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A B S T R A C T   

To mitigate the spread of the current coronavirus disease 2019 (COVID-19) pandemic, it is crucial to have an 
effective screening of infected patients to be isolated and treated. Chest X-Ray (CXR) radiological imaging 
coupled with Artificial Intelligence (AI) applications, in particular Convolutional Neural Network (CNN), can 
speed the COVID-19 diagnostic process. In this paper, we optimize the data augmentation and the CNN 
hyperparameters for detecting COVID-19 from CXRs in terms of validation accuracy. This optimization increases 
the accuracy of the popular CNN architectures such as the Visual Geometry Group network (VGG-19) and the 
Residual Neural Network (ResNet-50), by 11.93% and 4.97%, respectively. We then proposed CovidXrayNet 
model that is based on EfficientNet-B0 and our optimization results. We evaluated CovidXrayNet on two datasets, 
including our generated balanced COVIDcxr dataset (960 CXRs) and the benchmark COVIDx dataset (15,496 
CXRs). With only 30 epochs of training, CovidXrayNet achieves state-of-the-art accuracy of 95.82% on the 
COVIDx dataset in the three-class classification task (COVID-19, normal or pneumonia). The CovidXRayNet 
model, the COVIDcxr dataset, and several optimization experiments are publicly available at https://github.com 
/MaramMonshi/CovidXrayNet.   

1. Introduction 

Coronavirus disease 2019 (COVID-19), caused by severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2), became a global 
pandemic in less than four months after first appearing in December 
2019 in Wuhan, China. It has since reached 127.34 million confirmed 
cases and over 2.78 million deaths worldwide, as of March 30, 2021 [1]. 
This caused devastating issues in public health and the global economy. 
COVID-19 patients may have one or more of the following symptoms: 
fever, cough, sore throat, headache, fatigue, muscle pain, and shortness 
of breath [2]. Early detection of positive COVID-19 cases is the most 
critical factor in slowing the spread of this pandemic. 

The golden standard for diagnosing COVID-19 patients is the reverse 
transcriptase-polymerase chain reaction (RT-PCR) testing, which detects 
SARS-CoV-2 through collected respiratory specimens of nasopharyngeal 
or oropharyngeal swabs [3]. However, RT-PCR testing is 
time-consuming, laborious, and shows poor sensitivity [4]. Alterna-
tively, chest radiography imaging, including computed tomography 
(CT) or chest X-ray, may be examined by a radiologist to inspect any 

visual indicators linked to SARS-CoV-2 [5]. Whereas CT scans have 
greater image details, CXR images are more accessible, portable, and 
offer rapid triaging. CXR imaging is more accessible in most healthcare 
systems than CT scanners that require expensive equipment and main-
tenance. The portability of the CXR system reduces the risk of COVID-19 
transmission by performing the exams within the isolation room, which 
is not possible with the fixed CT scanners. Importantly, CXR allows rapid 
triaging of suspected COVID-19 cases in most affected countries like the 
USA, Spain, and Italy where they have run out of both capacity and 
PC-RCT testing supplies [6]. Combining laboratory results with radio-
logical image features can speed the process of COVID-19 detection. 

Artificial Intelligence (AI) applications coupled with chest radio-
logical imaging can speed the COVID-19 diagnosing process. Deep 
Learning (DL), in particular, enables AI-based models to achieve accu-
rate results without manual feature extraction [7]. For example, a 
Convolution Neural Network (CNN), which is a supervised DL approach, 
has recently gained popularity among the research community of AI in 
medicine. For COVID-19 detection from chest x-ray images, CNN pro-
duced the best classification accuracy compared to other classification 
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techniques, such as Artificial Neural Network (ANN), Support Vector 
Machine (SVM) and K-Nearest Neighbor (KNN) [8]. 

Typically, the CNN model is created by combining one or more of the 
following: a convolution layer, a pooling layer, and a fully connected 
layer that extracts features from the input, minimizes the size for 
computational performance, and classifies an image, respectively. 

Simultaneously, the CNN model adjusts its internal parameters to ach-
ieve a specific task, like classifying chest X-rays [9,10]. The performance 
of such CNN models can be improved in various ways, including opti-
mizing data augmentation and CNN hyperparameters. 

1.1. Data augmentation 

A method that artificially inflates the original training set S with 
label preserving transformations is a data augmentation method. It can 
be mapped as φ : S ↦ T, where T is the augmented set of S. The label 
preserving transformation means that if image x⊂y, then φ(x)⊂y [11]. 
Hence, the artificially enlarged training set is defined as S′

= S ∪ T, 
where S′ consists of S and the corresponding transformations denoted by 
φ. Resizing, flipping, and zooming are examples of data augmentation 
methods. 

Data augmentation improves CNN performance [12], prevents 
over-fitting [11], and is easy to implement [13]. Training a CNN on 
limited data, such as COVID-19 data, inhibits its ability to generalize 
results to unseen data due to the over-fitting issue. However, inflating 
the dataset by using data augmentation methods adds more invariant 
cases and thus prevents over-fitting. In addition, generic methods are 
easy to implement and computationally inexpensive. Several recent 
works have proved the benefit of data augmentation in improving 
CNN-based models for various DL applications [12]. [11]. [13]. How-
ever, limited existing methods specifically address data augmentation in 

Table 1 
Dataset of COVID-19 CXR.  

Dataset Description 

Figure 1 COVID-19 Chest X-Ray Dataset 
Initiativea 

56 CXR, metadata & clinical notes 

ActualMed COVID-19 Chest X-Ray 
Dataset Initiativeb 

239 CXR, metadata & clinical notes 

covid-19-ct-cxrc [18] 263 CXR and relevant text 
COVID-19 image data collectiond [19] 654 CXR, metadata & clinical notes 
COVID-19 radiography databasee 219 COVID-19, 1341 normal & 1345 

Pneumonia CXR 
COVIDxf [20] 13917 CXR for training & 1579 CXR for 

testing  

a https://github.com/agchung/Figure1-COVID-chestxray-dataset. 
b https://github.com/agchung/Actualmed-COVID-chestxray-dataset. 
c https://github.com/ncbi-nlp/COVID-19-CT-CXR. 
d https://github.com/ieee8023/covid-chestxray-dataset. 
e https://www.kaggle.com/tawsifurrahman/covid19-radiography-database. 
f https://github.com/lindawangg/COVID-Net. 

Table 2 
Models for detecting COVID-19 from CXR.  

Classification Model Acc 
(%) 

Repositories/Datasets COVID- 
19 

Pneumonia Normal 

Binary COVIDX-Net 
[21] 

90.00 COVID-19 image data collection 25 _ 25 

CovXNet [22] 97.40 Guangzhou Medical Center in China & Sylhet Medical College in Bangladesh 305 _ 305 
ResNet-50 [23] 98.00 COVID-19 image data collection & Kaggle 50 _ 50 
DarkCovidNet 
[24] 

98.08 COVID-19 image data collection & ChestXray-14 125 _ 500 

Multi-class VGG-16 [25] 83.68 COVID-19 image data collection & Radiological Society of North America (RSNA) 215 533 500 
DarkCovidNet 
[24] 

87.02 COVID-19 image data collection & ChestXray-14 125 500 500 

CovXNet [22] 90.30 Guangzhou Medical Center in China & Sylhet Medical College in Bangladesh 305 305-Viral 305- 
Bacterial 

305 

COVID-Net [20] 93.30 COVIDx 53 5526 8066 
MobileNet-v2 
[26] 

94.72 COVID-19 image data collection, Radiological Society of North America (RSNA), 
Radiopaedia, Italian Society of Medical & Interventional Radiology (SIRM) & Kermany 
dataset 

224 700 504 

CNN-SVM [27] 95.33 COVID-19 image data collection, COVID-19 radiography database & Kermany dataset 127 127 127  

Table 3 
Data augmentation for detecting COVID-19 from CXR.  

Model Software Norm. Size Flip Rotate Zoom Light Extra 

VGG-16 [25] Keras, Tenserflow _ 220*220 HORIZ 15 85- _ shear transformation      
115%  mixup: 0.1 

DarkCovidNet [24] fastai v1, Pytorch yes 256*256 _ _ _ _ defult values of fastai 
CovXNet [22] Keras, Tenserflow yes uniform _ 30 0.2 _ rescale: 1/255        

shift: 0.1 
COVID-Net [20] Keras, Tenserflow yes 480*480 HORIZ yes yes _ intensity shift 
MobileNet-v2 [26] _ _ 200*266 _ _ _ _ blackground: 1:1.5  

Table 4 
CNN hyperparameters for detecting COVID-19 from CXR.  

Model CNN Pretrained Optimizer Learning Rate Loss Function Epoch Batch 

VGG-16 [25] VGG-16 yes Adam 1e-4 cross entropy 100 8 
DarkCovidNet [24] YOLO DarkNet-19   3e-3  100 32 
CovXNet [22] CovXNet   1e-3  70 128 
COVID-Net [20] COVID-Net   2e-4 & lr policy _ 22 64 
MobileNet v2 [26] MobileNet v2   _ _ 10 64  
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detecting COVID-19 from chest x-rays. A shortcoming of existing studies 
is the limited amount of data augmentation methods evaluated. As such, 
this is the investigative scope of our paper because data augmentation 
leads to positive results when training CNN on limited data but only with 
suitable augmentation techniques for each dataset [14]. 

As there is an endless array of mappings φ(x), we examine common 
data augmentation methods, including resizing, flipping, rotating, 
zooming, warping, lighting and normalizing. Our investigative space 
was determined by consultations with practical radiologist and research 
on common techniques in the literature. From a radiologist’s perspec-
tive, the use of portable devices, that minimize the infection control 
issues of COVID-19 result in low-quality CXRs and incorrect rotation. 
From the literature’s perspective, researchers tend to apply resizing, 
zooming, warping, and lighting to increase the number of cases to 
handle the issue of limited COVID-19 data. 

1.2. CNN hyperparameters 

CNN hyperparameter optimization, on the other hand, aims to find 
the optimal combination of values that must be selected for a given 
dataset before the training starts in a reasonable amount of time (e.g., 
the number of epochs). Deep learning practitioners aim to identify such 
values through automatic software, such as Optuna [15], or through a 
trial and error method. For example, Nishio et al. [16] utilize Optuna to 
implement Bayesian optimization in segmenting the lungs from severely 
abnormal CXRs. 

1.3. Contribution 

The main contribution of this study is the implementation of the 
CovidXrayNet model, which improves the detection rate of COVID-19 
from CXRs, by means of optimizing the data augmentation pipeline 
and CNN hyperparameters. To the best of the authors’ knowledge, 

CovidXrayNet is one of the first models that demonstrates the effects of 
data augmentation pipelines on CXR quality while also investigating 
several CNN hyperparameters. This in turn may significantly enhance 
the accuracy of CNN in diagnosing COVID-19. In addition, we introduce 
COVIDcxr, a balanced and complete dataset that consists of CXRs and 
the associated tabular data. 

In this paper, we use a three-class classification (“COVID-19′′, 
“pneumonia”, “normal”) because these three automatic predictions can 
help doctors to quickly triage patients for RT-PCR testing for COVID-19 
diagnosis confirmation and choose the suitable treatment plan based on 
the presence and cause of infection (i.e., COVID-19 infection or non- 
COVID-19 infection). We investigate data augmentation on the 
COVID-19 CXR classification task to observe the differences between 
them in terms of the model’s accuracy. We also explain and visualize the 
chosen data augmentation techniques on CXR, (including resizing, 
flipping, rotating, zooming, warping, lighting, and normalizing) to un-
derstand what happens behind the scenes. 

2. Related work 

A growing number of research publications have demonstrated the 
compelling ability of deep learning with CNNs to automatically detect 
COVID-19 from chest X-ray images. 

2.1. Dataset 

Table 1 outlines the public datasets of COVID-19 CXR. Currently, the 
largest and most popular dataset among researchers is COVIDx. How-
ever, COVIDx is unbalanced as the number of cases in the COVID-19 
class (589) is far less than pneumonia (6,056) and no-finding (8,851). 
This may cause a sharp increase and decrease in the loss values while 
training a DL model. To address this issue, Bridge et al. [17] proposed 
the generalized extreme value (GEV) as an alternative to the common 

Fig. 1. Dataset distribution.  
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Fig. 2. CovidXrayNet structure.  
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sigmoid activation function. They proved that GEV distribution im-
proves the performance of COVID-19 classification from unbalanced 
datasets. 

These COVID-19 CXR datasets are constantly updated with new 
images added by researchers around the world. Nevertheless, none of 
these datasets provides complete metadata for all patients. 

2.2. Models 

Table 2 summarizes the proposed CNN based models in the litera-
ture, which can be grouped into binary classification (i.e., COVID-19 or 
normal), and multi-class classification (COVID-19, pneumonia or 
normal). 

For the binary classification, COVIDX-Net [21] achieves 90% with 
only 25 CXRs for COVID-19 and 25 CXRs for normal patients. Another 
balanced dataset with 305 cases in each class was used to train the 
CovXNet model, resulting in 97.40% accuracy [22]. With a combination 
of ResNet50, InceptionV3, and Inception-ResNetV2, Narin et al. [23] 
model achieves 98% accuracy. The 50 healthy CXRs in this study, 
however, belong to children (one to five years olds) from a Kaggle re-
pository [28]. Using a larger but unbalanced dataset of 1125 images, 
DarkCovidNet [24] achieves 98.08% accuracy. Beyond the classification 
task, Wang et al. [29] localize the pulmonary location coordinates of 
COVID-19 (i.e., left lung, right lung, or both [bi-pulmonary]), using a 
residual attention network [30]. 

For the three-class problem, Nishio et al. [25] achieve 83.68% ac-
curacy using a VGG-16 based model with a combination of data 
augmentation methods. By starting with a real-time object detection 
system, named “you only look one” (YOLO), which is based on the 
Darknet-19 [31] classifier, DarkCovidNet achieves 87.02% accuracy 
[24]. However, this result could be biased due to the small number of 
COVID-19 cases (125), compared to 500 pneumonia cases and 500 
normal cases. To compensate for this issue, Mahmud et al. [22] transfer 
training from a large dataset of normal cases and viral/bacterial pneu-
monia cases to a small balanced COVID-19 dataset, achieving 90.3% 
accuracy for their CovXNet model. Further, COVID-Net [20] leveraged 
the generative synthesis [32] to determine the optimal design, where 
COVID-19 sensitivity and positive predictive value (PPV) are at or above 
80%. Conversely, Oh et al. [33] proposed a patch-based CNN method 
that may handle the issue of small datasets, as it uses only 11.6 million 
trainable parameters on COVIDx. Note that the COVID-Net team is 
releasing enhanced versions of COVID-Net through a GitHub repository, 
and this paper refers to the COVID-Net-CXR3-B version. Apostolopoulos 
and Mpesiana [26] achieve a 93.48% performance by transferring the 
learning of MobileNet v2 [34]. They conclude that MobileNet v2 is 
better than VGG-19 [35] for this particular COVID-19 classification task, 
as it has the fewest instances of False Negatives. Furthermore, Sethy 
et al. [27] add a support vector machine (SVM) to classify the features 
obtained from CNN models and achieved 95.33% accuracy. 

Table 3 and Table 4 outline the data augmentation and the CNN 

Table 5 
Pipeline for Data Augmentation on CXR. For each independent parameter, we trained ResNet-18 on COVIDcxr for 30 epochs to examine the effects of various 
transformers on COVID-19 CXR classification.  

Independent Parameter Resize Rotate Zoom Wrap Light Extra (%) 

Size Method Acc AUC F1 

Resize 224*224 crop 0 0 0 0 none 78.12 90.84 78.04  
pad      79.68 90.66 79.39  
squish      74.47 88.63 74.47 

256*256 crop      79.16 92.12 79.12  
pad      76.04 90.62 75.55  
squish      78.12 90.15 78.22 

480*480 crop      80.72 94.42 80.65  
pad      82.81 94.67 82.86  
squish      83.85 94.14 83.95 

512*512 crop      80.72 93.35 80.78  
pad      78.64 93.22 78.62  
squish      77.08 92.67 77.22 

Rotate 480*480 squish 0 0 0 0 none 83.85 94.14 83.95   
10     85.93 95.73 85.95   
20     86.45 96.48 86.56   
30     86.45 95.97 86.58   
50     84.89 95.72 85.03 

Zoom 480*480 squish 0 1 0 0 none 83.85 94.14 83.95    
1.2    85.41 95.86 85.48    
1.3    82.29 95.77 82.37    
1.4    84.37 95.60 84.45    
1.5    81.25 95.29 81.21 

Warp 480*480 squish 0 0 0 0 none 83.85 94.14 83.95     
0.1   84.37 95.36 84.42     
0.2   85.41 96.33 85.50     
0.3   84.89 96.34 84.94 

Lighting 480*480 squish 0 0 0 0 none 83.85 94.14 83.95      
0.1  81.77 93.12 81.93      
0.2  83.85 94.34 83.91      
0.3  85.41 95.10 85.46      
0.4  82.81 95.34 82.97      
0.5  84.37 95.89 84.46 

Flip (dihedral) 480*480 squish 0 0 0 0 flip 83.85 95.69 83.81 
Mixup (0.4)       mixup 83.33 94.88 83.29 
Erasing (random)       erase 80.72 94.11 80.91 
Normalize (imagenet)       norm 83.85 94.14 83.95 
Multiple Param (pipline) 480*480 squish 20 1.2 0.2 0.3 flip 81.77 95.70 81.69 

480*480 squish 20 1.2 0.2 0.3 mixup 82.81 95.86 82.48 
480*480 squish 20 1.2 0.2 0.3 flip, norm 81.77 95.70 81.69 
480*480 squish 20 1.2 0.2 0.3 norm 88.02 96.20 88.14  
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hyperparameters in recent proposed models, respectively. Nishio et al. 
[25] show that combining multiple data augmentation techniques is 
more effective than only using one or not using any data augmentation 
in detecting COVID-19 from CXRs. They utilize a random search [36] to 
select the optimal VGG-16 hyperparameters and data augmentation 
methods, including conventional method and mixup [37]. This resulted 
in an increase in their model’s accuracy from the initial 78.72%– 
83.68%. However, this approach of hyperparameter tuning is hard to 
achieve with complex networks such as EfficientNet [38] due to the 
large number of trainable parameters. 

In terms of optimizing CNN hyperparameters, existing models used 
pre-trained architectures on ImageNet, Adam optimizer [39], epochs 
that ranged from 10 to 100, and a batch size of 8, 32, 64 or 128. Notably, 
several proposed architectures apply few arbitrary transformers to the 
X-rays based on random choices rather than well-justified motives. For 
instance, Ozturk et al. [24] apply the default values in the fastai v1 li-
brary. However, selecting the optimal CNN hyperparameters and data 
augmentation methods improves the robustness of CNN models [13]. 

3. Proposed model 

3.1. Dataset 

We trained CovidXrayNet on two datasets called COVIDcxr and 
COVIDx (refer to Fig. 1). Both datasets contain three classes of CXR: 
COVID-19 viral infection, pneumonia (i.e., non-COVID-19 infection such 
as viral and bacterial), and normal (i.e, no infection). 

COVIDcxr is the dataset of COVID-19 that we have generated from 
two open-source repositories: ChestX-Ray14 [40] and COVID-19 image 
data collection [19] with the associated tabular data (i.e., gender, sex, 
and view) for each patient. It is comprised of 960 CXR images. Our aim 
was to create a balanced, unbiased, and complete COVID-19 CXR 
dataset. We randomly selected 320 no-finding and 320 pneumonia from 
ChestX-Ray14, and 320 COVID-19 from the COVID-19 image data 
collection, along with complete metadata. There are 568 male and 392 
female cases, and the average age of these subjects is about 56 years. 

COVIDx [20] is the largest public dataset in terms of presented 
positive COVID-19 cases. It includes 15,496 CXRs generated from five 
public datasets, where three of them— COVID-19 Image Data Collec-
tion, Figure 1 COVID-19 Chest X-Ray Dataset Initiative, and ActualMed 
COVID-19 Chest X-Ray Dataset Initiative can be downloaded from the 
GitHub repository, and two datasets—RSNA Pneumonia Detection 
challenge dataset and COVID-19 radiography database can be obtained 
from Kaggle. Note that COVIDx is expanding on a regular basis with the 
addition of new patient records for training while maintaining the same 
test dataset for consistency. We employed COVIDx-v3 in this research. 

3.2. CovidXrayNet architecture 

The overall structure of our proposed CovidXrayNet model, which 
classifies a CXR into either “COVID-19′′, “normal”, or “pneumonia”, is 
presented in Fig. 2. Before feeding the CXRs to the pre-trained Effi-
cientNet-B0 along with the optimized CNN hyperparameters, we per-
formed several augmentation techniques on the data. 

3.2.1. Data augmentation 
First, we performed several deliberate data augmentations, based on 

extensive experiments on the COVIDcxr dataset using ResNet18 as it can 
be seen in Table 5. Fig. 3 plots all transformer techniques against each 
other to observe the differences between them. 

At the item transformation level, we resized each CXR to 480x480 

Fig. 3. Visualizing Data Augmentation Effects on CXR. The CXR is for a 25- 
year-old COVID-19-positive female taken from the COVID-19 image 
data collection. 
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pixels by squishing the CXR on the horizontal axis on the Central Pro-
cessing Unit (CPU). This constricts the ribcage towards the center while 
keeping all the parts of the CXR. Our method is different from the 
common approach in the literature, which resizes each CXR to the same 
aspect ratio to set the smallest dimension to a specified size and then 
arbitrarily crops it on the other dimension, as illustrated in Fig. 4. This 
cropping method may erase important CXR details from the edges of the 
image. Resizing all CXRs to a fixed size is a prerequisite data augmen-
tation for classifying them using CNN. 

At the batch transformation level, we applied a group of optimized 
augmentation parameters on a Graphical Processing Unit (GPU) to 
minimize the number of computation and lossy operations. We used 
pipeline to compose the best transformers’ values together. A series of 
experiments on the COVIDcxr dataset, with a fixed seed, was used to find 
the best combination of choices and orders of data augmentation that 
ensured the ResNet-18 gave the best accuracy, as recorded in Table 5. 

We applied a random rotation with a maximum of 20◦ and 75% 
probability to overcome the incorrect rotation of some of the acquired 
images. Such low-quality CXRs are the result of using portable devices 
that minimize the infection control issues of COVID-19 [41]. In addition, 
it is not uncommon, especially for anteroposterior (AP) supine CXRs, for 
the patient to be rotated, which makes interpretation difficult. In addi-
tion to rotating CXRs, we also applied zooming, warping, and lighting as 
we relied on data augmentation to handle the issue of limited COVID-19 
data through increasing the number of cases [12] and, hence, preventing 
overfitting. With a 75% probability, we zoomed the CXRs by a scale of 
1.2, lighted by a scale of 0.3, and warped by a magnitude of 0.2. Warping 
and ightening augmentation may handle situations when patients face 
the X-ray device at different angles and in various lighting rooms. We 
attempted to apply the random erasing [42] and the mixup [37] tech-
niques, however, we did not notice improved performance. 

3.2.2. CNN architectures and hyperparameters 
Second, we replaced the head of EfficientNet-B0 with a head suitable 

for the three-class classification and trained it for 30 epochs. To 
compensate for the small dataset, we perform transfer learning with the 
pre-trained weights from ImageNet. Then, we fine-tuned EfficientNet-B0 
using one NVIDIA Tesla V100. EfficientNet scales the CovidXrayNets’ 
width and depth according to the size of 480x480 pixels, which results in 
substantially less computational power used and fewer parameters with 
high performance compared to other CNN architectures. 

Table 6 presents the performance of the optimized data augmenta-
tion on two datasets COVIDcxr (small and balanced dataset) and COV-
IDx (large and unbalanced dataset) using the benchmark deep neural 
network architectures including: VGG-16, VGG-19 [35], ResNet-18, 
ResNet-34, ResNet-50 [43], and EfficientNet-B0 [38]. Among various 
CNN architectures, EfficientNet-B0 accomplishes the best results in 
classifying COVID-19 from the COVIDcxr and COVIDx datasets based on 
various evaluation metrics such as accuracy, precision, recall and F1 
scores. Please refer to Section 3.3 for more details about these evaluation 
metrics. 

EfficientNet introduced a new and simple compound scaling tech-
nique to scale the number of layers α, the number of channels β, and the 
number of pixels γ in an image, which represent the CNN width, depth, 
and resolution, respectively [38], as depicted in Eq. (1). This technique 
uses a compound coefficient φ, which defines the amount of available 
resources to determine how to scale α, β, and γ. The constraint 
(α ⋅β2 ⋅γ2) ≈ 2 is applied in order to make sure that the total 
floating-point operations per second (FLOPS) do not exceed 2φ. Cov-
idXrayNet is based on the baseline network EfficientNet-B0, where the 
optimal values are α = 1.2, β = 1.1, and γ = 1.15. Using this 
multi-objective neural architecture search, we optimize both accuracy 
and FLOPS. Although the original EfficientNet-B0 uses the standard 
input size 224x224, it perfectly handles the 480x480 CXR pixels. 

Fig. 4. Resizing Method. We propose to squish a 480*480 pixel CXR rather than cropping it to maintain important CXR details from the edges of the image.  

Table 6 
CNN Architectures on COVIDx and COVIDcxr. We trained the popular CNN architectures on both datasets for 30 epochs using the optimized data augmentation 
pipeline.  

CNN Dataset Acc (%) AUC (%) MCC (%) Precision (%) Recall (%) F1 (%) 

VGG-16 COVIDcxr 80.73 94.68 72.29 82.03 81.35 80.53 
VGG-19  84.90 95.67 77.74 85.31 85.26 84.92 
ResNet-18  85.94 96.72 79.40 86.84 86.31 86.14 
ResNet-34  79.69 94.91 70.02 80.26 80.03 79.70 
ResNet-50  82.81 95.90 75.31 84.90 83.29 83.12 
EfficientNet-B0  88.02 _ 82.01 87.98 88.03 88.00 
VGG-16 COVIDx 93.41 98.70 87.74 94.40 89.41 91.61 
VGG-19  93.60 98.55 88.06 95.29 85.53 89.24 
ResNet-18  93.29 98.86 87.48 95.03 86.73 90.05 
ResNet-34  94.74 99.10 90.19 95.85 89.95 92.53 
ResNet50  95.12 99.22 90.92 96.08 91.76 93.72 
EfficientNet-B0  95.69 _ 92.01 96.24 94.76 95.48  
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depth:d = αφ
width:w = βφ
resolution:r = γφ
s.t.α⋅β2⋅γ2 ≈ 2
α ≥ 1, β ≥ 1, γ ≥ 1

(1) 

Furthermore, we have studied various CNN hyperparameters on 
COVIDcxr and COVIDx, including the loss function, the number of 
epochs, and the batch size, as demonstrated in Table 7 and Table 8, 
respectively. Based on this trial and error method, we selected the 
optimal hyperparameters for EfficientNet-B0 on the COVIDx dataset 
including the label smoothing [44] of the cross-entropy loss function, 30 
epochs, and a batch size of 32. Label smoothing for our three-class 
problem is presented in Eq. (2), where (1 − ε) is the prediction of the 

Table 7 
Optimizing CNN hyperparameters using COVIDcxr. For each independent 
parameter, we trained several architectures on COVIDcxr to examine the effects 
of various hyperparameters on the accuracy of COVID-19 CXR classification.  

CNN Epoch Batch 
Size 

Loss 
Function 

Acc 
(%) 

MCC 
(%) 

F1 
(%) 

VGG-16 10 32 Cross 
Entropy 

77.08 68.15 76.26 

20   77.60 66.71 77.43 
30   80.73 72.29 80.53 
40   83.33 75.51 83.31 
30 8  85.42 79.20 85.43  

16  84.38 76.61 84.27  
32 Label 

Smoothing 
79.17 69.62 78.91 

VGG-19 10 32 Cross 
Entropy 

78.65 68.38 78.89 

20   82.81 74.25 82.96 
30   84.90 77.74 84.92 
40   84.38 76.66 84.35 
30 8  84.90 78.36 84.96  

16  82.81 74.90 82.74  
32 Label 

Smoothing 
85.42 78.30 85.51 

ResNet-18 10 32 Cross 
Entropy 

81.25 73.69 81.25 

20   82.29 74.21 82.45 
30   85.94 79.40 86.14 
40   85.42 78.16 85.37 
30 8  81.25 73.56 81.39  

16  82.29 74.20 82.37  
32 Label 

Smoothing 
84.38 76.95 84.46 

ResNet-34 10 32 Cross 
Entropy 

81.25 72.10 81.20 

20   81.25 71.93 80.91 
30   79.69 70.02 79.70 
40   81.25 71.94 81.23 
30 8  86.46 80.12 86.54  

16  85.94 79.00 85.87  
32 Label 

Smoothing 
83.85 76.08 83.85 

ResNet-50 10 32 Cross 
Entropy 

81.77 73.18 82.09 

20   84.90 77.32 84.93 
30   82.81 75.31 83.12 
40   85.42 78.12 85.45 
30 8  86.46 80.49 86.52  

16  86.98 80.84 87.16  
32 Label 

Smoothing 
83.85 76.21 84.05 

EfficientNet- 
B0 

10 32 Cross 
Entropy 

83.33 75.36 83.65 

20   84.38 76.67 84.41 
30   88.02 82.01 88.00 
40   85.42 78.10 85.42 
30 8  88.02 82.06 87.89  

16  86.98 80.45 86.99  
32 Label 

Smoothing 
88.54 82.83 88.62  

Table 8 
Optimizing CNN hyperparameters using COVIDx. For each independent 
parameter, we trained several architectures on COVIDx to examine the effects of 
various hyperparameters on the accuracy of COVID-19 CXR classification.  

CNN Epoch Batch 
Size 

Loss 
Function 

Acc 
(%) 

MCC 
(%) 

F1 
(%) 

VGG-16 10 32 Cross 
Entropy 

92.08 85.20 86.99 

20   93.35 87.56 90.10 
30   93.41 87.74 91.61 
40   94.24 89.25 91.99 
30 8  93.86 88.56 91.03  

16  94.30 89.38 92.00  
32 Label 

Smoothing 
94.05 88.88 91.35 

VGG-19 10 32 Cross 
Entropy 

92.53 86.04 87.29 

20   93.98 88.77 91.57 
30   93.60 88.06 89.24 
40   93.29 87.46 88.72 
30 8  94.49 89.73 92.14  

16  94.93 90.56 92.79  
32 Label 

Smoothing 
93.79 88.40 90.10 

ResNet-18 10 32 Cross 
Entropy 

93.10 87.08 88.43 

20   93.60 88.06 90.07 
30   93.29 87.48 90.05 
40   93.86 88.53 90.87 
30 8  94.17 89.11 91.17  

16  94.43 89.60 92.49  
32 Label 

Smoothing 
94.30 89.35 91.58 

ResNet-34 10 32 Cross 
Entropy 

94.05 88.89 91.41 

20   94.62 89.97 93.32 
30   94.74 90.19 92.53 
40   94.43 89.63 93.38 
30 8  94.87 90.44 92.43  

16  95.31 91.28 94.50  
32 Label 

Smoothing 
94.62 89.96 92.50 

ResNet-50 10 32 Cross 
Entropy 

94.93 90.55 92.62 

20   94.81 90.34 93.37 
30   95.12 90.92 93.72 
40   94.81 90.35 93.14 
30 8  93.03 87.01 91.99  

16  95.57 91.76 95.35  
32 Label 

Smoothing 
95.12 90.91 93.36 

EfficientNet- 
B0 

10 32 Cross 
Entropy 

95.69 91.99 94.52 

20   95.19 91.02 93.38 
30   95.69 92.01 95.48 
40   95.00 90.72 95.00 
30 8  94.68 90.16 93.25  

16  95.38 91.40 94.88  
32 Label 

Smoothing 
95.82 92.24 96.16  

Table 9 
Comparing our Optimised Data Augmentation Pipeline and CNN Hyper-
parameters with Benchmark. Both papers used VGG19 and ResNet50 on the 
COVIDx dataset but with different transformers and hyperparameters.  

CNN Paper Parameters 
(M) 

Acc 
(%) 

AUC 
(%) 

MCC 
(%) 

F1 
(%) 

VGG-19 COVID-Net 
[20] 

20 83.00 _ _ _ 

CovidXrayNet  94.93 98.69 90.56 92.79 
ResNet- 

50 
COVID-Net 
[20] 

25 90.60 _ _ _ 

CovidXrayNet  95.57 99.29 91.76 95.35  
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correct class, and ε is the prediction of the other two classes. In this 
formula, ce(x) donates the standard cross-entropy loss of x, ε is a small 
positive number, i is the correct class, and N is the number of classes. 
This regularization technique improved CovidXrayNet performance and 
robustness by computing cross entropy with a weighted mixture of the 
hard targets from the COVIDx dataset using the uniform distribution. 

cross entropy loss=(1 − ε) ce(i) + ε
∑ ce(j)

N
(2) 

We fine-tuned CovidXrayNet using the one-cycle policy [45] and 
discriminative learning rates [46]. Equation (3) defines this discrimi-
native fine-tuning technique, where CovidXrayNet’s parameters θ are 
split into {θ1,…, θL} and the learning rates η are split into {η1,…, ηL} at 
time step “t” for the number of layers “L”. Using this function, we start 
with a learning rate of 2e − 3, then automatically adjust this value for 
both COVIDx and COVIDcxr datasets, where the gradient of the Cov-
idXrayNet’s objective function is ∇θl j. 

θlt = θlt− l − ηl ×∇θl j(θ) (3)  

3.3. CovidXrayNet evaluation 

We computed the accuracy, macro average precision, macro average 

recall, and macro F1 score of the CovidXrayNet in distinguishing be-
tween the three classes (“COVID-19′′, “pneumonia”, “normal”). Equa-
tions (4)–(7) explain these metrics for a generic class k, where TP refers 
to True Positives classifications, FN denotes False Negatives classifica-
tions, TN presents True Negatives classification, and FP means False 
Positives classifications. In the Macro approach, all classes are consid-
ered as basic elements of the calculation [47] (i.e., each class has the 
same weight in the average regardless of its size). 

Accuracy=
∑K

k=1
TNk+TPk

TNk+TPk+FNk+FPk

K
(4)  

PrecisionMacro =
∑K

k=1
TPk

TPk+FPk

K
(5)  

RecallMacro =
∑K

k=1
TPk

TPk+FNk

K
(6)  

F1Macro = 2 ×
PrecisionMacro × RecallMacro
Precision− 1

Macro + Recall− 1
Macro

(7) 

Moreover, we used the Area Under the Receiver Operating Charac-
teristic Curve (AUC) [48], and Matthews correlation coefficient (MCC) 
[49]. AUC for multi-class is defined in Eq. (8), where AUC(ci) is the area 
under the class reference ROC curve for the positive class ci. This 
implementation of AUC score is simple and fast but it is sensitive to class 
distributions and error costs. MCC, on the other hand, is a good indicator 
of total unbalanced prediction models as defined in Eq. (9), where “c” 
represents all correctly predicted cases, “s” represents all cases, “pk” is 
the number of instances that class “k” was predicted to be, and “tk” is the 
number of instances that class “k” truly occurred. Since accuracy de-
pends mostly on the number of samples in each class, CNN-based models 
perform seemingly well in the imbalanced datasets, such as COVIDx. 
This may result in an inaccurate conclusion. Therefore, the combination 
of multiple evaluation matrices should be the criterion for selecting the 
best model. 

Table 10 
Comparing CovidXrayNet with Benchmark. All models are based on three-class 
COVID-19 classification. COVID-Net and CovidXrayNet employed the COVIDx 
dataset.  

Model Acc 
(%) 

MCC 
(%) 

Precision 
(%) 

Recall 
(%) 

F1 (%) 

DarkCovidNet 
[24] 

87.02 _ 89.96 _ 87.37 

COVID-Net [20] 93.30 _ _ _ _ 
MobileNet v2 [26] 93.48 _ _ _ _ 
CovidXrayNet 95.82 92.24 96.93 95.43 96.16  

Fig. 5. Top prediction errors generated by CovidXrayNet on COVIDx test dataset.  
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AUCtotal =
∑

ciεC
AUC(ci) × p(ci) (8)  

MCC=
c× s −

∑K
k Pk × tk

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
s2 −

∑K
k p2

k

) (
s2 −

∑K
k t2k

)√ (9)  

4. Experiment 

4.1. Implementation 

We used PyTorch software [50], fastai library [51], an 
n1-highmem-8 (8 vCPUs, 52 GB memory) machine, and one NVIDIA 
Tesla V100 GPU. Fastai is a deep learning library that enables the 
implementation of CovidXrayNet with its unique ability to join several 
transformers inside a pipeline that manages the minimum number of 
computations and lossy operations. 

4.2. Result 

4.2.1. Quantitative evaluation 
In order to evaluate our proposed data augmentation pipeline, we 

compared the reported results of VGG-19 and ResNet-50 in the COVID- 
Net paper [20] with our results on the COVIDx dataset as recorded in 
Table 9. With only 30 epochs of learning cycles, the accuracy of VGG-19 
increased by 11.93%, while the accuracy of ResNet-50 improved by 
4.97%. This clearly indicates the effect of our proposed method on 
enhancing the accuracy of COVID-19 classification from CXRs. 

Table 10 compares CovidXrayNet to other studies in the literature 
that are based on three-class classification. We achieved better accuracy 
(95.82%) over the remainder of the models, including DarkCovidNet 
(87.02%), COVID-Net (93.30%), and MobileNet v2 (93.48%). Further, 
the F1 score for CovidXrayNet (96.16%) is higher than DarkCovidNet 
(87.37%) and the precision score of CovidXrayNet (96.93%) is better 
than DarkCovidNet (89.96%). Significantly, the overall sensitivity of 
CovidXrayNet is 95.43%. Our reported results are reproducible. We 
have used the same test dataset as COVID-Net. 

4.2.2. Qualitative evaluation 
We have ensured the robustness of CovidXrayNet by sharing its top 

prediction errors and actual labels with expert radiologists (refer to 
Fig. 5). CovidXrayNet classified four COVID-19 patients as pneumonia. 
Since COVID-19 is a subset of pneumonia diseases, the diagnosis is 
correct but the interpretation is not. For this reason, CovidXrayNet can 

Fig. 6. Randomly generated results for CovidXrayNet on COVIDx test dataset.  
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only offer a second opinion to the radiologist in the clinical setting. 

5. Discussion 

The rapid spread of the COVID-19 pandemic along with the limited 
number of RT-PCR test kits and qualified radiologists, has necessitated 
the need for accurate automated detection systems. CXR is one of the 
main imaging methods that are fast, non-invasive, affordable, and 
possibly able to be completed at bedside to monitor the progression of 
COVID-19 infection. However, radiologists with expertise in CXR 
interpretation may not be available at every institution. 

5.1. Optimization in deep learning 

We aim to implement an AI model, CovidXrayNet, that can identify 
COVID-19 infection based on CXRs. CovidXrayNet optimizes data 
augmentation to enable CNN models to observe visual features that are 
not noticeable to the radiologist’s eye. With data augmentation, CNN 
models will generalize better results. However, the implications of 
choosing efficient and effective augmentation techniques depend on the 
dataset at hand. Using CXR with COVID-19 datasets, we performed a 
separate search phase that was computationally expensive. Recent work, 
such as RandAugment [52] and AutoAugment [53], suggests removing 
the need for a search phase to reduce the parameter space for data 
augmentation. However, incorrect choices in the COVID-19 classifica-
tion task may lead to erasing or diluting vital features. 

Notably, individual data augmentation methods yielded a minor 
increased task performance as seen in Table 5. For example, the optimal 
warping value improves the classification task accuracy by only %1.56. 
However, a combination of these optimized methods (i.e., our proposed 
data augmentation pipeline and CNN hayperparameters) has increased 
the performance significantly, as can be seen in Table 9. It increases the 
accuracy of the popular CNN architectures such as VGG-19 and ResNet- 
50, by 11.93% and 4.97%, respectively. 

We find that EfficientNet-B0 performs well for COVID-19 CXR clas-
sification with the following data augmentation pipeline: squishing the 
CXR to 480x480 pixels, rotating by 20◦, zooming by 1.2 scale, warping 
by 0.2 magnitude, lighting by 0.3 scale, and normalizing. Also, the label 

smoothing cross-entropy loss function, at the batch size of 32 with 30 
epochs, increases the accuracy of CovidXrayNet on the COVIDx dataset. 
EfficientNet is rapidly becoming the deep learning practitioners’ choice 
over ResNet for many classification tasks. It allows practitioners to use 
the minimum FLOPS while achieving the best possible accuracy by 
compound scaling the network’s depth, width, and input resolution. 

5.2. Limitation and future direction 

While CovidXrayNet performs well as a whole (see Fig. 6), it mis-
identified four patients with COVID-19 as having pneumonia, and one 
patient with COVID-19 as being normal (refer to the confusion matrix in 
Fig. 7). However, it is important to limit the number of missed COVID-19 
patients to be isolated as well as the number of false-positive COVID-19 
patients to avoid unnecessary burden for the clinical sites. Therefore, 
CovidXrayNet is still at a research stage and is not suitable for direct 
clinical diagnosis. It can be built upon and optimized with additional 
data augmentation and better CNN hyperparameters. 

Without conducting a proper clinical study, the achieved accuracy of 
CovidXrayNet (95.82%) on the COVIDx dataset does not indicate that 
CovidXrayNet is sufficient for detecting COVID-19 from CXR. Our aim is 
to empower this research wave through our optimized data augmenta-
tion pipeline and CNN hyperparameters. Therefore, we are releasing the 
source code of CovidXrayNet to enable researchers to reproduce the 
results and experiment on different datasets. 

As there is an endless array of transformation, our work evaluates 
common augmentation techniques in the CXR classification literature (i. 
e., resize value, resize method, rotate, zoom, warp, light, flip and 
normalize), recent proposed methods (i.e., mixup and random erasing), 
and combinations of these methods. Future research can enhance our 
model with de-noising or segmentation steps. In addition, the proposed 
data augmentation pipeline was tested only on the three-class classifi-
cation task (“COVID-19′′, “normal” or “pneumonia”). Researchers may 
investigate the effects of the proposed technique on detecting other 
common CXR observations including atelectasis, cardiomegaly, consol-
idation, edema, enlarged cardiomediastinum, fracture, lung lesion, lung 
opacity, pleural effusion, pleural other, pneumonia and pneumothorax. 

Designing a fair testing protocol could be highly challenging. 
Different datasets were merged with large differences among them in 
order to respond to the global challenge of quickly identifying COVID-19 
[19]. COVIDx and COVIDcxr datsets were collected from public sources. 
They were also indirectly collected from hospitals and physicians. For 
the COVIDx, we tested our model in the official split recommended by 
the COVIDx paper to allow for future comparison. For the COVIDcxr 
dataset, we will release the dataset generation scripts. Future research 
should assess the validity of the available testing protocol by validating 
the COVID-19 CXRs with clinical experts and determining the ground 
truth. 

COVIDcxr is suitable for building a single neural network based on 
both images (CXR) and tabular data (sex, age, and view), as can be seen 
in Fig. 8. However, we did not observe better performance for such a 
model than a linear model with embedding. Even though a multi-modal 
network, with multiple input modalities, receives more information, it is 
often prone to over-fitting [54]. Future research may explore training 
multi-modal classification networks based on the COVIDcxr dataset 
using various CNN architectures and hyperparameters. 

6. Conclusion 

We have demonstrated that optimizing data augmentation and CNN 
hyperparameters result in outstanding effects on the automatic extrac-
tion of features from CXR related to the diagnosis of COVID-19. Cov-
idXrayNet only requires 30 learning cycles to process a CXR yet achieves 
95.82% accuracy on the COVIDx dataset. 

Fig. 7. Confusion matrix for CovidXrayNet on COVIDx test dataset.  
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