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Gamma-aminobutyric acid type-A receptors (GABAARs) belong to multisubunit membrane spanning ligand-gated ion channels
(LGICs) which act as the principal mediators of rapid inhibitory synaptic transmission in the human brain.Therefore, the category
prediction of GABAARs just from the protein amino acid sequence would be very helpful for the recognition and research of novel
receptors. Based on the proteins’ physicochemical properties, amino acids composition and position, a GABAAR classifier was first
constructed using a 188-dimensional (188D) algorithm at 90% cd-hit identity and compared with pseudo-amino acid composition
(PseAAC) and ProtrWeb web-based algorithms for human GABAAR proteins. Then, four classifiers including gradient boosting
decision tree (GBDT), random forest (RF), a library for support vector machine (libSVM), and k-nearest neighbor (𝑘-NN) were
compared on the dataset at cd-hit 40% low identity.This work obtained the highest correctly classified rate at 96.8% and the highest
specificity at 99.29%. But the values of sensitivity, accuracy, and Matthew’s correlation coefficient were a little lower than those
of PseAAC and ProtrWeb; GBDT and libSVM can make a little better performance than RF and 𝑘-NN at the second dataset. In
conclusion, a GABAAR classifier was successfully constructed using only the protein sequence information.

1. Introduction

Gamma-aminobutyric acid (GABA) is a major human brain
inhibitory neurotransmitter and plays a principal role in the
regulation of pituitary gland function. GABA is made up of a
four-carbon chain flexible carbon skeleton (Figure 1), which
can adopt a number of conformations when interacting with
many macromolecular receptor targets. This characteristic
of GABA can provide many selective ligands by producing
conformationally restricted analogues [1]. GABA is mainly
synthesized in the hypothalamus as well as within the pitu-
itary gland and stored in the anterior lobe and intermediate

lobe cells, the GABA-synthesizing enzyme is glutamic acid
decarboxylase (GAD) which is relevant to TCA cycle [2], and
the direct substrate is glutamate [3] (Figure 2). In addition to
GAD, the GABA level is also related to glutamine-glutamate
(Gln-Glu) cycling [4], in which glutaminase and glutamine
synthetase play a key role in keeping the cycling balance. Gln
is first converted to Glu and then to GABA in the cycle, or
Glu solution is catalyzed to GABA; this process is known
to play a significant role in the regulation of neurogenesis,
and the release of GABA is mainly produced from Purkinje
cells in the cerebellar cortex via special regulatorymechanism
[5–7].
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Figure 1: GABA conformation.

GABA can specifically interact with the postsynaptic
GABA receptor in human central nervous system (CNS)
[8]; the specific binding of GABA to synaptic membrane
fractions is saturable. Three types of GABA receptors are
expressed in human, namely, the ionotropic GABAA receptor
(GABAAR), the metabotropic GABAB receptor (such as
G protein-coupled receptor) [9], and another ionotropic
GABAC receptor, among them GABAAR is relevant to
epilepsy [10]. These receptors belong to the Cys-loop super-
family of ligand-gated ion channels (LGICs) and exhibit a
long (about 200 a.a.) extracellular amino terminus, which is
thought to be responsible for ligand channel interactions.The
amino terminus forms agonist or antagonist binding sites,
four transmembrane (TM) domains, and a large intracellular
domain between TM3 and TM4 for phosphorylating regula-
tion and localization at synapses, and five TM2 domains in a
cycle form the lining segment of the ion channel (Figure 3).
The extracellular amino terminus contains a conservedmotif,
called the Cys-loop (13-amino acid disulfide loop), which is
characterized by 2 cysteine residues spaced by 13 different
amino acid residues [11]; the amino terminus incorporates
neurotransmitters and some modulator binding sites. For
example, the extracellular domain of GABAAR 𝛽2 subunits
contains the amino acid residue “CMMDLRRYPLDEQNC”
(C stands for cysteine). For the structural details of Cys-loop
receptors see review [12].

GABAARs form pentameric chloride channels compris-
ing various combinations from eight kinds of subunits (𝛼,
𝛽, 𝛾, 𝛿, 𝜀, 𝜃, 𝜋, and 𝜌), each of which comprises several
subtypes [13]. These receptors belong to a superfamily of
pentameric ligand-gated ion channels (pLGICs) with five-
membered ring structures; pLGICs are also known as Cys-
loop receptors including two classes: the cation-selective
(e.g., nicotinic acetylcholine receptors and serotonin type 3
receptors) and anion-selective (e.g., glycine receptors (GlyRs)
andGABAARs) [14]. According to their extracellular domain,
pentameric receptors can be further divided into these con-
taining only one conserved Cys-loop and those containing
an additional disulfide bond that links the 𝛽9-𝛽10 strands
in Loop C. Human GABAAR subunits are encoded by 19
different genes, namely, 𝛼1–6, 𝛽1–3, 𝛾1–3, 𝛿, 𝜀, 𝜃, 𝜋, and 𝜌1–3;
among these subunits, the crystallization shows that human
GABAAR 𝛽3 subunit is unique to eukaryotic Cys-loop recep-
tors [15]. The 𝛼1–𝛼6 subunits are encoded by GABRA1 to
GABRA6 genes; the 𝛼1 subtype is widely expressed in the
whole brain, whereas 𝛼2, 𝛼3, 𝛼4, 𝛼5, and 𝛼6 subtypes are
expressed in specific brain areas [16]. Most of the pentameric
GABAARs in the human brain are typically composed of two
𝛼 subunits, two 𝛽 subunits, and one 𝛾 subunit, and the GABA
binding sites are located in the 𝛼-𝛽 subunit interface [17].
The 𝛼1, 𝛽2, and 𝛾2 subunits are expressed most abundantly
in human brain [18], and the subunit variants may thus

influence ion channel gating, expression, and GABA receptor
trafficking to the cell surface. The GABRA1 and GABRA6
genes are located in human chromosome 5, whereasGABRA2
andGABRA3 are located in chromosome 4 andGABRA4 and
GABRA5 are located in chromosome X and chromosome 15,
respectively [19]. These genes have been proposed to affect
certain drug targets and the regulation of neuronal activities
in human brain [20]. Several antiepileptic drugs (AEDs) such
as phenobarbital and gabapentin bind to GABAARs in the
CNS with a confined area distribution, and the alterations
in GABAAR subunits may regulate the responses elicited by
AEDs [21]. Several AEDs exert agonistic effects onGABAARs.
AEDsmay react withGABAARs comprising distinct subunits
in diverse manners, and the composition and function of
𝛼 subunits may influence the treatment efficacy of different
AEDs [22]. Targeted proteins of AEDs are involved in the
regulation of extracellular K+ and intracellular Cl− home-
ostasis, cell volume, and pH, all of which are important for
maintaining normal brain activity [23].

GABAAR subunit mutations or genetic variations can
lead to its dysfunctions, which have been thought to par-
ticipate in the pathomechanisms of epilepsy [24], in which
multiple GABAAR epilepsy mutations result in protein mis-
folding and may cause degradation or retention of the
protein molecules in cells; Kang et al. found that mutant
GABAAR 𝛾2 subunits accumulate and aggregate intracellu-
larly, activated caspase-3, and caused widespread and age-
dependent neurodegeneration; these findings suggested the
epilepsy-associated mutant 𝛾2 subunit played important role
in neurodegeneration [25]. The gene mutations or genetic
variation of the 𝛼1, 𝛼6, 𝛽2, 𝛽3, 𝛾2, or 𝛿 subunits (GABRA1,
GABRA6, GABRB2, GABRB3, GABRG2, andGABRD, resp.)
compromises hyperpolarization through GABAARs, and
these variations have been associated with human epilepsy
with or without febrile seizures [26].

Support vector machine (SVM) is a kind of supervised
machine learning algorithms that have been broadly applied
for classification and regression analysis [27–32], which is
also a type of sparse kernel machines that rely on various
data to predict unknown class labels and which has lin-
ear or nonlinear learning model for binary classifier [33–
35]. Random forest (RF) is an ensemble machine learning
technique based on random decision trees for classification
and other tasks. Relying on the feature, a data point can be
divided into a special category and is assigned a prediction.
RF has been broadly applied in novel protein and target
identification [36, 37], because it combines the merits of
bagging idea and feature selection [38]. Another decision
tree learning is gradient boosting decision tree (GBDT),
which has been very successfully applied for many fields
such as smart city concept [39], and its major advantage is
ability to find nonlinear interactions automatically through
decision tree learning with the minimality error. GBDT is
generally regarded as one of the best out-of-the-box classifiers
which has the ability to generalize and can combine weak
learners into a single strong learner; it has gradually acquired
popularity in the field of machine learningmethods although
it still possesses many disadvantages [40–43].
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Figure 2: Model of direct GABA production.
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Figure 3: GABAAR modulation patterns of transmembrane domain, a homology model of the transmembrane domains of a GABAAR
showing the five-M2-helix domains forming the chloride ion channel (blue) and M1, M3, and M4 helices for single 𝛼1 (grey) or 𝛽3 (green)
subunit. The helices may embed into the postsynaptic membrane in mammalian CNS.

Here, we performed an in silico analysis on the GABAARs
according to sequence information and other physicochem-
ical features, including hydrophobicity, normalized van der
Waals volume, polarity, polarizability, charge, surface tension,
secondary structure, and solvent accessibility. Twenty natural
amino acids can be divided into 3 different groups based on
each of the above eight properties, and thus 188-dimensional
(188D) feature vectors of proteins were constructed with an
ensemble classifier [44], which performed well in membrane
protein prediction [45].We employed PseAAC and ProtrWeb
methods for humanGABAAR to adapt to the web server limit
of sequence amounts; we also applied libSVM,RF,GBDT, and
widely used 𝑘-nearest neighbor (𝑘-NN) algorithms to make
comparisons of performance with dataset at rigorous cd-hit
filtration [46].

Since motif, a conserved short pattern of a protein
[47], is one of the fundamental function units of molecular
evolution, with regard to DNA, a motif may act as a protein-
binding site; in proteins, a motif may directly correspond to
the active site of an enzyme or a structural unit of the protein.
Therefore, we also conducted motif analysis.

2. Materials and Methods

2.1. Data Retrieval and Treatment. All the primary sequences
of both GABAAR and the control Pfam proteins (in
FASTA files) were retrieved from the UniProt database
(http://www.uniprot.org/); the raw data are preprocessed by
cd-hit program (http://cd-hit.org) to merge the sequence
similarities and reduce the complexity [46]. To avoid bias
in the classifier, we set the identity at 90% similarity and
obtained the results of 2353 GABAAR sequences as positive
dataset; the negative samples were obtained from the control
proteins when the positive ones were deleted, and 10652
entries were obtained as negative dataset. When the four
classifiers performance was measured, cd-hit was set at
rigorous 40% identity and gained 360 GABAARs and 9598
non-GABAARs.

2.2. Prediction Analysis for Potential GABA
𝐴
R Proteins.

Machine learning is often employed in the bioinformatics and
proteomics problem. Several important techniques facilitate
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the protein classification and identification, such as imbal-
anced classification strategies [48], ensemble learning [49–
51], samples selection strategies [52, 53], features reduction,
and ranking methods [54–56].

To predict the potential GABAAR from the amino
acid sequences, we constructed a classifier according to
the GABAAR protein features. First, we extracted the fea-
ture vectors from positive versus negative protein sequence
dataset by using a novel machine-learning-based method
developed by our group, we transformed all the posi-
tive and negative sequences into the corresponding pro-
tein family (Pfam) information, and the obtained features
included sequence evolutional information, 𝑘-skip-𝑛-gram
model, physicochemical properties, and local PsePSSM [57].
Altogether, we assembled 188D feature vectors. Afterward,
the resulting feature vectors were imported into Weka
(http://www.cs.waikato.ac.nz/ml/weka/), which is a machine
learning workbench used for automatic classification via
visualization and cross-validation analysis [58, 59]. After
several preliminary trials with the same dataset, we selected
random forest method and set the parameters as default.

2.3. Conserved Motif Analysis of Human GABA
𝐴
R Proteins.

Conservedmotif analyses were implemented using the online
MEME Suite (http://meme-suite.org/, 4.11.1 version), a pow-
erful motif-based sequence analysis tool, which integrated
a set of web-based tools including Gene Ontology database
for studying sequence motifs in proteins, DNA, and RNA
[60]. Currently, the MEME Suite has added six new tools
and reached thirteen since the “Nucleic Acids Research”Web
Server Issue in 2009. Human GABAAR sequences in FASTA
format were used as a file input. The maximum motif width,
minimal motif width, and maximum number of motifs were
set to 50, 6, and 9, respectively. The remaining parameters
were set as default values.

2.4. Pseudo-Amino Acid Composition and ProtrWeb Analysis.
Chou et al. [61–63] had proposed the concept of PseAAC
to describe global or long-range sequence-order protein
information early in 2001; their original design objective was
to improve protein subcellular localization prediction and
membrane protein type prediction. Since then, the PseAAC
approach alone or incorporating other properties had rapidly
penetrated many areas of computational proteomics. As the
most intuitive features for protein biochemical reactions,
the physicochemical properties of amino acids significantly
influence the protein classification. Features that incorporate
appropriate physicochemical properties can contain much
valuable information for improving the performance of
predictors. Single feature extraction of our own method has
inevitably its own shortcomings and does not always perform
well on all circumstances. Thus, we also used the concept
of PseAAC and ProtrWeb (http://protrweb.scbdd.com/) to
construct feature vectors for human GABAAR proteins (58
entries) and other proteins (58 entries) in this study.

PseAAC is a web server that can generate numerous
pseudo-amino acid compositions including sequence-order
information in addition to the conventional 20D amino acid
composition. It is a classification algorithm based on the

amino acid composition and physicochemical characteristics
of proteins; the server was designed in a flexible way to iden-
tify various pseudo-amino acid composition information for
a given protein sequence by selecting different parameters
and their combinations. PseAAC provides three PseAA
modes and six amino acid characters for user to choose.
ProtrWeb [64] is also a web server based on the R package
routine protr, the first version of which was developed in
November 2013. This server is dedicated to calculate protein
sequence-derived structural andphysicochemical descriptors
such as amino acid composition. 𝑛-gram and 𝑘-skip are
based on permutation and combination theory. ProtrWeb can
be applied in various protein prediction studies, including
protein structural and functional classes, protein subcel-
lular locations, protein-protein interactions, and receptor-
ligand interactions. ProtrWeb offers 12 types of commonly
used descriptors presented in the web such as amino acid
composition, dipeptide composition, and pseudo-amino acid
composition. Recently, some studies have shown that the
long-range sequence-order effects of DNA [65] can improve
the performance of computational predictors [66].

To extract features from the physicochemical proper-
ties of proteins by using PseAAC, we considered all six
physiochemical properties: hydrophobicity, hydrophilicity,
mass, pK1 (alpha-COOH), pK2 (NH3), and pI (at 25∘C). We
selected type 2 PseAAmode, set Lambda parameter at 10, and
set the weight factor as default. The results were shown as
80-dimensional (80D) data for each protein. For ProtrWeb,
we chose amino acid composition (20 Dim) and pseudo-
amino acid composition (50 Dim) adapted to the restricted
parameter measure.

2.5. Prediction Ability Comparison of Four Classifiers on
the 40% Identity cd-Hit Filtration Data. We extracted 188D
feature vectors from 360 GABAARs and 9598 non-GABAARs
as input toWeka performing category via RF, 𝑘-NN, and SVM
algorithm which was implemented using libSVM. GBDT
classifier was carried out by python program developed by
ourselves; the above 4 classifiers have the parameters set as
default.

Four commonmeasurements were used to illuminate the
performance quality of the predictor more intuitively. Sen-
sitivity (Sn), specificity (Sp), accuracy (Acc), and Matthew’s
correlation coefficient (MCC) were adopted to evaluate the
above three methods and four classifiers. These methods are
formulated as follows:

Sn = TP
TP + FN

,

Sp = TN
TN + FP

,

Acc = TP + TN
TP + FP + TN + FN

,

MCC

=
TP ∗ TN − FP ∗ FN

√(TP + FN) (TP + FP) (TN + FP) (TN + FN)
,

(1)
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Table 1: Pfam accession numbers (83 entries) for GABAARs as
positive group.

PF00008, PF00012, PF00018, PF00022, PF00028, PF00053,
PF00055, PF00057, PF00059, PF00060, PF00069
PF00078, PF00084, PF00087, PF00090, PF00100, PF00130,
PF00147, PF00163, PF00168, PF00169, PF00209
PF00226, PF00240, PF00270, PF00271, PF00335, PF00387,
PF00388, PF00397, PF00400, PF00454, PF00520
PF00564, PF00621, PF00627, PF00643, PF00651, PF00665,
PF00754, PF00850, PF00892, PF01082, PF01352
PF01436, PF01479, PF01498, PF01529, PF02072, PF02140, PF02214,
PF02259, PF02260, PF02460, PF02891
PF02931, PF02932, PF02991, PF03144, PF03416, PF03521, PF04849,
PF06220, PF07645, PF07690, PF07707
PF08007, PF08266, PF08377, PF08625, PF08771, PF09279,
PF09497, PF11865, PF11938, PF12248, PF12448
PF12662, PF13499, PF15311, PF15974, PF16457, PF16492

where TP, TN, FP, and FN stand for the numbers of true
positive, true negative, false positive, and false negative,
respectively.

3. Results

3.1. Searching the Protein Family Number. To determine the
Pfam families of GABAARs, we ran the program with the
positive and negative protein sequences (GABAARs versus
non-GABAARs) and obtained nonredundant Pfam numbers
after combining the same ones (Table 1). The negative group
was very large; thus, we only listed the positive ones.

3.2. Reclassification of Positive and Negative Proteins. We
obtained the 188D (this work), 80D (from PseAAC), and
70D (from ProtrWeb) feature vector dataset from both
positive and negative groups and used them as input to the
Weka explorer (RF algorithm). The results showed that the
correctly classified rates were 96.8%, 95.7%, and 94.8%. The
confusion matrix is shown in Table 2, and the four common
measurement values are illustrated in Figure 4.

3.3. Four Classifiers’ Prediction Ability Comparison. On the
four classifiers, they all performed well and got high correctly
classified rate over 96%, but GBDT and libSVM had a little
better performance than RF and 𝑘-NN assessed from all the
indicators (Table 3).

3.4. Conserved Motif Analysis of Human GABA
𝐴
R. To reveal

the evolutionary correlation ofGABAARs from the conserved
motifs, 92 human protein sequences were analyzed by using
MEME software. The nine most significant and conserved
motifs are shown in Figure 5 and Table 4.

4. Discussion

The primary structures of amino acid sequences are often the
basis for understanding the three-dimensional conformation
and functional properties of proteins [67], which exhibit
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Figure 4: Sn, Sp, Acc, and MCC values listed from PseAAC,
ProtrWeb, and our work. Note: PseAAC and ProtrWeb only include
human 58 GABAARs and 58 non-GABAARs because of the web
amount limitation; our method contains all the GABAARs and non-
GABAARs (2353 versus 10652).

an intimate relationship between their primary structure
and function [68]. Twenty natural 𝛼-amino acids commonly
constitute the primary sequences of proteins [69, 70]. Amino
acids are biologically important organic nitrogenous com-
pounds in the natural world. These compounds contain
amine (-NH

2
) and carboxylic acid (-COOH) functional

groups which link with the same carbon atom called 𝛼-
carbon, usually along with a side-chain (called R group)
specific to each amino acid. The elements of carbon, hydro-
gen, oxygen, and nitrogen are essential for an amino acid,
though other elements are found in the R group. Amino
acids can be classified in many ways, such as according to
the core structure and side-chain group properties. However,
20 standard and encoding 𝛼-carbon amino acids are usually
classified into five main groups on the basis of biochemistry
[71], namely, a hydrophobe, if the side-chain is nonpolar; a
hydrophile, if it is polar but uncharged; aromatic, if it includes
an aromatic ring; acidic, if it is negatively charged; and basic,
if it is positively charged.

Previous research has extracted information on protein
feature according to composition, position, or physicochem-
ical properties [31]. In our work, we adopted 188D algo-
rithm to extract feature vectors by combining amino acid
compositions with physicochemical properties in a protein
functional classifier [72]. This 188D method includes amino
acid composition (20D) and eight types of physicochemical
properties, that is, hydrophobicity (21D), normalized van
der Waals volume (21D), polarity (21D), polarizability (21D),
charge (21D), surface tension (21D), secondary structure
(21D), and solvent accessibility (21D). The CTD model was
employed to describe global information about the protein
sequence, where C represents the percentage of each type
of hydrophobic amino acid in an amino acid sequence, T
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Sequence name E-value

sp|P47869|GBRA2_HUMAN

tr|E9PBQ7|E9PBQ7_HUMAN

sp|P31644|GBRA5_HUMAN

sp|P14867|GBRA1_HUMAN

tr|G5E9Z6|G5E9Z6_HUMAN

Sp|P34903|GBRA3_HUMAN

sp|Q16445|GBRA6_HUMAN

sp|P48169|GBRA4_HUMAN

sp|P28472|GBRB3_HUMAN

tr|F5H7N0|F5H7N0_HUMAN

sp|P47870|GBRB2_HUMAN

sp|P18505|GBRB1_HUMAN

sp|O00591|GBRP_HUMAN

sp|P18507|GBRG2_HUMAN

tr|E7EV53|E7EV53_HUMAN

sp|Q8N1C3|GBRG1_HUMAN

sp|Q99928|GBRG3_HUMAN

tr|A0A0A0MTM5|A0A0A0MTM5_HUMAN

tr|B4E1A2|B4E1A2_HUMAN

tr|E5RI57|E5RI57_HUMAN

tr|B4DFX3|B4DFX3_HUMAN

tr|B4DHL2|B4DHL2_HUMAN

sp|P28476|GBRR2_HUMAN

sp|P24046|GBRR1_HUMAN

sp|A8MPY1|GBRR3_HUMAN

tr|E7EV50|E7EV50_HUMAN

tr|A8MWU7|A8MWU7_HUMAN

tr|B4DEL7|B4DEL7_HUMAN

Block

1.8e − 295

7.7e − 295

1.9e − 287

2.1e − 278

4.5e − 269

4.6e − 268

4.6e − 254

4.0e − 247

1.2e − 228

3.4e − 228

3.0e − 226

4.8e − 224

7.8e − 223

1.6e − 222

1.9e − 222

1.6e − 218

1.5e − 212

4.2e − 212

7.4e − 211

1.5e − 208

2.0e − 207

1.8e − 204

4.6e − 203

1.5e − 202

5.9e − 194

1.2e − 186

3.1e − 186

1.8e − 182

tr|B4DTP4|B4DTP4_HUMAN 7.5e − 177

sp|P78334|GBRE_HUMAN 1.8e − 173

tr|E7EWG0|E7EWG0_HUMAN 8.2e − 177

sp|O14764|GBRD_HUMAN 2.6e − 175

Motif 1
Motif 2
Motif 3
Motif 4

Motif 6
Motif 7
Motif 8
Motif 9

Motif 5
(a)

Figure 5: Continued.
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Figure 5: Motifs of human GABAARs found by the MEME system (for details see Table 3). (a) Locations of the nine discovered motifs
(showing the top 32 sequences). (b) Nine motif logos found by MEME.

Table 2: Confusion matrix classifier (RF) from three kinds of feature vector extraction algorithms.

PseAAC ProtrWeb This work
Human

GABAARs
Human

non-GABAARs
Human

GABAARs
Human

non-GABAARs
GABAAR
proteins

Non-GABAAR
proteins

Positive cases 55 2 55 3 2007 76
Negative cases 3 56 3 55 346 10576

Table 3: Classification results for four classifiers based on 360 GABAARs and 9598 non-GABAARs.

Classifier Sensitivity (%) Specificity (%) Accuracy (%) MCC Correctly classified rate
GDBT 51.39 99.66 75.52 0.5828 0.9791
RF 41.39 99.86 70.63 0.5085 0.9775
libSVM 58.89 97.76 78.32 0.6148 0.9635
𝑘-NN 51.94 98.17 75.06 0.5651 0.9650
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represents the frequency of one hydrophobic amino acid
followed by another amino acid with different hydrophobic
properties, andD represents the first, 25%, 50%, 75%, and last
position of the amino acids that satisfy certain properties in
the sequence; for details, see [44]. In addition to this 188D
feature vector extraction method, we used two web-based
servers, PseAAC and ProtrWeb, for 80D and 70D feature
vectors, respectively. The limited amount of sequence on the
web allowed the analysis of only human GABAARs and the
corresponding non-GABAARs by using the last twomethods.

The abnormities of GABAARs are associated with the
pathology and progression of several neurological and psy-
chiatric diseases, such as autism, schizophrenia [73], and
alcoholism [74], particularly in epilepsy [75–79], Dravet
syndrome [80], asthma [81], breast cancer [82], some psy-
chiatric diseases [83], Alzheimer disease [84], and other
neurodegenerative diseases. It is recently reported that
GABAAR may be involved in apoptosis in preeclampsia
[85]. Human GABAARs conserved motifs analyses indicate
that motifs 1, 3, and 6 are the frame of neurotransmitter-
gated ion channel transmembrane region, which form the
ion channel for cation transporter by the construction of
transmembrane helix. Motifs 2, 4, and 5 are also com-
posed of neurotransmitter-gated ion channel extracellular
ligand binding domain by linking closely and forming a
pentameric arrangement in the structure [86]. VariousGABA
receptor genes are associated with many mental-disorder-
related phenotypes. Alterations in GABAergic inhibitory
actions, such as the subunit amount, composition, and gene
expression of GABAARs, may demonstrate neurophysiologic
and functional consequences related to mental disorders.
Some studies on protein prediction using Chou’s method
have been reported in 2011 because of the importance of
GABAARs [11]. However, similar studies on GABAARs are
rarely reported since then.

The current results showed that our method reached
the most correctly classified instances at 96.8%; it suggested
that our 188D algorithm performed well for classification
and could correctly discriminate both positive and negative
samples with relative high specificity. However, the Sn, Acc,
and MCC indexes were lower than those of the PseAAC
and ProtrWeb methods; this might be due to the large
dataset size of our work. But the lowest value was higher
than 85%. Overall, our project, which is mainly based on
physicochemical properties, can reflect the characteristics of
protein sequences and can be applied in the prediction of
GABAARs classification. Definitely, it needs to develop more
precise methods based on 188D.
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