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INTRODUCTION

Colorectal cancer (CRC) still represents a major cause of 
death,1 although its incidence and mortality declined over 
the last decades as a consequence of screening programs and 
polypectomy of the adenomatous polyps.2,3 Nevertheless, 
the endoscopic detection of CRC precursor lesions remains 
a challenge. A recent systematic review and meta-analysis4 

showed an adenoma miss rate of 25% for any adenoma, 9% for 
advanced adenomas, and 27% for serrated polyps in tandem 
colonoscopy studies. This can partially explain the occurrence 
of interval cancer. Adenoma detection rate (ADR) is the cur-
rent most reliable measure of a colonoscopist’s capability to 

detect adenomas. Higher ADR is associated with lower inter-
val CRCs and lower CRC mortality.5,6 ADR varies dramatically 
among different endoscopists (7%–53%)7 and also for each 
operator during the course of the day (approximately 7%), 
probably due to the intrinsic imprecision of the human eye 
brought about by fatigue and rush activities.8

New technologies have been reported in the literature to 
improve ADR, including enhanced optics, distal attachments, 
cap-assisted techniques, and balloon-assisted devices, with the 
goal of improving mucosa visualization and eventually diag-
nosing hardly detectable polyps.9 

By aiding polyp detection on colonoscopy images (Figs. 
1 and 2), artificial intelligence (AI) can reduce performance 
variability. AI is an information technology evolution with 
software and hardware development to create computer ma-
chines with human-like characteristics, such as visual-spatial 
perceptions and decisional algorithms that are able to solve 
relatively new problems never seen before (machine learning). 
In the late 1970s, a specific software was able to teach and train 
a newly developed neural network (NN) evolving from an ex-
pert system (system that emulates the decision-making ability 
of a human expert) to the concept of AI. NNs are mathemat-
ical computing systems that analyze a large variety of inputs 
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to obtain an output through a middle (or hidden) layer that 
works like natural brain cells in terms of adaptive connections. 
The strength and type of connections within the hidden layer 
in NN are obtained through the training phase with super-
vised learning (declared inputs and outputs), semi-supervised 
learning (declared inputs and some of the outputs), or unsu-
pervised learning (declared inputs without known correct out-
puts) with a correction system of “reward and punishment”.

When applied to lower gastrointestinal (GI) endoscopy, AI 
plays as additional or virtual eyes, that is, an additional en-
doscopist who continuously stands behind the endoscopist to 
help detect polyps, with the final goal to improve the quality of 
diagnosis, reduce operators’ variability, and improve the out-
comes.

This review aimed to show the current status of AI in lower 
GI endoscopy and underline future potentials and limitations 
of the said technology.

ARTIFICIAL INTELLIGENCE IN LOWER 
GASTROINTESTINAL ENDOSCOPY

Computer-aided diagnosis (CAD) potentially promises the 
reduction in colonoscopy performance variation. The avail-
able evidence reveals that endoscopists are flawed in detecting 
colonic lesions. A recent meta-analysis showed that adenoma 
miss rates might be as high as approximately 25%,4 and a 
post-colonoscopy cancer may occur in approximately 9% of 

Fig. 1. A 5-mm polyp is visualized during colonoscopy (A) and with the support of DISCOVERY (PENTAX Medical, Tokyo, Japan) artificial intelligence system  
(B) which generates a small box on each frame where a polyp is detected.

A B

Fig. 2. A 3-mm polyp is visualized during colonoscopy (A) and with the support of DISCOVERY (PENTAX Medical, Tokyo, Japan) artificial intelligence system  
(B) which generates a small box on each frame where a polyp is detected.

A B



331

Milluzzo SM et al. Artificial Intelligence in Colonoscopy

cases within 3 years of an apparently negative colonoscopy.10 
CAD using AI and deep learning techniques was designed to 
reduce human variability. In this sense, AI is going to be rap-
idly embedded in routine endoscopy and in CRC screening, 
initially, with two main goals: (1) detection and (2) histological 
characterization. 

To pass the “test”, AI systems must show that they are accu-
rate, sensitive, specific, and have a fast latency time. Ultimately, 
the performance of AI should be evaluated in trials with long-
term follow-up with the incidence and mortality from CRC as 
outcomes. A summary of the most relevant literature is pre-
sented in Tables 1, 2, and 3.

Table 3. Studies that Evaluated the Role of Artificial Intelligence in Ulcerative Colitis 

Study Study design Number of patients 
or polyps

Sensitivity 
(%)

Specificity 
(%)

Accuracy 
(%) Evaluation

Maeda et al. (2019)30 Retrospective 87 patients 74 97 91 Histologic inflammation

Ozawa et al. (2019)31 Retrospective 114 patients AUROCs = 0.86 and 0.98 to identify 
Mayo 0 and 0–1

Mucosal disease activity 
(Mayo score)

Stidham et al. (2019)32 Retrospective 3,082 83 96 - Endoscopic severity

Takenaka et al. (2020)33 Prospective 875 93.3 87.8 90.1 Endoscopic remission

AUROCs, areas under the receiver operating characteristic curves.

Table 2. Studies that Evaluated the Role of Artificial Intelligence for Polyp Characterization 

Study Study design Number of patients or polyps Sensitivity (%) Specificity (%) Accuracy (%)

Tischendorf et al. (2010)22 Prospective 128 patients 90 70 -

Kudo et al. (2020)25 Retrospective 100 polyps 96.6 94.3 96

Chen et al. (2018)26 Prospective 284 polyps 96.3 78.1 90.1

Byrne et al. (2019)27 Retrospective 125 polyps 98 83 94

Shahidi et al. (2020)28 Prospective 644 polyps 90.3 90.9 89.6

Zachariah et al. (2020)29 Prospective 634 polyps 95.7 89.9 93.6

Table 1. Studies that Evaluated the Role of Artificial Intelligence for Polyp Detection 

Study Study design Number of patients or 
polyps

Sensitivity 
(%)

Specificity 
(%)

Accuracy 
(%)

ADR (%)
(AI vs. standard)

Wang et al (2015)11 Retrospective 43 polyps - - 97.7 -

Fernández-Esparrach et al. (2016)12 Retrospective 31 polyps 70.4 72.4 - -

Misawa et al. (2018)13 Retrospective 155 polyps 90 63 76.5 -

Urban et al. (2018)14 Prospective 4,088 polyps 96.9 88.1 96.4 -

Wang et al. (2019)15 RCT 1,058 patients 94.4 95.2 - 29.1 vs. 20.3
p<0.001

Wang et al. (2020)16 RCT 1,046 patients - - - 34 vs. 28
p=0.03

Liu et al. (2020)17 RCT 1,026 patients - - - 39 vs. 23
p<0.001

Gong et al. (2020)18 RCT 704 patients - - - 16% vs. 8%
p=0.0010

Hassan et al. (2020)19 Prospective 105 patients 99.7 99 - -

ADR, adenoma detection rate; AI, artificial intelligence; RCT, randomized controlled trial. 
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COMPUTER-AIDED POLYP DETECTION 
IN COLONOSCOPY

The preliminary AI-based systems were designed to assist 
the endoscopists in improving polyp detection. Early projects 
focused on techniques developed by differentiating polyp fea-
tures (i.e., color, shape, texture) from the surrounding normal 
mucosa.  For example, Wang et al.11 developed a Polyp-Alert 
software system, which used a color–texture analysis method 
(local binary pattern and opponent color local binary pattern) 
to continuously analyze image streams at 10 frames/sec, to 
identify polyps using their edges. Despite the high accuracy 
(97.7%) and short latency (0.02 sec), this computer-aided de-
tection (CADe) was burdened by a high number of false-posi-
tives, which was caused by artifacts owing to inadequate bowel 
preparation or normal findings (i.e., the folds, appendicular 
orifice, ileocecal valve). Other attempts were performed by 
Fernández-Esparrach et al.12 who assessed the potentiality of 
the Window Median Depth of Valleys Accumulation (WM-
DOVA) energy maps system that defined polyps as protru-
sions in the mucosa and their boundaries as intensity valleys. 
Polyp detection was achieved with 70.4% sensitivity and 72.4% 
specificity. 

Handcrafted AI algorithms have been surpassed and are 
going to be replaced by convolutional neural networks (CNN) 
with the ability to perform real-time polyp detection. CNN is 
a deep learning algorithm, which can take in an input image, 
assign importance (learnable weights and biases) to various 
aspects/objects in the image, and differentiate one from the 
other. CNN, for instance, separates the various characteristics 
of the image (red, green, and blue colors, narrow-band imag-
ing [NBI], chromoendoscopy, depression or elevation, etc.) in 
multiple separate algorithms in the hidden layers of the NN 
that works in parallel to enforcing or weakening the probabili-
ty of a certain output.

Several studies reported the results of different systems. 
For example, Misawa et al.13 developed an original CADe 
system based on three-dimensional CNN, which was trained 
on white light endoscopy (WLE) images. They used a dataset 
consisting of 73 colonoscopy video sequences, including 155 
polyps. Moreover, flat lesions populated the dataset. The sys-
tem showed 90% sensitivity and 63% specificity, with 76.5% 
accuracy. In a prospective study, Urban et al.14 trained the AI 
on a database of images without polyps and then retrained it 
on images with polyps, using both WLE and NBI. This CADe 
system detected the polyps with a processing time of 10 ms/
frame. The accuracy was 96.4%, and area under the curve 
(AUC) of 0.991. Interestingly, the system was also tested on 20 
colonoscopy videos. Three colonoscopists (ADR >50%) were 

asked to identify all polyps in 9 colonoscopy videos, without 
benefit of the CNN. Their “polyp encounters” were then com-
bined by consensus. CNN-overlaid videos were generated by 
superimposing a small green box on each frame where a polyp 
was detected. A senior expert (ADR ≥50%, >20,000 colo-
noscopies), who was used as reference, was asked to review 
the CNN-overlaid videos and judge the true polyp presence. 
In the first dataset of 9 videos, 28 polyps were removed by the 
colonoscopist. The four experts identified 8 additional polyps 
without CNN assistance that had not been removed, and iden-
tified an additional 17 polyps with CNN assistance. The CNN 
false-positive rate was 7%. The authors concluded that CNN 
assistance is able to affect ADR, highlighting polyps that could 
potentially be overlooked. 

Similarly, promising results were confirmed in three recent 
randomized controlled trials (RCTs) by Wang et al. and Liu 
et al.15-17 In a study published by Wang et al.,15 1,058 patients 
were randomized to standard colonoscopy (n =536) and 
colonoscopy with CAD (n=522). The primary outcome was 
ADR. The real-time AI system (Shanghai Wision AI Co., 
Ltd., Shanghai, China) was designed on a deep learning ar-
chitecture and showed a per-image sensitivity and specificity 
of 94.38% and 95.92%, respectively. The AUC was 0.984. In 
this study, the authors showed that CAD-assisted colonosco-
py significantly improved ADR (29.1% vs. 20.3%, p<0.001) 
and the mean number of adenomas per patient (0.53 vs. 0.31, 
p<0.001). It should be noted that the higher ADR was main-
ly due to a higher number of diminutive adenomas (185 vs. 
102, p<0.001), although there was no statistical difference for 
bigger adenomas (77 vs. 58, p=0.075). Correspondingly, the 
number of hyperplastic polyps was significantly increased (114 
vs. 52, p<0.001). The same system was validated by Wang et 
al. in another double-blind randomized trial.16 Patients were 
randomly allocated to colonoscopy with either the CADe 
system or the sham system. The primary outcome was the 
ADR that was 34% for the CADe group and 28% for the sham 
system (odds ratio [OR], 1.36; 95% confidence interval [CI], 
1.03–1.79; p=0,030). Polyps initially missed by the endosco-
pist, but identified by the CADe system were small, isochro-
matic, flat, had unclear borders, were hidden by folds, and 
were on the edge of the visual field.

Similarly, in the study by Liu et al.,17 1,026 patients were 
prospectively randomized for colonoscopy with the CADe or 
without (control group). The polyp detection rate (PDR) was 
the primary outcome. The CADe system (Henan Xuanweit-
ang Medical Information Technology Co., Ltd., Zhengzhou, 
China) was developed on the basis of indepth learning archi-
tecture that was trained on 535 videos with and without pol-
yps. The PDR in the control and CAD groups were 0.28 and 
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0.44, respectively (OR=1.57; 95% CI, 1.586–2.483; p<0.001). 
The ADR in the control and CADe groups was 0.23 and 0.39, 
respectively (OR =1.64; 95% CI, 1.201–2.220; p <0.001). Of 
note, as shown by Wang et al.,15 although the average number 
of adenomas and the number of small adenomas and hyper-
plastic polyps significantly increased (p <0.01), the number 
of larger adenomas (>10 mm) was comparable between the 
groups (p>0.05). This may give rise to the issue regarding the 
clinical relevance of the adjunctive polyps detected by the AI-
based systems as well as the cost–benefit ratio (i.e., AI may 
result in the useless removal of hyperplastic polyps) in which 
the PDR improvement needs to be further evaluated.

The ENDOANGEL system18 was developed using deep 
neural networks (DNN). It was designed not only to increase 
ADR, but also to actually assist the endoscopist in improving 
the colonoscopy quality, monitoring withdrawal speed, timing 
of colonoscopy intubation and withdrawal, and reminding en-
doscopists of blind spots caused by endoscope slipping. Stan-
dard endoscopes from Olympus Optical (Tokyo, Japan) and 
Fujifilm (Kanagawa, Japan) were used for training. The system 
was tested in a single-center, prospective, randomized trial by 
Gong et al.18 Patients were randomized to either colonoscopy 
with the ENDOANGEL system or unassisted colonoscopy 
(control). The primary endpoint was ADR. Sixteen percent of 
patients allocated in the ENDOANGEL-assisted colonoscopy 
were diagnosed as having one or more adenomas compared 
with 8% allocated in the control colonoscopy (OR, 2.30; 95% 

CI, 1.40–3.77; p=0.0010). 
The vast majority of CNN-based systems are still in a 

proof-of-concept stage and they need to be further evaluat-
ed for their integration in the endoscopic towers. GI Genius 
(Medtronic, Minneapolis, MN, USA) is the only available 
system for routine clinical practice in selected countries. GI 
Genius was recently validated by Hassan et al.19 on 338 polyps 
(168 adenomas or serrated polyps) from 105 patients. The 
algorithm was previously trained on WLE videos of 2,684 
histologically confirmed polyps from 840 patients who under-
went high-definition white-light colonoscopy. Patients were 
randomized between the validation and training groups. For 
the validation phase, 338 polyps (168/338 adenomas or sessile 
serrated adenomas, 49.7%) from 105 patients were used. The 
overall per lesion sensitivity was 99.7%, and the false-positive 
rate was less than 1%. The AI system anticipated the polyp 
detection against the average of the five reference endosco-
pists in 82% of cases. The difference in reaction time was 
−1.27±3.81 sec. The study confirms that GI Genius is able to 
virtually detect all the lesions diagnosed by expert endosco-
pists with an anticipation of the diagnosis compared with the 
human reader in the vast majority of cases, with a negligible 
rate of false-positive cases. Similarly, another system has been 
designed and is going to be released in the next few months: 
DISCOVERY (PENTAX Medical, Tokyo, Japan).20 DISCOV-
ERY is intended to support endoscopists in polyp or lesion 
detection. It incorporates the AI based on a DNN in a panel 

Fig. 3. DISCOVERY (PENTAX Medical, Tokyo, Japan) incorporates the artificial intelligence based on a deep neural network in a panel PC with a 32 inch LCD 
display. This panel PC can be connected with a signal cable (DVI/ HD-SDI) to each PENTAX HD+ video processor for integration and is intended to be used as a 
secondary monitor.
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PC with a 32 inch LCD display (Fig. 3). This panel PC can be 
connected to each PENTAX HD+ video processor for inte-
gration and is intended to be used as a secondary monitor. The 
system was trained using 10,467 colonoscopy images from 
504 polyps. To evaluate DNN’s real-time capability to detect 
polyps, a set of 45 videos has been used. To ensure a realistic 
evaluation, 5 out of the 45 videos did not include any polyp to 
estimate the system’s false-positive rate. Polyps that populated 
the videos were representative of all the morphologic patterns, 
including flat morphology, and either diminutive (≤5 mm) or 
small (6–10 mm) polyps. The DNN’s sensitivity and specificity 
for polyp detection was 90% and 94.6%, respectively. AUC for 
classification was 97%. DISCOVERY is going to be released in 
the coming months, and a multicenter study will be conducted 
to further investigate the system. 

Recently, a meta-analysis that evaluated the role of AI for 
polyp detection was published. Overall, the AUC of AI for 
polyp detection was 0.90 (95% CI, 0.67–1.00). The AI sensitiv-
ity for polyp detection was 95.0% (95% CI, 91.0%–97.0%) and 
specificity was 88.0% (95% CI, 58.0%–99.0%). When limiting 
the analysis to studies that used a deep learning model (i.e., 
CNN models), the AUC, sensitivity, and specificity of AI for 
polyp detection was 0.91 (95% CI, 0.73–1.00), 94.4% (95% CI, 
89.9%–97.0%), and 91.9% (95% CI, 44.3%–99.4%), respective-
ly.21 

COMPUTER-AIDED POLYP 
CHARACTERIZATION IN 
COLONOSCOPY

In addition to detection, AI has been designed for auto-
mated polyp characterization (CADx). The AI-assisted clas-
sification of colorectal polyps using NBI and magnification 
was initially evaluated by Tischendorf et al.,22 who analyzed 
209 polyps. The evaluation was based on three features: mean 
vessel length, mean vessel circumference, and mean bright-
ness at detected blood vessels as well as the combination of 
all three features. The primary outcome was to distinguish 
non-adenomatous from adenomatous polyps. Histology was 
the gold standard and the comparison was between CADx 
and expert endoscopists who were blinded to the histology. 
CADx showed a sensitivity of 90% and specificity of 70% in 
differentiating neoplastic from non-neoplastic lesions. How-
ever, human observers performed better, with a sensitivity 
and specificity of 93.8% and 85.7%, respectively. Several sub-
sequent studies, mainly from Japan, were developed using the 
endoscopic magnification. Although some of these studies re-
ported promising results, the generalizability of these systems 

is limited since magnification endoscopy is available only in 
few, highly specialized centers. 

Endocitoscopy permits cellular visualization in vivo provid-
ing an ultra-magnification (×450), which allows visualization 
of the nuclei. Several CAD systems for endocitoscopy (EC-
CAD) were evaluated. The sensitivity, specificity, and accuracy 
for the identification of neoplastic colonic lesions ranged 
between 89.0%–92.0%, 79.5%–88.0%, and 81.0%–89.0%, re-
spectively.23 None of the systems presented in literature were 
able to show any significant difference when compared with 
expert evaluation. EC-CAD systems were also developed to 
predict invasive cancer from adenomatous lesions. A proper 
evaluation in this sense is crucial in selecting lesions where the 
endoscopic treatment is not appropriate. 

The combination of EC-CAD with NBI was evaluated by 
Mori et al.24 They reported a preliminary experience in 4 pa-
tients using a CADx-based (EndoBRAIN; Cybernet Systems 
Co., Tokyo, Japan) on the microvascular aspect at NBI images. 
These results were confirmed in a larger study by Kudo et 
al.25 on 100 polyps from 89 patients. The authors performed 
a retrospective study wherein they compared the diagnostic 
performance of the EndoBRAIN to the diagnostic perfor-
mance of 30 endoscopists (20 trainees and 10 experts). The 
endoscopists were asked to evaluate the images using white-
light microscopy, endocytoscopy with methylene blue stain-
ing, and endocytoscopy with NBI. The EndoBRAIN was used 
to assess endocytoscopic images with methylene blue staining 
and NBI, but not with white-light. The accuracy of the Endo-
BRAIN and endoscopists in distinguishing neoplasms from 
non-neoplasms was the primary outcome. Pathology analysis 
was the gold standard. All the accuracy parameters (sensitiv-
ity, specificity, accuracy, positive predictive value [PPV], and 
negative predictive value [NPV]) of the EndoBRAIN with 
methylene blue were significantly greater than those of the 
endoscopy trainees and experts. The accuracy parameters of 
the NBI-EndoBRAIN were all significantly higher than those 
of the endoscopy trainees. However, when compared with the 
performance of the experts, only the sensitivity and NPV were 
significantly higher, while the other values were comparable. 
As previously mentioned for magnifying endoscopy, also the 
generalizability of these results is limited since endocytoscopy 
is available only in highly specialized centers. 

More recently, optimized technologies were reported in 
the literature, all having promising accuracy parameters.  
For example, Chen et al.26 designed a DNN CAD system 
to characterize diminutive polyps using NBI with optical 
magnification. Histology was the reference standard. They 
compared the polyp’s characterization between the NBI-
based CADx and novel and expert endoscopists. AI was faster 
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(0.45±0.07 sec) than experts (1.54±1.30 sec) and novel en-
doscopists (1.77±1.37 sec). It correctly classified the neoplas-
tic histology with 96.3% sensitivity and 78.1% specificity. The 
accuracy was 90.1%. The system was able to better character-
ize the polyps than novel endoscopists and was comparable 
to the experts. Deep learning was also developed for standard 
colonoscopies (i.e., without magnification), with or without 
NBI. This represents a huge step forward since the algorithm 
may enrich instruments that are already used in endoscopic 
services to date. Diminutive polyps represent one of the most 
attractive areas of interest in the field of AI. The approach in 
case of small lesions (<5 mm) is still under discussion, and a 
unique management is far from standardization. AI may play 
a pivotal role in the identification of lesions that may benefit 
from “resect and discard” and/or “diagnose and leave” strat-
egies. Byrne et al.27 described a DNN model for the real-time 
assessment of colorectal polyps. The model was developed on 
videos containing colorectal polyps captured with 190 series 
Olympus (Olympus Co., Tokyo, Japan) colonoscopies using 
NBI. Video sequences were populated by polyps of varying 
sizes. Videos of the colonic mucosa without polyps were also 
used to train the model. The NICE classification was used to 
classify polyps and for training the deep learning machine. 
For testing, 158 consecutive diminutive polyps were included. 
Pathological examination was the gold standard. The accura-
cy, sensitivity, specificity, NPV, and PPV for the identification 
of adenomas was 94.0% (95% CI, 86.0%–97.0%), 98.0% (95% 
CI, 92.0%–100%), 83.0% (95% CI, 67.0%–93.0%), 97.0% and 
90.0%, respectively. The system operates in real-time, with 
an unremarkable delay of 50 ms/frame. The same system 
was also used in the study by Shahidi et al.,28 who aimed to 
estimate the discrepancy between endoscopic and pathologic 
diagnoses of lesions ≤3 mm. A total of 644 lesions ≤3 mm, 
diagnosed during optical evaluation as adenomatous, were 
included. Discrepancy between endoscopic and pathologic 
diagnoses occurred in 28.9% of the lesions. Overall, there was 
agreement between the model and the endoscopic diagnosis 
in 89.6% of the lesions. In those cases, where the endoscopic 
and pathologic evaluations were in disagreement, the model 
agreed with the endoscopic diagnosis in 90.3% of the lesions. 
In approximately 91.0% of the lesions identified on pathology 
as normal mucosa, the algorithm agreed with the endoscopic 
diagnosis (i.e., adenomatous lesion). The results of this study 
are relevant. In fact, although AI needs to be optimized, if 
these results will be confirmed by larger studies, AI may be 
used to arbitrate between endoscopic and pathologic diagno-
ses and offer an appropriate surveillance colonoscopy interval.

Other studies evaluated the role of CNN in distinguishing 
real-time diminutive polyps. Zachariah et al.29 designed a 

CNN developed to classify adenomatous polyps versus non 
adenomatous polyps (i.e., hyperplastic and sessile serrated pol-
yps). The training data set was populated by 5,278 diminutive 
polyp images (3,310 adenomatous polyps; 1,968 serrated pol-
yps). The CNN model was tested using NBI vs. WLE. Pathol-
ogy evaluation was the gold standard. The overall accuracy, 
sensitivity, specificity, PPV, and NPV of the model for adeno-
matous polyps was 93.6% (95% CI, 92.9%–94.2%), 95.7% (95% 
CI, 95.1%–96.4%), 89.9% (95% CI, 88.6%–91.3%), 94.1% (95% 
CI, 93.3%–94.9), and 92.6% (95% CI, 91.5%–93.8%), respec-
tively. The model showed a comparable accuracy when used 
with WLE and NBI: 91.9% (95% CI, 90.2%–93.6%) and 94.0% 
(95% CI, 93.2%–94.7%), respectively. 

To summarize the results, a meta-analysis was recently 
published with the aim to evaluate the accuracy of AI on his-
tology prediction and detection of colorectal polyps.21 Over-
all, the pooled sensitivity and specificity on polyp histology 
prediction is 92.3% (95% CI, 88.8%–94.9%) and 89.8% (95% 
CI, 85.3%–93.0%), respectively. The AUC of the AI in the 
prediction of polyp histology was 0.96 (95% CI, 0.95–0.98). 
The sensitivity and specificity when dealing with diminutive 
polyps were 93.5% (95% CI, 90.7%–95.6%) and 90.8% (95% 
CI, 86.3%–95.9%), respectively. The NPV was 0.91 (95% CI, 
0.89–0.94). 

ROLE OF ARTIFICIAL INTELLIGENCE IN 
INFLAMMATORY BOWEL DISEASE

Objective evaluations of ulcerative colitis (UC) based on a 
combination of endoscopic and histologic assessments are cru-
cial in selecting the type of treatment and in monitoring the 
therapeutic response. Several studies showed that endoscopic 
patterns are predictive of the clinical outcomes of UC. Howev-
er, endoscopic evaluations often differ between endoscopists 
where inter- and intra-observer variability is high, and biopsies 
are often performed for histologic evaluation of the disease ac-
tivity. Recently, several studies have reported on an NN system 
to assess endoscopic severity in UC.30-33 For instance, the po-
tential role of AI for the evaluation of the inflammation in UC 
was investigated by Maeda et al.30 The AI adopted in this study 
was first trained on 525 sets of 525 segments from 100 patients 
who underwent colonoscopy using endocytoscopy with biop-
sy. The system was then tested on 87 patients to predict his-
tologic inflammation. It provided a diagnosis for 100% of the 
validation images. The processing time was 40 ms/frame. The 
overall sensitivity, specificity, and accuracy was 74.0% (95% 
CI, 65.0%–81.0%), 97.0% (95% CI, 95.0%–99.0%), and 91.0% 
(95% CI, 83.0%–95.0%), respectively. The CAD for segments 



336

with a Mayo endoscopic score of 0 or 1 showed an overall 
diagnostic sensitivity, specificity, accuracy, PPV, and NPV of 
65.0% (95% CI, 54.0%–75.0%), 98% (95% CI, 94.0%–99.0%), 
91.0% (95% CI, 88.0%–94.0%), 87.0% (95% CI, 76.0%–94.0%), 
and 92.0% (95% CI, 89.0%–95.0%), respectively. Studies were 
also performed using algorithms applied to standard colonos-
copies. For example, Ozawa et al.31 performed a study aimed to 
evaluate if a CNN-based algorithm is reliable in classifying the 
endoscopic disease activity in patients with UC. The model 
was previously trained using 26,304 images from 841 patients 
with UC with different disease activities. The validation phase 
was performed on 114 patients with UC. The processing time 
was 20 ms/frame. Seventy-three percent of the Mayo 0 images, 
70% of the Mayo 1 images, and 63% of the Mayo 2–3 images 
were correctly classified with appropriate Mayo scores by the 
CNN. The AUC was 0.86 (95% CI, 0.84–87) when differen-
tiating Mayo 0 from 1–3 and 0.98 (95% CI, 0.97–98) when 
identifying Mayo 0–1 versus 2–3. The issue of grading the 
endoscopic severity of UC was also evaluated by Stidham et 
al.,32 who aimed to define whether deep learning systems are 
able to grade the endoscopic severity of UC to the same accu-
racy as experienced endoscopists. The deep learning model 
was developed to categorize images into two clinically relevant 
groups: remission (Mayo 0 or 1) and moderate/severe disease 
(Mayo 2 or 3). The AI system performed similarly with the 
experienced endoscopists in grading the endoscopic severity 
of UC, being able to distinguish endoscopic remission from 
moderate-to-severe disease with an AUC of 0.966 (95% CI, 
0.967–0.972), PPV of 0.87 (95% CI, 0.85–0.88), sensitivity of 
83.0% (95% CI, 80.8%–85.4%), specificity of 96.0% (95% CI, 
95.1%–97.1%), and NPV of 0.94 (95% CI, 0.93–0.95). Takena-
ka et al.33 developed an AI system aimed to predict histologic 
remission from endoscopic images in UC patients. A DNN 
was trained with 40,758 images of UC colonoscopies. Target-
ed biopsies for surveillance were obtained, and the histologic 
data were linked to three consecutive images from biopsy site 
during colonoscopy. All this information was used to train 
the DNN, which learned the endoscopic images and their 
corresponding scores. For the validation phase, a total of 875 
UC patients were prospectively enrolled. The accuracy of the 
system was comparable to that of endoscopists in evaluating 
mucosal inflammation in patients with UC. In fact, the mod-
el identified patients with endoscopic remission with 90.1% 
accuracy (95% CI, 89.2%–90.9%), using findings reported by 
endoscopists as the reference standard. In addition, the system 
was able to predict histologic remission without the need for 
biopsy. In fact, the model identified patients in histologic re-
mission with 92.9% accuracy (95% CI, 92.1%–93.7%), using 
pathologic report as the reference standard. The Kappa coeffi-

cient between the model and the pathologic results was 0.859 
(95% CI, 0.841–0.875). 

FUTURE PERSPECTIVE

Early attempts of CAD for colonoscopy have been proposed 
since 1990, but AI became feasible in real-life activities only 
with the most recent development of deep learning and CNN. 
Deep learning comprises complex AI systems composed of 
multiple processing layers designed to learn representations of 
data with multiple levels of abstraction. CNN uses a complex 
deep learning architecture composed of hierarchical feature 
representation of several layers (called “feature maps”) and 
“neurons” that connect with the adjacent neurons from the 
previous layers (receptive field). This system is able to perform 
filtering and pooling operations, learning automatically from 
the data to classify images and detect objects.34-36 For a large-
scale clinical application, an automatic polyp detection system 
should have high sensitivity, high specificity (i.e., low false-pos-
itive rate), near real-time response, and on-screen alerting 
system. A system with suboptimal specificity would have the 
potential consequences of being unreliable and disturbing for 
the endoscopist, while a low AI-related false-positive rate is 
likely to exclude any relevant detrimental effect of AI on with-
drawal time. Conversely, an inadequate sensitivity would have 
an impact on the PDR. Moreover, real-time detection should 
be efficient and the time of analysis is preferably fast, with no 
perceptible delay to the endoscopist.  

The clinical implications of AI in endoscopy and colonos-
copy, in particular, are relevant when assuming that most of 
the adenoma miss rates at colonoscopy as well as variability 
in ADR between endoscopists are related to perceptual er-
rors, owing to the fact that individual endoscopists may fail to 
recognize polyps. Factors that may explain such limitations 
include an inaccurate human visual perception, fatigue, dis-
traction, and alertness during colonoscopy. AI appears as the 
best way of mitigating a suboptimal performance of colonos-
copy, provided that polyps are actually visible in the monitor 
(Figs. 1 and 2). AI will not be able to compensate the risk of a 
suboptimal colonoscopy quality in case of a suboptimal explo-
ration of the colorectal mucosa, inadequate level of cleansing, 
short withdrawal time, and/or inadequate colonoscopic tech-
nique. All these factors remain prerequisites to maximize the 
performance of AI. Several studies were recently published, 
all addressing the performance of different systems in polyp 
detection. Interestingly, overall, the number of diminutive ad-
enomas detected by the AI was higher than that of the endos-
copists. In the most recent RCTs, AI did improve the ADR and 
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PDR; however, it did not significantly increase the number of 
larger adenomas.15,17 Indeed, it increased the number of dimin-
utive polyps detected, including hyperplastic polyps, which 
have no clinical relevance. For example, Wang et al. confirmed 
that CADe was associated with an increase in ADR, PDR, and 
the mean number of polyps and adenomas per colonoscopy 
compared with the control group.15 However, such increase 
was mainly due to higher detection of diminutive adenomas, 
suggesting that small polyps are more likely to be missed 
during colonoscopy rather than larger polyps. The authors 
also showed a higher detection of small hyperplastic polyps, 
which may lead to additional unnecessary polypectomies. 
Although diminutive adenomas have a low risk of neoplastic 
progression, the increase in overall ADR may result in: (1) 
eventually contribute to achieve a “clean” colon, (2) contribute 
to a decreased risk of interval cancer, (3) play consequences on 
the “protective” role of colonoscopy, and (4) have an impact on 
surveillance intervals. 

In addition, when dealing with diminutive polyps, in the 
future, systems developed for polyp detection may be com-
bined and integrated with a CADx system to complete all the 
processes, that is, to detect, diagnose, and disregard strategy to 
avoid unnecessary polypectomies. CADx can potentially allow 
a resect-and-discard strategy for diminutive/hyperplastic pol-
yps and/or precluding unnecessary polypectomies, which has 
been estimated by Hassan et al.,19 promising an increase of $33 
million dollars in savings per year in the United States alone. 
CADx can also help endoscopists by discouraging them from 
performing inappropriate endoscopic resections and suggest-
ing to perform only targeted biopsies in case of advanced neo-
plastic lesions. In this sense, Byrne et al.27 reported an accuracy 
and sensitivity for polyp characterization of 94% and 98%, 
respectively. Detection and characterization are considered a 
priority and represent the major fields of interest of AI in low-
er GI endoscopy. 

As previously mentioned, the quality and technique of 
colonoscopy remain the prerequisites to maximize the perfor-
mance of AI. AI is not intended to replace quality. Neverthe-
less, AI might be useful to help the endoscopists to improve 
the colonoscopy quality. AI has been initially designed for 
real-time histological classification and detection of polyps, 
with the aim to improve ADR and allow real-time polyp 
diagnosis. Limited research has been performed to evaluate 
the role of deep learning in monitoring or standardizing the 
endoscopists’ technical skills. However, AI may be of para-
mount importance to monitor and guide the endoscopists 
in real-time to increase the overall colonoscopy quality. The 
ENDOANGEL was designed to guide the endoscopists in im-
proving the colonoscopy quality and mitigate skill variations. 

The final goal is to homogenize technical variations of endos-
copists and alert them in case of suboptimal quality. Although 
preliminary, the study by Gong et al.18 suggests how wide the 
field of application of AI could be, which will not be limited to 
polyp detection and characterization alone, but may interface 
with other issues, including training and quality monitoring. 
Small increments in the colonoscopy quality may have signifi-
cant effects in any CRC screening program. In this regard, and 
looking at the positive effect on the ADR described in several 
trials, the use of AI might be an important quality assurance 
for screening colonoscopy.

The integration of AI in routine clinical practice will be chal-
lenging. For its widespread use, systems should not depend on 
specific light source, but they should be available across multi-
ple scope manufacturers without requiring specialized scopes, 
apart from the processing unit connected to the video source 
and monitor. There will be regulatory and reimbursement dif-
ficulties to overcome. Medico-legal issues will also need to be 
addressed. There are only few recent studies on automatic pol-
yp detection and characterization, and they have small sample 
sizes. They came from proof-of-concept projects, and systems 
rarely were tested in real-life situations. Performances of the 
systems achieved on still images or pre-recorded videos in a 
lab setting may not directly translate to live testing. Real-life 
data are needed. Evaluation of AI systems in a real-time colo-
noscopy requires rapid processing time that may not always 
be feasible or, at least, may not be feasible for all the systems 
described in literature. Trials have used heterogeneous study 
designs and outcomes. This is a consequence and reflects the 
figures involved in the technology development, where both 
the engineers, who design the software, and the clinicians, 
who tailor it for clinical use, play a complementary role. Pre-
liminary studies frequently focused on per-frame detection 
rate. However, studies focusing on a clinical approach should 
emphasize the sensitivity, specificity, ADR, and PDR. 

Only few studies are randomized. The interest is rapidly 
increasing and probably with the emergence of deep learn-
ing, we will assist important advances in the years ahead. If 
prospective clinical trials will confirm the preliminary data al-
ready published, the approach to diminutive colorectal polyps 
will be revolutionized by enabling the “resect and discard” and 
“leave distal” strategies for distal colon hyperplastic polyps. 
On the other hand, we should admit that the increased ADR 
observed in most of the trials might not be generalizable in 
settings with high baseline ADR, since evidence has shown 
that a second observer strategy is controversial when the ADR 
is high.37 Standardization still remains an issue. The experts 
need to define thresholds. For example, the American Society 
for Gastrointestinal Endoscopy (ASGE) published a Preser-
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vation and Incorporation of Valuable endoscopic Innovations 
(PIVI) statement that recommends technologies that perform 
real-time polyp classification to have at least 90% NPV for ad-
enoma to be used in a “diagnose and leave” strategy.38 Research 
should focus on the most clinically meaningful questions 
and should standardize outcomes. To adopt AI in the clinical 
practice, more clinical trial data coming from multicenter trial 
based on live colonoscopies will be needed. To our knowledge, 
with the exception of the GI Genius system that is already 
available in some countries, the majority of technologies are 
still in their infancy and have not yet proven to reach a suf-
ficient diagnostic performance to be adopted in the clinical 
practice. Nevertheless, large players will enter the arena of AI 
in the coming months. The field will be demanding, but excit-
ing. 

CONCLUSIONS 

AI will hit considerably in medical applications. In the field 
of lower GI endoscopy, the evidence is mainly related to the 
detection and characterization of colonic lesions. Preliminary 
results are encouraging; however, larger, multicenter, random-
ized trials are needed to understand the real impact of AI in 
a real-life setting. In the coming months, new systems will be 
available and integrated into endoscopic towers. New areas of 
interest will emerge. The different technologies that are now 
separately developed to cover specific areas will hopefully be 
integrated into a single system.
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