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Abstract

Understanding how and why cultural diversity changes in human populations remains a cen-

tral topic of debate in cultural evolutionary studies. Due to the effects of drift, small and iso-

lated populations face evolutionary challenges in the retention of richness and diversity of

cultural information. Such variation, however, can have significant fitness consequences,

particularly when environmental conditions change unpredictably, such that knowledge

about past environments may be key to long-term persistence. Factors that can shape the

outcomes of drift within a population include the semantics of the traits as well as spatially

structured social networks. Here, we use cultural transmission simulations to explore how

social network structure and interaction affect the rate of trait retention and extinction. Using

Rapa Nui (Easter Island, Chile) as an example, we develop a model-based hypothesis for

how the structural constraints of communities living in small, isolated populations had dra-

matic effects and likely led to preventing the loss of cultural information in both community

patterning and technology.

Introduction

Rapa Nui is a small (164 km2) and remote island in the easternmost South Pacific (Fig 1) that

was colonized by Polynesian voyagers in the 12th-13th Century AD [1–4]. The island is per-

haps best known for the hundreds of multi-ton stone statues (moai) that the islanders con-

structed and transported over volcanic terrain to every part of the island and placed atop

massive stone platforms (ahu) [5–7]. The magnitude of Rapa Nui’s monumental architecture

is often seen as paradoxical in contrast with the island’s size. At just 23 km in its longest

dimension, the island can be easily traversed at a walking pace in under a day. Curiously, for

an island so small archaeological and ethnohistoric evidence indicates that pre-contact com-

munities did not interact in an island-wide, panmictic fashion, but rather were organized into

a series of distinctive subgroups. Traditionally, at least eight clan groups are known to have
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spatial territories in the late 19th and early 20th century [8,9]. Detailed analyses of the archaeo-

logical record, however, show that many aspects of community interaction likely occurred on

an even more localized basis with communities consisting of multiple small, dispersed, and rel-

atively autonomous groups [e.g., 10,11]. Analyses of spatial variability in biological and cul-

tural traits suggest an island population structured into many relatively independent

communities organized around ahu locations and their immediate local resources [e.g., 12,13].

This evidence points to a significant degree of diversity over small geographic areas on the

island in cultural and biological traits. While this diversity and degree of localized community

structure is unexpected for such a small island, no model-based hypotheses have been pre-

sented to account for these patterns.

Models of random drift offer a productive source of hypotheses for the patterns and distri-

bution of diversity. Drift, whether among inherited genetic or cultural variants, is the change

produced by the underlying mechanisms through which variation is sampled and passed on

through time. Understanding how random drift can shape cultural diversity has been a signifi-

cant focus of investigations for cultural evolutionary studies [e.g., 14–19]. Using this concept,

researchers have explored how one can detect drift from other factors that shape changes in

trait frequencies through time and space [e.g., 20–27]. As has been demonstrated, the effects of

Fig 1. Rapa Nui. The location of Rapa Nui in the easternmost corner of Polynesia.

https://doi.org/10.1371/journal.pone.0250690.g001
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drift depend on the size of the population. In large populations, drift tends to cause relatively

small changes in trait frequency. In small populations, however, drift can lead to rapid changes

in trait frequencies, potentially resulting in fixation or loss of variants. In these situations, drift

can produce dramatic differences in historic outcomes: two populations drawn from a single

population may begin with an identical frequency of traits, but can rapidly diverge in composi-

tion. As we explore in this paper, the effect of drift in small populations often leads to rapid

loss of richness (i.e., the number of variants within a population) and diversity (i.e., the distri-

bution of variants within a population) [28].

The factors that drive the effects of drift—population size in particular—have received a

great deal of attention as a possible explanation for cultural change. On one hand, some have

argued that demography and population sizes strongly shaped cultural history. For example,

Henrich [29] argues that the loss of technology among Tasmanian communities throughout the

Holocene was a consequence of drift acting on the reduced size of isolated populations. In an

opposite scenario, Powell et al. [30] have argued that increases in population sizes were part of

the process leading to the explosion of technology and cultural variants in the Late Pleistocene

[see also 31–33]. Yet, these kinds of explanations have been strongly criticized [e.g., 34–41].

While debate continues about whether changes in population size explain particular cases

of cultural variability, it is well-established that drift contributes to cultural change among

small and isolated populations [e.g., 31,42–47]. Population size, however, is not the only signif-

icant factor that can change the degree to which drift leads to changes in cultural variability.

Of particular note is the work of Premo [24,25,48,49], who has demonstrated how population

structure, in particular, plays a key role in shaping diversity in populations. Derex and col-

leagues [50–52] have also highlighted how the degree of population fragmentation maximizes

the rate of accumulation of cultural traits. In particular, partially connected populations can

produce highly diverse solutions to adaptive problems not possible in fully connected groups

[50].

Understanding the effect of drift on cultural variability is particularly important in the

study of island settings where populations tend to be isolated to relative degrees and limited in

size compared with continental contexts. Small and isolated island populations provide model

systems to study the relationship of limited population size, drift, community patterning, and

interaction on cultural diversity [e.g., 12,53–55]. For islands, the key aspect of drift and its

effects is not just on factors that favor cultural trait accumulation [50,56,57], but also those

favoring cultural trait retention [51,52]. The retention of traits can be beneficial when they con-

fer information about past states and cumulative cultural solutions to environmental and social

problems [58] (p.278). In isolated locations such as islands and where populations regularly

face uncertainty about future environmental conditions [e.g., 59–63], cumulative cultural

knowledge has great potential value. Thus, mechanisms and strategies that preserve diversity

and richness likely have fitness consequences. To examine factors that favor trait retention, we

present forward time simulations that permit us to configure populations and their interac-

tions in various ways. We first establish that the simulations conform to the expectations of the

drift model and the findings of previous researchers [e.g., 24,28,50,52]. We then use this model

to develop hypotheses about the history and community structure of Rapa Nui (Fig 1). Using

the cultural transmission models presented here, we hypothesize that the observed patterning

of community interaction may be related to the maintenance of cumulative cultural informa-

tion. We then review archaeological spatial data from Rapa Nui to evaluate community pat-

terns within the context of this model. While some components of the model predictions are

difficult to thoroughly test given the somewhat limited archaeological data, the overall patterns

in biological and artifactual remains suggest broad agreement with the core model expecta-

tions. We conclude with a discussion of these limitations as areas for future research.
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Networks, population structure, and drift

The effects of random drift on variability are mechanical and largely depend on population

sizes. Yet a significant factor is variability in population structure, which can play a key role in

shaping cumulative cultural diversity in populations [e.g., 24,25,48–52]. From these studies, it

is clear that the impact of drift is greatest when populations are well-mixed. Or conversely, the

greater the degree of structure within a population, the more likely that variability will be

retained, all other things held constant. The relation between population structure and drift

can be demonstrated by modeling population interaction as a network. Structure within a pop-

ulation can be represented by a network where vertices represent individuals (N) and edges

represent the potential interaction between those individuals (e.g., mating or social learning).

The structure of the network then varies by the number of edges between individual vertices

(k, the network degree), from immediate neighbors (k = 2) to all other vertices (k = N-1).

As Schneider and colleagues [28] have shown, the effects of drift on diversity can be coun-

tered by a combination of mutation (or innovation) rate and/or highly structured (low k) net-

works. Following Schneider et al. [28], given a population of size N and mutation rate μ, drift

dominates whenever 2μN⪡1. For 2μN⪢1, on the other hand, mutation dominates over the

effect of random drift, maximizing diversity. The transition occurs at a threshold, μc = 1/2N,

where the equilibrium distribution of trait frequencies becomes uniform. This threshold (kc) is

a critical point, above which random drift is insensitive to population spatial structure. Below

kc, small degrees of connectivity (k) offer high degrees of spatial structure that, when combined

with mutation rate, lead to increases in overall diversity [e.g., 64,65]. In this way, the diversity

of traits can be increased either by increasing the mutation rate at fixed k or by decreasing k at

a fixed mutation rate. Schneider et al. [28] (p.15) remark that “in consonance with classical

results, extreme restriction in [gene] flow is required for structuring to affect. In fact, the muta-

tion rate above which drift is overcome changes significantly only when the degree of the net-

work becomes very small.”

In terms of information retention within a population, our interest is not focused on the

effect of mutation (or innovation), but on population structure (k). While innovation serves to

increase overall diversity, its effect is to alter that information and thus the potential contribu-

tion it might have to future fitness consequences. Population structure, on the other hand,

reflects the way individuals or groups of individuals within a population interact and could

serve to retain information. To explore this effect, we need to model various consequences of

different configurations of populations. Given the aggregate nature of the archaeological

record, these models accommodate populations interacting at two different scales: individuals

interacting within a small community of well-mixed structure, and those communities inter-

acting amongst one another.

To illustrate how population structure affects diversity and the retention of traits, we used

simuPOP [66,67] to simulate drift within populations of varying configurations. SimuPOP is a

Python-based population simulator that allows one to evolve populations forward in time

under varying configurations of mutation, recombination, migration, and population/subpop-

ulation sizes. We based our simulations on a simple Wright-Fisher model [68,69] that explores

changes in a haploid population of fixed size, N. Traits are modeled as values within a single

locus, in a way that is equivalent to attributes along a single dimension [sensu 70]. In the

model, traits for individuals are derived from each time-step by sampling with replacement

from the pool of other individuals (i.e., the previous “generation”). This pattern of copying

traits is effectively random, implying that an individual has an equal probability to interact

with anyone else in the population. At each step when an individual copies traits, there is a

fixed chance of innovation where a new trait is introduced.
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To model variation in population structure, we divided the overall population into a vary-

ing number of subpopulations. Within each subpopulation, copying is assumed to be random

but is not allowed between subpopulations. With subpopulations, drift can produce a unique

combination of traits even if the initial conditions begin identically. Subpopulations can be

configured to interact with other subpopulations by copying traits depending on number and

pattern of links between points in the configuration (Fig 2). In simuPOP, we can also vary the

between-group interaction rate (modeled in SimuPOP as “migraption probability”), the likeli-

hood that individuals from a subpopulation copies traits from other subpopulations. All code

for these simulations is available at https://github.com/clipo/network-drift.

Our simulations explore the impact of 5000 individuals separated into a series of subpopu-

lations that interacted under varying configurations (S1 Table). Our simulations are designed

to approximate a single population on an island organized into a series of interacting groups

(subpopulations); a pattern evident on pre-contact Rapa Nui [e.g., 10,11,72]. To isolate the

effects of drift, we set the innovation rate to zero and began with identical subpopulations with

an even distribution of traits along a single locus. In the simulation, each timestep is composed

of an event where individuals in subpopulations copy traits randomly from within their sub-

population, and with a small probability of copying traits from another connected subpopula-

tion. Note that these timesteps are not meant to represent “biological” generations, but simply

repeated steps of maximum social learning among all individuals. To calculate a 95% confi-

dence interval for diversity measures of the population over time, we aggregated values from

multiple runs (e.g., 10 or more).

To evaluate the effects of network structure on diversity, at each time step we calculate

diversity in trait frequencies in subpopulations using an FST statistic [73], a widely used estima-

tor of Wright’s fixation index. The FST statistic is a measure of population differentiation based

on trait differences between populations. FST is calculated as the correlation of randomly cho-

sen trait values within the same subpopulation relative to that found in the entire population.

FST is calculated as:

FST ¼
s2

S

pð1 � pÞ
ðEq 1Þ

where p is the average frequency of the trait in the total population, σS
2 is the variance of the

frequency of the trait between different subpopulations. Values for FST range from 0 to 1. FST

Fig 2. An example of three network configurations of 25 subpopulations connected to varying degrees. These

networks are Watts-Strogatz small-world graphs [71]. The colored circles represent individual subpopulations and the

lines between the circles represent the interaction between subpopulations. This figure shows three configurations of

subpopulations connected just to neighbors (k = 2) to 10 other subpopulations (k = 10), and all other subpopulations

(k = 24). In these models, there is an equal probability of copying between all connected subpopulations.

https://doi.org/10.1371/journal.pone.0250690.g002
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should be close to zero if populations are identical in their trait distributions. Values of 1 indi-

cate significant differentiation among populations.

Schneider et al. [28] demonstrate that variability in network connectivity between individu-

als will affect overall diversity. For Rapa Nui, we were interested in examining whether com-

munity interaction patterns would promote the retention of information over time, thus

providing a potential benefit to communities under changing and unpredictable conditions.

To assess this possibility, we look at diversity, the distribution of traits in the population, and

richness, the number of traits in the population. Thus, in our simulation, we measure FST as

well as track richness values of traits in the overall population over time to see how network

structure affects these values.

Network configuration

We first simulated 5000 individuals divided into 200 subpopulations and varied the number of

connections between the subpopulations from k = 2, k = 50, and k = 120 (Figs 3 and 4). We

ran each simulation for 2000 timesteps and tracked diversity and richness measures for each

run. Multiple runs of the simulation provide a 95% confidence interval for the diversity and

richness values and are represented as the grey lines surrounding each statistic in the following

graphs. As seen in the figures, our results match the expectations of Schneider et al. [28]: the

magnitude of drift’s effect on variability depends on the degree of network connectivity. The

populations that are split into subpopulations with the lowest degree of connectivity (e.g.,

Fig 3. Change in diversity (as measured by FST) over 2000 timesteps of a simulation with 200 subpopulations under varying network connectivity conditions

(k = 2 [blue], k = 50 [green], k = 120 [red]). Subpopulations are initialized with an even distribution of traits. Due to drift, diversity increases the greatest in the set of

subpopulations that have the least degree of connectivity. In this and following figures, the grey bands around each data series represent the 95% confidence interval of

the statistic across all simulation runs.

https://doi.org/10.1371/journal.pone.0250690.g003
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k = 2) retain the greatest diversity and richness compared to those configurations with higher

degrees of connectivity.

Network distance

The connectivity between vertices is just one dimension of how spatial configurations of popu-

lations can alter the effect of drift. The more general component of network structure is the

overall distance between the vertices. The greater the distance between vertices (subpopula-

tions), the lower the overall effects of drift. Distance between vertices is determined by two fac-

tors. First, the number of edges between vertices contribute to distances—the more edges that

connect to each vertex, the shorter the distance and the greater the influence of drift on the

population overall. Second, we can vary the number of vertices (i.e., subpopulations) that

make up the population—the greater the number of vertices, the larger the distance between

any two locations given the network connectivity. Thus, populations divided into an array of

smaller subpopulations will experience the effects of drift less than those that are divided into

fewer, larger subpopulations.

We demonstrate this effect in a series of simulations varying the number of subpopulations

(Figs 5 and 6). Starting with a fixed population size of 5000, we vary the number of subpopula-

tions by 20, 50, and 200, but fix the connectivity between subpopulations to just neighbors

(i.e., k = 2). We then track diversity and richness over 5000 timesteps. As in the case where we

varied the degree of connectivity, the populations divided into more subpopulations led to

greater diversity and richness, even when subject to the same degree of connectivity.

Fig 4. Change in richness (number of different traits present in the population) over 2000 timesteps of a simulation with 200 subpopulations under varying

network connectivity conditions (k = 2 [blue], k = 50 [green], k = 120 [red]). In these simulations, populations begin with the same degree of richness. The loss of

traits is dramatically quicker for networks with a greater degree of connectivity.

https://doi.org/10.1371/journal.pone.0250690.g004
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The key finding is that the most critical factor in preserving variability in a population is the

graph degree: the number of vertices between any two edges. The higher the graph degree, the

greater the potential retention of diversity and richness. In a population structure modeled as a

graph, degree increases inversely with the number of interactions between subpopulations as

well as with the number of subpopulations. Given this factor, we expect population structures

that are modeled as large small-world graphs [71], where subpopulations are linked only to

neighbors, as particularly effective in retaining diversity and richness. In contrast, populations

structured as random graphs with a low degree as well as those with hierarchical structure will

tend to be less effective in retaining diversity and richness as a result of drift.

Interaction rate between communities

In the previous examples, we set the rate of interaction between communities (i.e., the proba-

bility of copying between subpopulations, referred to as the “migration rate” in the SimuPOP

simulation package) to constant at a low level (i.e., 0.25%/timestep). Increasing the probability

of interaction has a similar effect of increasing the impact of drift on population diversity and

richness. The greater the migration probability, the greater the effects of drift. Figs 7 and 8

show the results of a series of simulation runs in which we varied the probability of between-

group interaction (from 0.0001 to 0.005) and the degree of connectivity (from k = 5 to k = 190)

while keeping the number of subpopulations constant (N = 200). The values of the between-

group interaction rates are arbitrarily chosen to be low relative to the number of individuals in

each subpopulation. The choice of the number of subpopulations evaluated is also arbitrary

Fig 5. Changes in diversity over 5000 timesteps of a simulation in which the network connectivity is kept constant (k = 2) but the number of subpopulations is

increased (subpopulations = 20 [blue], subpopulations = 50 [green], subpopulations = 200 [red]). In these simulations, populations begin an even distribution of

traits. Diversity is substantially higher for network configurations with a larger number of subpopulations.

https://doi.org/10.1371/journal.pone.0250690.g005
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and selected to evaluate a range of at least one order of magnitude. The combination of low

between-group interaction probability and low connectivity between subpopulations is espe-

cially potent in retaining richness. This pattern is consistent with our findings on how the

number of subpopulations and rate of between-group interaction influence the richness and

diversity: significant network degree results in greater diversity and richness (Figs 9 and 10).

The retention of rare traits

Our simulation results demonstrate the expected effects of drift as presented by Schneider

et al. [28]: the degree of network distance and reduced interaction among subsets of individu-

als in a population strongly influences the retention of traits that would otherwise be lost to

drift. In remote and isolated island settings, loss of traits could have potential implications for

survival. The retention of traits would have particular value in the context of uncertainty or

facing problems that occur only rarely. If traits offer information about past conditions, then

they might offer advantages when similar conditions return. At the scale of an island popula-

tion, only one group on the island would need to retain traits and share and act on those traits

at an appropriate time. This condition would likely contribute to group-level fitness differ-

ences through differential sorting of community behavior. Thus, finding the conditions that

maximize the retention of rare traits potentially sheds light on ways island communities

adapted to serve this purpose.

Our simulations illustrated these conditions by exploring the configurations of the

between-group interaction rate and degree of connectivity that favor the retention of rare

Fig 6. Changes in richness over 5000 timesteps of a simulation with network connectivity kept constant (k = 2), but the number of subpopulations increased

(subpopulations = 20 [blue], subpopulations = 50 [green], subpopulations = 200 [red]). In these simulations, populations begin with the same degree of richness. The

loss of traits is dramatically quicker for networks with a fewer number of subpopulations.

https://doi.org/10.1371/journal.pone.0250690.g006
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information by examining the number of subpopulations that hold a unique trait not shared

with any other subpopulation. For each combination of k and rate of between-group interac-

tion, we ran the simulation for 2000 timesteps and then counted the number of subpopulations

that held a trait not found elsewhere. As expected, the combination of factors that favor reten-

tion of rare traits consists of low between-group interaction and low levels of connectivity

(Figs 11 and 12). Population structure, therefore, plays a key role in preserving rare but poten-

tially crucial information.

A model for population structure on Rapa Nui

Located almost 2000 km from Pitcairn Island, its closest intermittently inhabited neighbor, the

island is one of the most isolated places on Earth. The archaeological record suggests the popu-

lation was isolated soon after initial settlement, with little, if any, interaction with other islands

of Polynesia [3,72,74,75]. The island’s subtropical environment is also quite marginal, with

poor soil nutrients, limited surface freshwater, and no large coral reefs or a lagoon. While the

island never had abundant resources or rich soils, it was transformed by humans over ca. 500

years through the introduction of the commensal Pacific rat [76–78], forest clearance [79,80],

and the establishment of vast lithic mulch gardens for food production [e.g., 81–87]. Recent

Fig 7. The effects of network structure and the rate of between group-interaction on overall trait diversity within

a population. In this set of simulations, we divided populations of 5000 into a series of 200 subpopulations and varied

connectivity from k = 5 to k = 190 in steps of 5. For each value of k, we ran the simulation with between-group

interaction rates that ranged from 0.0001 to 0.005. The resulting data are the mean values of FST calculated from 10

runs at the point of 2000 timesteps. The values of diversity are shown as a heatmap where the high levels of diversity

are illustrated in dark blue and the low levels are in light blue. Diversity is best maintained under conditions of the low

rate of between-group interaction and low levels of connectivity.

https://doi.org/10.1371/journal.pone.0250690.g007
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Fig 8. The effects of trait network structure and between-group interaction rates on trait richness within a

population. In this set of simulations, we divided populations of 5000 into a series of 200 subpopulations and varied

connectivity from k = 5 to k = 190 in steps of 5. For each value of k, we ran the simulation with the rate of between-

group interaction ranging from 0.0001 to 0.005. The resulting data are the mean values of richness calculated from 10

runs at the point of 2000 timesteps. The richness of traits is best maintained under conditions of relatively low rates of

between-group interaction and low levels of k.

https://doi.org/10.1371/journal.pone.0250690.g008

Fig 9. Diversity measured by FST among a population at 2000 timesteps with network connectivity of k = 2 with a

variable number of subpopulations (5–200) and between-group interaction rates (0.0001–0.005).

https://doi.org/10.1371/journal.pone.0250690.g009
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studies show that freshwater sources available in groundwater discharge (springs) predict the

locations of ahu and point to community activities centered on this shared critical resource

[88–90]. Given the diminutive size of Rapa Nui and its relatively marginal environment, the

island never supported a particularly large population. While there have been claims of large

population sizes on the order of 17,500–30,000 individuals [e.g., 91–94], the archaeological

and historical evidence indicates a substantially smaller population likely around 5,000 maxi-

mum [3,8,10,11,72,95].

Unpredictability in rainfall brought critical uncertainty to agricultural productivity and the

availability of drinking water [11,12,96]. Based on an analysis of soil, historic rainfall data,

topography, and substrate age, Morrison [11] (p.184) shows that “between one time and two

times a decade many of the areas of the island are only marginally suitable for agriculture or

not suitable at all.” With such unpredictability in conditions necessary for survival (i.e., food

and water), past knowledge about problems and solutions would have selective value. For

example, if an individual knew how to survive an extended drought using particular cultiva-

tion or water management strategies, such as many unique strategies used by Rapanui people

Fig 10. The richness of traits in a population at 2000 timesteps with network connectivity of k = 2 with a variable

number of subpopulations (5–200) and between-group interaction rates (0.0001–0.005).

https://doi.org/10.1371/journal.pone.0250690.g010

Fig 11. The impact of network structure is determined by connectivity and rates of between-group interaction on

the number of traits found only in one subpopulation after 2000 timesteps.

https://doi.org/10.1371/journal.pone.0250690.g011
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[e.g., 87,89], that individual and their community would be better off than those without such

knowledge. The effects of drift on this small and isolated population would thus prove chal-

lenging for retaining cultural knowledge shared in oral traditions by individual-to-individual

social learning mechanisms. Yet, given that the Rapanui people thrived for 500 years before

the arrival of Europeans [1,3,97], islanders must have adapted strategies of community pat-

terning and the use of technology to mitigate the effects of drift.

Based on the effects seen in these simulations, we can examine how the population structure

of Rapa Nui could have led to trait retention despite the island’s limited size and isolated, small

population. Here, we model various configurations of the population using archaeologically

known spatial locations of communities. Following ethnohistoric accounts and archaeological

research [e.g., 6,10,11,72], we know that image ahu (statue platforms) served as a central fea-

ture of numerous small, dispersed communities. We used the locations of image ahu to model

varying degrees of interaction among these communities and evaluate the outcomes of the

overall island diversity and richness of shared traits. The model is parameterized with 150 sub-

populations corresponding to the number of ahu sites. It is important to note that the number

of distinct subpopulations is unknown and we simply use this high number of subpopulations

for the purposes of illustration. The key aspect of the model is not the absolute number of sub-

populations, but the degree of interaction between them (k). Fig 13 shows three configurations

of contact between ahu communities: from interactions that are limited only to intermediate

neighbors (k = 5), to a scenario of communities interacting regionally with 50 other locations

(k = 50), and to a configuration of communities interacting with nearly all other locations

(k = 140). Using 5000 individuals as the overall population of the island and a low rate of

between-group interaction (0.0001), we simulated interaction and tracked diversity and rich-

ness at the scale of the island.

Using these models, we simulated population interaction for 2000 timesteps under condi-

tions of low between-group interaction (i.e., 0.0001/copying event) and with no mutation

(Figs 14 and 15). Note that the length of the simulation time steps is somewhat arbitrary and

was selected simply to ensure convergence to a steady state. As expected, conditions of

extremely low connectivity (k = 5) resulted in a high degree of diversity (measured as FST) and

retained the greatest degree of richness over the span of the simulation. We also conducted a

parameter sweep to look at the relations between between-group interaction rate and k net-

work connectivity (Figs 16 and 17).

Overall, our findings suggest that if conditions on Rapa Nui favored the retention of infor-

mation, we would expect the patterns of interaction among communities to be highly localized

—strongly spatially biased to the point that individual communities would primarily share

Fig 12. The impact of network structure is determined by the number of subpopulations (k = 2) and the rates of

between-group interaction on the number of traits found only in one subpopulation after 2000 timesteps.

https://doi.org/10.1371/journal.pone.0250690.g012
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information internally and with limited interaction to just immediate neighboring

communities.

Rapa Nui community patterning

Given the consequences of drift structured by the interaction between subpopulations, do the

modeling results help us account for the observed archaeological record of the island? The

archaeological evidence suggests the number of subpopulations was high relative to the overall

small size of the island. Settlement pattern analyses of the surface archaeological record sup-

port the notion that pre-contact communities were remarkably small, numerous, and centered

around ahu locations [10,11,72]. While we lack comprehensive chronological information for

many ahu, a recent model-based synthesis of radiocarbon dates indicates that at least some of

these ceremonial platforms were built and used contemporaneously over the course of the

island’s history [1]. While Stevenson [98–100] argues that there were just 11 communities on

the island, this claim is founded on the assumption that the largest 11 ahu structures were the

Fig 13. Interaction configurations of Rapa Nui communities as modeled by ahu locations. (A) Image ahu locations as determined by Martinsson-Wallin

[6] and DiNapoli et al. [90]; (B) Connectivity of communities interacting primarily with local neighbors; (C) Population structure of local communities

interacting with the 50 nearest other communities; and (D) Nearly panmictic population structure of local communities interacting with 140 other locations.

https://doi.org/10.1371/journal.pone.0250690.g013
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focal points for the larger territorial units. The available archaeological and historical data,

however, indicate that there was a much larger number of relatively independent communities

centered around the numerous smaller image ahu. Analyses by Morrison [11] for example,

show that the island-wide settlement patterns is characterized by a series of repeated sets of

functionally redundant feature classes (e.g., domestic features, earth ovens, walled gardens,

etc.) extending over just 300–500 meters in area. This finding is consistent with early ethnohis-

toric observations. In 1786, for example, the French captain La Pérouse [101] (p.26) notes “the

conjectures which may be formed respecting the government of these islanders are, that they

compose a single nation, divided into as many districts as there are morais [ahu]; because it is

to be remarked, that the villages are built near these burying places.” This historical observa-

tion reinforces Morrison’s [11] conclusion that Rapa Nui’s settlement pattern is characterized

by a series of multiple small communities centered around ahu locations.

It is most likely that interaction across the island was nested and varied in spatial distances

from extremely local to more island-wide interaction. While communities almost certainly

interacted to some degree at larger scales to procure certain raw materials from their source

locations, the characteristics of artifacts made from these materials show highly localized scales

of cultural transmission. Pukao, the large red scoria “hats” associated with at least 50 moai,
were mostly quarried from a single location at Puna Pau and transported to various locations

around the island, and their formal variability is spatially patterned by proximity of their desti-

nations at ahu sites [102]. Though more analyses are needed, the moai (statues) and ahu vary

stylistically by spatial proximity over the island, and in the case of moai were mostly carved

from Rano Raraku statue quarry [e.g., 6,7,100]. Furthermore, several researchers have

Fig 14. Impact of drift on trait diversity (measured as FST) on Rapa Nui communities located around image ahu under three network configurations (k = 5, 50,

140).

https://doi.org/10.1371/journal.pone.0250690.g014
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concluded that the moai quarry shows evidence of multiple independent work areas [e.g.,

9,103,104]. Similarly, obsidian was an important raw material available from four source loca-

tions on the southwestern part of the island, and obsidian artifacts are abundant in archaeolog-

ical contexts across the island [105]. While islanders made similar classes of obsidian artifacts,

such as stemmed obsidian tools (mata‘a), frequency seriations by Lipo et al. [106,107] demon-

strate that formal variability in the hafted portion of mata’a is strongly spatially biased. Like-

wise, earth ovens (umu) also show patterns of similarity in shape reflecting localized

Fig 15. Impact of drift on trait richness on Rapa Nui communities located around image ahu under three network configurations (k = 2, 50, 140). Notably, the

lower the degree of connectivity (k) the greater the retention of traits.

https://doi.org/10.1371/journal.pone.0250690.g015

Fig 16. Trait richness after 2000 timesteps in the set of subpopulations modeled on Rapa Nui as a function of

network connectivity (k) and between-group interaction rate.

https://doi.org/10.1371/journal.pone.0250690.g016
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interaction. In the case of umu on the southwest sector of Rapa Nui [10,108], and frequency

seriation results show spatial patterns indicating traditions of making an umu reflect sharing

among immediate neighbors (Fig 18). Together, the available data and analyses of formal vari-

ability in a range of artifact classes indicate that while islanders did produce similar kinds of

artifacts from common raw material source locations, formal variability in material culture

shows that information sharing about manufacture styles and techniques was often constricted

to small local areas.

Another aspect of Rapa Nui material culture is rongorongo, a system of glyphs carved into

wooden tablets. The antiquity of rongorongo is unknown, although current evidence suggests

some of the known tablets likely date to the post-contact period [8,109,110]. The single radio-

carbon date from a rongorongo tablet collected in 1871 [110] (Beta-184112, 80 +/- 40 BP) cali-

brates to 1695–1725 cal AD (11.7%) and 1805–1950 cal AD (83.7%) using the SHcal20

calibration curve [111]. Based on ethnographic work by Metraux [8] (pp. 389–409), these

glyphs likely represent abstract concepts consistent with mnemonic devices for recording

memorized chants of stories or genealogies. As Metraux [8] (p.404) describes, “all the tradi-

tions and all the statements of the natives agree that the tablets were associated with memo-

rized chants. . . . the symbols formed a sort of pictography in the sense that each glyph was

associated with a particular sentence or group of words in a chant. The symbols did not corre-

spond exactly to a specific chant, but each tablet could be used with many chants, and several

sentences were linked with each image.” Why do we see this form of information transfer on

Rapa Nui and not elsewhere in Polynesia [8,109]? While arrangements of knots were used for

similar mnemonic purposes elsewhere in Polynesia [109] (p.167-169), these systems are fairly

simple compared to the potential informational complexity encoded by the rongorongo scripts

and tablets. Our results suggest an intriguing hypothesis that the glyphs of rongorongo served

as mnemonic devices that were particularly key in encoding, transmitting, and retaining cul-

tural information in Rapa Nui’s precarious environment.

In addition to the evidence for material culture, highly localized interaction is reflected in

human remains. Genetic evidence from pre-contact skeletal material points to strong localized

interaction. Dudgeon’s [112,113] research using genetic data from human teeth demonstrates

a high proportion of similarity at the site and subpopulation level. Dudgeon [112] also shows

that patterns of minor and trace elements found in the dental enamel are regionally distinctive,

as do other stable isotope analyses [e.g., 114,115]. In his 2008 analysis using Mahalanobis’ pos-

terior classification of human remains, Dudgeon successfully groups instances of human

Fig 17. Traits found only in one subpopulation as a consequence of network connectivity (k) and between-group

interaction rate after 2000 timesteps.

https://doi.org/10.1371/journal.pone.0250690.g017
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remains by spatial proximity more than eighty percent of the time. This result points to indi-

viduals who were largely constrained in their consumption of food and water to localized areas

of the island. Analyses of pre-contact skeletal traits show similar localized patterns. For exam-

ple, variation in non-metric cranial traits reveals strong spatial patterning [116], and the

appearance and frequency of rare discrete traits point to limited intra-island gene flow [113].

Gill and colleagues [13,117] note the high frequency of discrete traits in some co-interred indi-

viduals on the north and west coasts and for cave internments near ahu on the south coast.

These discrete features include the bipartite patella and fused Sacroiliac joints. Notably,

females show less mobility than males. In a study using minimum genetic distance, Stefan

[118] found evidence of greater between-group homogeneity within the male skeletal sample,

indicating higher island-wide mobility of males compared to females. Taken together, the bio-

logical and archaeological data suggest strongly localized patterns of cultural and genetic

Fig 18. Spatial patterns of seriation solutions of umu seriation. Frequency seriation of umu shape variability by location. There are two viable

solutions to this frequency seriation. Data from Table 1 in McCoy [108].

https://doi.org/10.1371/journal.pone.0250690.g018
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transmission. Given the model results, we hypothesize that such locally structured interaction

on Rapa Nui would have promoted retention of cultural diversity and richness; an adaptation

that mitigated the potentially deleterious effects of drift on this small island with a small overall

population.

Limitations and future directions

Despite its small size, Rapa Nui communities appear to have been relatively small, numerous,

and interacted primarily with close neighbors. The adaptive aspects of this highly-localized

community patterning may be explained by the cultural transmission model presented:

increases in overall network distance were beneficial in the retention of cultural information

that might otherwise be at risk from the effects of drift. Cumulative cultural information

would have value facing challenges arising beyond the lifespan of single individuals. The adap-

tive aspects of localized interaction on Rapa Nui may have ensured that cultural diversity and

information were not lost among communities that were small and isolated. Such solutions

work to optimize group interactions in the creation and retention of innovations. Retaining

localized knowledge can be particularly important on small islands where conditions for suc-

cess may require highly specific knowledge systems [e.g., 119]. In some cases, these knowledge

systems may need to be highly localized; an important consideration in planning for uncer-

tainty of climate change for these island locations.

While the archaeological, historical, and biological evidence broadly conforms to the model

expectations, there remain limitations in the data that preclude more rigorous model fitting

and comparison. While different lines of evidence offer a coherent picture of highly localized

genetic and cultural transmission, these broad scale patterns are somewhat at odds with finer

scale parameterizations and predictions of the cultural transmission model. The available

archaeological data, particularly from abundant lithic artifacts (mata‘a) and cooking features

(umu), are relevant to examine the models’ predictions, but detailed information remains

unrecorded or unanalyzed for much of the island. Once larger sample sizes from broader spa-

tial scales become available, promising future research would be to examine the fit between

temporal and spatial patterns of artifactual frequency data and the model expectations using

Approximate Bayesian Computation or other means of model assessment [e.g., 27,120].

The case we present from Rapa Nui furthers our understanding of the mechanisms that

drive changes in cultural diversity more broadly, which remains an important and highly

debated issue in cultural evolutionary research. Several pioneering studies proposed models

whereby changes in effective population sizes may account for large-scale changes in cultural

complexity in human history [e.g., 29,30,121]. These studies, however, have often not explicitly

accounted for the fact that humans live in variable social networks, and recent models have

shown that population structure is equally important to demography in influencing changes in

the diversity and complexity of cultural traits [e.g., 28,50–52]. Here, we provide a model for

exploring how changes in the configuration and patterns of interaction among and between

subpopulations can dramatically increase diversity as well as retain richness in even relatively

small and isolated populations.
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