.69 bc

Baking 1.62 ± 0.11 b 216.85 ± 12.27 bc 27.04 ± 0.98 d

Data are expressed as mean ± standard deviation (n = 3). Different letters in the same column indicate significant
differences at (p < 0.05).

3.3. Effects of Different Cooking Methods on Fucoxanthin Content of U. pinnatifida

The fucoxanthin content was shown in Table 3. Different cooking methods had
different effects on the fucoxanthin content in U. pinnatifida. The fucoxanthin of raw
U. pinnatifida was 206.99 ± 7.43 µg/g DW, which increased after the four cooking treatments.
Among them, the fucoxanthin content after boiling (244.91 ± 7.67 µg/g DW) and blanching
(229.86 ± 2.24 µg/g DW) treatment increased significantly. The results were consistent
with the study by Susanto et al., who found higher levels of fucoxanthin in brown algae
Sargassum ilicifolium under different blanching treatments than in untreated ones [35].
The increase in content may be because the heat treatment may increase free fucoxanthin
in the protein-bound state, such as fucoxanthin chlorophyll a/c binding protein [36].
In addition, the heat treatment may increase the diffusivity of the solvent by affecting
the microstructure of the U. pinnatifida, thus increasing the permeability of the cell wall,
which made the extraction of the fucoxanthin easier [37]. Heating inactivated fucoxanthin-
destroying endogenous oxidases, such as polyphenol oxidase and peroxidase, which could
prevent further fucoxanthin degradation [35].

3.4. Effects of Different Cooking Methods on Chlorophyll A Content of U. pinnatifida

The source of greenness in U. pinnatifida was mainly chlorophyll, and its content was re-
lated to a* value to a certain extent. The contents of chlorophyll A in blanching, steaming, boil-
ing and baking samples were 62.99 ± 1.27 µg/g FW, 42.28 ± 2.13 µg/g FW, 51.35 ± 1.69 µg/g
FW, and 27.04 ± 0.98 µg/g FW, respectively. These contents were significantly lower than that
in the control group (83.43 ± 9.63 µg/g FW). Compared with the raw sample, the degree of
chlorophyll A loss was blanching (24.50%) < boiling (38.45%) < steaming (49.32%) < baking
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(67.59%). The changes in chlorophyll A contents and greenness (−a*) were almost consis-
tent. The loss of chlorophyll A content during boiling or blanching in water may be due to
degradation of chlorophyll to pheophytins and cell contents were leached in boiling wa-
ter [24]. Similar to our results, Mazzeo et al. observed that steamed and boiled vegetables
had lower chlorophyll A content than fresh samples [4]. Possible causes were cell rupture
due to heat treatment, resulting in degradation and/or loss of chlorophyll. Additionally,
Gonnella et al. observed that all cooking treatments (steaming, boiling, microwaving and
sous vide) significantly reduced the content of chlorophyll A of asparagus spears [38]. The
most severe loss of chlorophyll A content was observed in the baking samples, probably
due to the severe thermal degradation caused by the high temperature of 160 ◦C. Similarly,
Chen et al. confirmed that the chlorophyll A content of Nori (red algae), sea lettuce (green
algae) and kombu (brown algae) decreased after boiling and microwaving [39].

4. Conclusions

This study showed that different traditional cooking methods had different effects
on the bioactive nutrients, color, texture, etc., of U. pinnatifida. The influence of cooking
methods on bioactive nutrients is important to enhance the health benefits of cooked
seaweeds for consumers. Therefore, it is of great significance to select the suitable cooking
methods to reduce the loss of bioactive nutrients and quality during cooking. Based on the
results of this study, blanching and boiling appeared to be better for U. pinnatifida than other
methods. In our previous study [20], it was concluded that microwaving was more suitable
for cooking U. pinnatifida than high temperature and pressure and air frying. However,
the mildest traditional cooking methods that preserve quality characteristics and bioactive
nutrients still need to be investigated in future studies.
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16. Koç, M.; Baysan, U.; Devseren, E.; Okut, D.; Atak, Z.; Karataş, H.; Kaymak-Ertekin, F. Effects of different cooking methods on the
chemical and physical properties of carrots and green peas. Innov. Food Sci. Emerg. 2017, 42, 109–119. [CrossRef]

17. Managa, M.G.; Remize, F.; Garcia, C.; Sivakumar, D. Effect of moist cooking blanching on colour, phenolic metabolites and
glucosinolate content in Chinese cabbage (Brassica rapa L. Sub sp. Chinensis). Foods 2019, 8, 399. [CrossRef]

18. Armesto, J.; Gómez-Limia, L.; Carballo, J.; Martínez, S. Effects of different cooking methods on some chemical and sensory
properties of Galega kale. Int. J. Food Sci. Technol. 2016, 51, 2071–2080. [CrossRef]

19. Peng, J.; Yi, J.; Bi, J.; Chen, Q.; Wu, X.; Zhou, M.; Liu, J. Freezing as pretreatment in instant controlled pressure drop (DIC)
texturing of dried carrot chips: Impact of freezing temperature. LWT—Food Sci. Technol. 2018, 89, 365–373. [CrossRef]

20. Jiang, S.; Wang, Y.; Song, H.; Ren, J.; Zhao, B.; Zhu, T.; Yu, C.; Qi, H. Influence of Domestic Cooking on Quality, Nutrients and
Bioactive Substances of Undaria pinnatifida. Foods 2021, 10, 2786. [CrossRef]

21. Ummat, V.; Tiwari, B.K.; Jaiswal, A.K.; Condon, K.; Garcia-Vaquero, M.; O’Doherty, J.; O’Donnell, C.; Rajauria, G. Optimisation of
ultrasound frequency, extraction time and solvent for the recovery of polyphenols, phlorotannins and associated antioxidant
activity from brown seaweeds. Mar. Drugs 2020, 18, 250. [CrossRef]

22. Sui, Y.; Gu, Y.; Lu, Y.; Yu, C.; Zheng, J.; Qi, H. Fucoxanthin@Polyvinylpyrrolidone Nanoparticles Promoted Oxidative Stress-
Induced Cell Death in Caco-2 Human Colon Cancer Cells. Mar. Drugs 2021, 19, 92. [CrossRef]

23. Havlíková, L.; Šatínský, D.; Opletal, L.; Solich, P. A Fast Determination of Chlorophylls in Barley Grass Juice Powder Using HPLC
Fused-Core Column Technology and HPTLC. Food Anal. Method 2014, 7, 629–635. [CrossRef]

24. Mashiane, P.; Mashitoa, F.M.; Slabbert, R.M.; Sivakumar, D. Impact of household cooking techniques on colour, antioxidant and
sensory properties of African pumpkin and pumpkin leaves. Int. J. Gastron. Food Sci. 2021, 23, 100307. [CrossRef]

25. Pellegrini, N.; Chiavaro, E.; Gardana, C.; Mazzeo, T.; Contino, D.; Gallo, M.; Riso, P.; Fogliano, V.; Porrini, M. Effect of different
cooking methods on color, phytochemical concentration, and antioxidant capacity of raw and frozen brassica vegetables. J. Agric.
Food Chem. 2010, 58, 4310–4321. [CrossRef]

26. Zhong, X.; Dolan, K.D.; Almenar, E. Effect of steamable bag microwaving versus traditional cooking methods on nutritional
preservation and physical properties of frozen vegetables: A case study on broccoli (Brassica oleracea). Innov. Food Sci. Emerg. 2015,
31, 116–122. [CrossRef]

27. Ikoko, J.; Kuri, V. Osmotic pretreatment effect on fat intake reduction and eating quality of deep-fried plantain. Food Chem. 2007,
102, 523–531. [CrossRef]

28. Nguyen, T.V.; Tran, T.Y.; Lam, D.; Bach, L.; Nguyen, D.C. Effects of microwave blanching conditions on the quality of green
asparagus (Asparagus officinalis L.) butt segment. Food Sci. Nutr. 2019, 7, 3513–3519. [CrossRef]

29. Adhikari, B.; Howes, T.; Bhandari, B.R.; Truong, V. Stickiness in Foods: A Review of Mechanisms and Test Methods. Int. J. Food
Prop. 2001, 4, 1–33. [CrossRef]

30. Sun, Q.; Zhang, M.; Yang, P. Combination of LF-NMR and BP-ANN to monitor water states of typical fruits and vegetables
during microwave vacuum drying. LWT—Food Sci. Technol. 2019, 116, 108548. [CrossRef]

31. Khan, M.I.H.; Wellard, R.M.; Nagy, S.A.; Joardder, M.U.H.; Karim, M.A. Investigation of bound and free water in plant-based
food material using NMR T2 relaxometry. Innov. Food Sci. Emerg. 2016, 38, 252–261. [CrossRef]

32. Yang, D.; Wu, G.; Li, P.; Qi, X.; Zhang, H.; Wang, X.; Jin, Q. The effect of fatty acid composition on the oil absorption behavior and
surface morphology of fried potato sticks via LF-NMR, MRI, and SEM. Food Chem. 2020, 7, 100095. [CrossRef]

33. Sun, H.; Mu, T.; Xi, L.; Song, Z. Effects of domestic cooking methods on polyphenols and antioxidant activity of sweet potato
leaves. J. Agric. Food Chem. 2014, 62, 8982–8989. [CrossRef] [PubMed]

http://doi.org/10.1002/fsn3.1398
http://doi.org/10.1039/C9FO01429B
http://doi.org/10.1016/j.lwt.2013.12.027
http://doi.org/10.1080/10942912.2016.1188308
http://doi.org/10.1016/j.jff.2014.10.009
http://doi.org/10.1080/10408398.2016.1140121
http://doi.org/10.1016/j.foodres.2018.12.007
http://doi.org/10.1016/j.foodchem.2018.07.164
http://doi.org/10.1016/j.foodchem.2019.01.148
http://doi.org/10.1016/j.ifset.2017.06.010
http://doi.org/10.3390/foods8090399
http://doi.org/10.1111/ijfs.13181
http://doi.org/10.1016/j.lwt.2017.11.009
http://doi.org/10.3390/foods10112786
http://doi.org/10.3390/md18050250
http://doi.org/10.3390/md19020092
http://doi.org/10.1007/s12161-013-9665-x
http://doi.org/10.1016/j.ijgfs.2021.100307
http://doi.org/10.1021/jf904306r
http://doi.org/10.1016/j.ifset.2015.07.002
http://doi.org/10.1016/j.foodchem.2006.06.008
http://doi.org/10.1002/fsn3.1199
http://doi.org/10.1081/JFP-100002186
http://doi.org/10.1016/j.lwt.2019.108548
http://doi.org/10.1016/j.ifset.2016.10.015
http://doi.org/10.1016/j.fochx.2020.100095
http://doi.org/10.1021/jf502328d
http://www.ncbi.nlm.nih.gov/pubmed/25152015


Foods 2022, 11, 1078 11 of 11

34. Lemos, M.A.; Aliyu, M.M.; Hungerford, G. Influence of cooking on the levels of bioactive compounds in Purple Majesty potato
observed via chemical and spectroscopic means. Food Chem. 2015, 173, 462–467. [CrossRef]

35. Susanto, E.; Fahmi, A.S.; Agustini, T.W.; Rosyadi, S.; Wardani, A.D. Effects of different heat processing on fucoxanthin, antioxidant
activity and colour of Indonesian Brown seaweeds. IOP Conf. Ser. Earth Environ. Sci. 2017, 55, 012063. [CrossRef]

36. Di Valentin, M.; Meneghin, E.; Orian, L.; Polimeno, A.; Büchel, C.; Salvadori, E. Triplet–triplet energy transfer in fucoxanthin-
chlorophyll protein from diatom Cyclotella meneghiniana: Insights into the structure of the complex. BBA—Bioenerg. 2013, 1827,
1226–1234. [CrossRef]

37. Nie, J.; Chen, D.; Lu, Y.; Dai, Z. Effects of various blanching methods on fucoxanthin degradation kinetics, antioxidant activity,
pigment composition, and sensory quality of Sargassum fusiforme. LWT—Food Sci. Technol. 2021, 143, 111179. [CrossRef]

38. Gonnella, M.; Durante, M.; Caretto, S.; D’Imperio, M.; Renna, M. Quality assessment of ready-to-eat asparagus spears as affected
by conventional and sous-vide cooking methods. LWT—Food Sci. Technol. 2018, 92, 161–168. [CrossRef]

39. Chen, K.; Roca, M. Cooking effects on chlorophyll profile of the main edible seaweeds. Food Chem. 2018, 266, 368–374. [CrossRef]

http://doi.org/10.1016/j.foodchem.2014.10.064
http://doi.org/10.1088/1755-1315/55/1/012063
http://doi.org/10.1016/j.bbabio.2013.07.003
http://doi.org/10.1016/j.lwt.2021.111179
http://doi.org/10.1016/j.lwt.2018.02.017
http://doi.org/10.1016/j.foodchem.2018.06.040

	Introduction 
	Materials and Methods 
	Materials and Reagents 
	Preparation of U. pinnatifida Samples 
	Conditions of Cooking Methods 
	Quality Characteristics 
	Color Analysis 
	Texture Profile Analysis 
	Low-Field Nuclear Magnetic Resonance (LF-NMR) Measurement 
	Scanning Electron Microscope (SEM) 

	Bioactive Nutrients 
	Total Phenol 
	Fucoxanthin 
	Chlorophyll A 

	Statistical Analysis 

	Results and Discussion 
	Effects of Cooking Methods on Quality Characteristics of U. pinnatifida 
	Color of U. pinnatifida in Different Cooking Methods 
	Effects of Cooking Methods on Texture of U. pinnatifida 
	LF-NMR Analysis 
	Scanning Electron Microscopy (SEM) 

	Effects of Different Cooking Methods on TPC of U. pinnatifida 
	Effects of Different Cooking Methods on Fucoxanthin Content of U. pinnatifida 
	Effects of Different Cooking Methods on Chlorophyll A Content of U. pinnatifida 

	Conclusions 
	References

