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Recently, teaching-learning-based optimization (TLBO), as one of the emerging nature-inspired heuristic algorithms, has attracted
increasing attention. In order to enhance its convergence rate and prevent it fromgetting stuck in local optima, a novelmetaheuristic
has been developed in this paper, where particular characteristics of the chaosmechanism and Lévy flight are introduced to the basic
framework of TLBO.Thenewalgorithm is tested on several large-scale nonlinear benchmark functionswith different characteristics
and compared with other methods. Experimental results show that the proposed algorithm outperforms other algorithms and
achieves a satisfactory improvement over TLBO.

1. Introduction

Optimization problems are always associated with many
kinds of difficult characteristics involving multimodality,
dimensionality, and differentiability [1]. Traditional meth-
ods like linear programming and dynamic programming
generally fail to optimize such problems especially when
these problems have nonlinear objective functions, as most
of these traditional techniques require gradient information
and easily converge to local optima. Moreover, those classical
search approaches depend heavily on variables and functions,
which prevents them from yielding a generalized and flexible
solution scheme, especially for large-scale andnonlinear opti-
mization [2]. Under this circumstance, swarm intelligence,
which deals with the collective behavior of swarms through
complex interaction of individuals without supervision, has
become a hot research area [3]. The inherent strengths of
the swarmoptimization techniques, including fault tolerance,
adaptation, speed, autonomy, and parallelism [4], allow them
to be applied more effectively and widely compared with the
previous algorithms [5].

Several well-known swarm algorithms have been pro-
posed in the latest years. For example, ant colony optimiza-
tion (ACO) is based on the metaphor of ants seeking food

[6]. Particle swarmoptimization (PSO)works on the foraging
behavior of a biological social system like a flock of birds
[7]. Artificial bee colony (ABC) simulates the intelligent
foraging behavior of a honeybee [8]. These algorithms have
been applied tomany engineering optimization problems and
proved effective in solving some specific kind of problems.

Teaching-learning-based optimization (TLBO) algo-
rithm is a teaching-learning inspired algorithm proposed
by Rao et al., which is based on the effect of influence of
a teacher on the output of learners in a class [9, 10]. The
TLBO is free from parameters and has been compared with
other well-known optimization algorithms such as PSO [11].
The results show better performance of TLBO over other
methods. Applications of this algorithm have also been
widely tested in different optimization fields; for example,
Toĝan [12] employed the TLBO algorithm in the discrete
optimization of planar steel frames and found that TLBO is a
more powerful optimization method than other algorithms
like Genetic Algorithm (GA), ACO, and Harmony Search
(HS). Amiri [13] similarly applied TLBO to solve clustering
problems and verified the robustness and flexibility of this
method. However, simulation results from Huang et al.
showed that TLBO could not obtain satisfactory results for
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several difficult benchmark problems which have complex
landscapes and was prone to becoming trapped in locally
optimal solutions [14]. To overcome this technical barrier,
Rao and Patel modified many aspects of the basic TLBO
such as incorporating an elitism strategy in it, using adaptive
teaching factor and multiteacher approaches to improve its
performance [15]. Based on some insight into the structure
of TLBO, we also found that it lacks diversification because
it only calculates the mean value of the population and
searches between two randomly chosen individual solutions
in the search iterations.

Chaos is a universal phenomenon of nonlinear dynamic
systems, which has been extensively studied since Lorent
[16] discovered the authoritative chaotic attractor in 1963.
Chaos is a bounded unstable dynamic behavior that exhibits
sensitive dependence on initial conditions and includes
infinite unstable periodic motions. Although it appears to
be stochastic, it occurs in a deterministic nonlinear system
under deterministic conditions [17]. Due to its properties,
chaos has been applied tomany kinds of areas of optimization
computation [18, 19]. Zuo and Fan [20] proposed the chaos
search immune algorithm and applied it to neurofuzzy
controller design. Alatas et al. used the chaotic search to
improve the performance of PSO algorithms [21] and pro-
posed chaotic bee colony algorithms [22]. Chuang et al. [23]
proposed chaotic catfish PSO.

Lévy flight is another technique for speeding up the
convergence rate of the algorithm and escaping from local
optima [24]. As a typical flight behavior of many animals
and insects, Lévy flight was originally researched by Lévy
and Borel in 1954 [25] and has been subsequently used for
nonlocal searches in many optimization problems due to its
promising capability [26, 27]. Since the step length of the
randomwalk produced by Lévy flight is drawn from a power-
law distribution with a heavy tail, namely, Lévy distribution,
part of the new population is generated near the current best
solution, and therefore this technique can speed up the local
search. Further, most of the new solutions are produced far
from the current best solution, which prevents the algorithm
from becoming trapped in local optima.

An efficient optimization algorithm means it has both
strong exploration ability and a fast exploitation rate; more-
over, the method can be adapted to tackle a broad range of
problems [28]. In order to reinforce the performance of the
TLBO and broaden the diversification of the algorithm, a
chaotic system and Lévy flight mechanism are introduced
into the TLBO. The basic idea of the proposed algorithm
is as follows. First, the population in the TLBO is divided
into two parts according to the fitness of the solutions in
the population. Then a Lévy flight is performed on the
worse part, while using the original teaching-learning search
mechanism for the better part. Secondly, the chaotic search is
implemented on a randomly chosen part of the population for
the sake of diversity.The numerical experiments demonstrate
the effectiveness of the proposed algorithm.

This paper is organized as follows. In Section 2, the basic
TLBO is introduced. Then the proposed chaotic TLBO with
Lévy flight is presented in Section 3. In Section 4, some
experiments are performed and the numerical results are

shown. Finally, the conclusion of the paper is presented in
Section 5.

2. Teaching-Learning-Based Optimization

TLBO is a recently published population-based method,
which mimics the classic teaching-learning phenomenon
within a classroom environment. In this novel optimization
algorithm a group of learners is considered as population and
different design variables are considered as different subjects
offered to the learners and learners’ result is analogous to
the fitness value of the optimization problem. In the entire
population the best solution is considered as the teacher.
The main procedure of TLBO consists of two phases: teacher
phase and learner phase. These two phases will be explained
in the following parts.

2.1. Teacher Phase. This is the first stage of the algorithm
where learners learn from the teacher. During this phase a
teacher tries to increase the mean of the whole class to his or
her level (the newmean).The difference between the existing
mean and the new mean is given as

Difference Mean
𝑖
= 𝑟
𝑖
(𝑀new − 𝑇𝐹𝑀𝑖) , (1)

where 𝑀
𝑖
is the mean of each design variable and 𝑀new

is the new mean for the 𝑖th iteration; within the equation,
two randomly generated parameters are applied: 𝑟

𝑖
ranges

between 0 and 1 and 𝑇
𝐹
is a teaching factor which can be

either 1 or 2, thus influencing the value of the mean to be
changed. In the algorithm, 𝑇

𝐹
plays a role of adjusting factor,

which controls themoving direction and scalewhen updating
solutions. The value of 𝑇

𝐹
is decided randomly with equal

probability as

𝑇
𝐹
= round [1 + rand (0, 1) {2 − 1}] . (2)

Based on this Difference Mean, the existing solution is
updated according to the following expression:

𝑋new,𝑖 = 𝑋old,𝑖 + Difference Mean
𝑖
. (3)

2.2. Learner Phase. It is the second part of the algorithm
where learners increase their knowledge by interaction
between themselves. A learner interacts randomly with
another learner for enhancing his or her knowledge. A learner
learns new things if the other one has more knowledge than
him or her. Mathematically the learning phenomenon of this
phase is expressed below.

At any iteration 𝑖, considering two different learners
(solutions)𝑋

𝑖
and𝑋

𝑗
, where 𝑖 ̸= 𝑗,

𝑋new,𝑖 = 𝑋old,𝑖 + 𝑟𝑖 (𝑋𝑗 − 𝑋𝑖) if 𝑓 (𝑋
𝑗
) < 𝑓 (𝑋

𝑖
) , (4)

𝑋new,𝑖 = 𝑋old,𝑖 + 𝑟𝑖 (𝑋𝑖 − 𝑋𝑗) if 𝑓 (𝑋
𝑖
) < 𝑓 (𝑋

𝑗
) . (5)

𝑋new is accepted into the population if it gives a better
function value.
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The steps for implementing TLBO are as follows.

Step 1 (define the optimization problem and initialize algo-
rithm parameters). Initialize the population size (𝑃

𝑛
), num-

ber of design variables (𝐷
𝑛
), and number of generations (𝐺

𝑛
).

Define the optimization problem as follows: minimize 𝑓(𝑋),
where 𝑓(𝑋) is the objective function and 𝑋 is a vector for
design variables. Construct initial solutions according to 𝑃

𝑛

and𝐷
𝑛
.

Step 2 (calculate 𝑀
𝑖
and 𝑀new). Calculate the mean of the

population columnwise, which will give the mean of each
design variable as 𝑀

𝑖
. Identify the best solution (teacher)

according to𝑋teacher = 𝑋𝑓(𝑋)=min; the teacher will try tomove
𝑀
𝑖
to𝑋teacher, so let𝑀new =𝑋teacher.

Step 3. Calculate the Difference Mean according to (1) by
utilizing the teaching factor 𝑇

𝐹
.

Step 4. Modify the solutions in the teacher phase based on
(3) and accept the new solution if it is better than the existing
one.

Step 5. Update the solution in the learner phase according to
(4) and (5) and accept the better one into the population.

Step 6. Repeat Steps 2 to 5 until the termination criterion is
met.

3. Chaotic Teaching-Learning-Based
Optimization with Lévy Flight

Aneffective optimization algorithmmust have a strong global
searching ability along with a fast convergence rate. TLBO
is free from specific algorithm parameters and outperforms
PSO, HS, and so on due to its simplicity and efficiency. How-
ever, several hard benchmarks with complicated landscapes
pose challenges to TLBO in finding a satisfactory result and
escaping from local optima.

In order to enhance the performance of TLBO as well
as take advantage of the properties of the chaotic system
and Lévy flight, we integrate the chaotic search mechanism
and Lévy flight into TLBO to improve its search efficiency.
Hence, a chaotic TLBOwith Lévy flight (CTLBO) is proposed
in this paper. In the algorithm, the population is divided
into two parts: the part with better fitness is evolved by the
teaching-learning process in TLBO, while another part is
performedwith a Lévy flight.Then the chaotic perturbation is
implemented on a randomly selected part of the population
in terms of the diversification of the population. The main
steps of CTLBO are elaborated in the next sections.

3.1. Lévy Flight. Lévy flights, also called Lévy motion, rep-
resent a kind of non-Gaussian stochastic process whose step
sizes are distributed based on a Lévy stable distribution [25].

When generating new solutions 𝑥𝑡+1 for solution 𝑖, a Lévy
flight is performed:

𝑥

𝑡+1

𝑖
= 𝑥

𝑡

𝑖
+ 𝛼 ⊕ Lévy (𝜆) , (6)

where 𝛼 > 0 is the step size which is relevant to the scales of
the problem. In most conditions, we let 𝛼 = 1. The product ⊕
means entrywise multiplications [24]. Lévy flights essentially
provide a random walk while their random steps are drawn
from a Lévy distribution for large steps:

Lévy (𝜆) ∼ 𝑢 = 𝑡−𝜆, (1 < 𝜆 ≤ 3) (7)

which has an infinite variance with an infinitemean. Here the
consecutive steps of a solution essentially forma randomwalk
process which obeys a power-law step-length distribution
with a heavy tail.

There are a few ways to implement Lévy flights; the
method we chose in this paper is one of themost efficient and
simple ways based on Mantegna algorithm; all the equations
are detailed in [29].

3.2. Chaotic Search. Chaos is a deterministic, quasi-random
process that is sensitive to the initial condition [30]. The
nature of chaos is apparently random and unpredictable.
Mathematically, chaos is randomness of a simple determin-
istic dynamical system and chaotic system can be considered
as sources of randomness.

A chaotic map is a discrete-time dynamical system
running in a chaotic condition [22]:

𝑥
𝑘+1
= 𝑓 (𝑥

𝑘
) , 0 < 𝑥

𝑘
< 1, 𝑘 = 0, 1, 2, . . . , (8)

where {𝑥
𝑘
: 𝑘 = 0, 1, 2, . . .} is the chaotic sequence, which can

be utilized as spread-spectrum sequence as random number
sequence.

Chaotic sequences have been proved to be simple and
fast to produce and reserve; it is unnecessary to store long
sequences [31]. Only a few functions (chaotic maps) and
parameters (initial conditions) are required even for very long
sequences [22].

In this paper, 𝑟 chaotic variables are generated by the
following logistic mapping:

𝑧

𝑗+1

𝑖
= 𝜇
𝑖
𝑧

𝑗

𝑖
(1 − 𝑧

𝑗

𝑖
) , 𝑖 = 1, 2, . . . , 𝑟, 𝑗 = 1, 2, . . . , (9)

where 𝑖 is the serial number of chaotic variables and 𝜇
𝑖
= 4.

Given the 𝑟 chaotic variables and different initial values 𝑧0
𝑖

(𝑖 = 1, 2, . . . , 𝑟), the values of the 𝑟 chaotic variables 𝑧1
𝑖
(𝑖 =

1, 2, . . . , 𝑟) are then produced by the logistic equation. Let 𝑗 =
1, 2, . . . , 𝑁−1, and hence, other𝑁−1 solutions are produced
by the same method.

3.3. ProposedMethods. By introducing the Lévy flight and the
chaotic search into the TLBO, a new algorithm is proposed in
this paper.The pseudocode of the proposed CTLBO is shown
in Pseudocode 1.

4. Experimental Analysis and
Numerical Results

In order to verify the performance of the proposed CTLBO
and to analyze its properties, two sets of optimization
problems are selected for the test experiments. In each
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(01) Randomly initialize the population 𝑃
(02) Evaluate the population 𝑓
(03) while (number of iterations, or the stopping criterion is not met)
(04) Divide the population into two parts according to the fitness
(05) for solutions in the worse population 𝑃/4 do
(06) Perform Lévy flight for 𝑥

𝑖
to generate a new one 𝑥󸀠

𝑖

(07) 𝑥
𝑖
← 𝑥

󸀠

𝑖

(08) 𝑓
𝑖
← 𝑓

󸀠

𝑖

(09) end for
(10) for solutions in the better 3𝑃/4 population do
(11) Perform TLBO for 𝑥

𝑗
to generate a new one 𝑥󸀠

𝑗

(12) 𝑥
𝑗
← 𝑥

󸀠

𝑗

(13) 𝑓
𝑗
← 𝑓

󸀠

𝑗

(14) end for
(15) Randomly choose a section of the whole population (𝑃/4)
(16) for solutions in this 𝑃/4 do
(17) Perform chaos search for 𝑥

𝑘
to generate a new one 𝑥󸀠

𝑘

(18) 𝑥
𝑘
← 𝑥

󸀠

𝑘

(19) 𝑓
𝑘
← 𝑓

󸀠

𝑘

(20) end for
(21) end

Pseudocode 1: Pseudocode of CTLBO.

set of problems, several well-known functions are used as
benchmark problems to study the search behavior of the
proposed CTLBO and to compare its performance with those
of other algorithms.

4.1. Experiment 1. Firstly, to demonstrate the performance
of the proposed algorithm, eight benchmark optimization
problems [32] are selected as test functions. These eight
benchmark functions were tested earlier with TLBO and
improved TLBO by Rao and Patel [15]. The details of the
benchmark functions are given in Table 1.

In [15], Rao and Patel tested all functions with 30000
maximum function evaluations. To maintain the consistency
in the comparison, the CTLBO algorithm is also tested with
the same maximum function evaluations. Each benchmark
function undergoes 30 independent tests with CTLBO. The
comparative results are in the form of the mean value and
standard deviation of the objective function obtained after 30
independent runs, which are shown in Table 2.

It can be seen from Table 2 that the CTLBO achieved the
global optimum value for the Sphere, Griewank, Weierstrass,
Rastrigin, and NCRastrigin functions, and the CTLBO and
I-TLBO algorithms perform equally well for these functions.
For the Rosenbrock function, CTLBO performs better than
the rest of the algorithms. For the Ackley function, the
modified ABC algorithm performs better than the rest of the
considered algorithms.

It can also be seen from Table 2 that the result of CTLBO
for the Schwefel function is not as good as those of other
functions. This is mainly because, in the teacher phase of
TLBO, a mean value is used to update the solutions, and this
mechanism may lead the solutions to the centre of a search

region, but when the global minimum is not located in the
centre of the feasible solution region, TLBO usually fails to
find the global solution of the tested function. Actually this is
one of the limitations of TLBO, and in CTLBO, part of the
solution inherits this mechanism. Hence this is a potential
weakness of the proposed algorithm.

In order to observe the performance of CTLBO visually,
the convergence curves of six functions are drawn as shown in
Figure 1. To compareCTLBOwith other algorithms, we select
the convergence curves of PSO-𝑤 and TLBO to observe their
convergence properties.

The Rosenbrock function is always used as a test function
to test the performance of optimization algorithms. The
global optimum lies inside a long, narrow, parabolic shaped
flat valley, and it is very difficult to find the global optimum.
It can be seen from Figure 1(a) that the PSO-𝑤 and TLBO
converge with low optimization accuracy, while the CTLBO
has good searching ability for the Rosenbrock function.

The Ackley function is a continuous, rotating, and non-
separable multimodal function. The exterior region of the
function is nearly flatwhile the centre is a high peak, and it has
many widespread locally optimal points from the flat region
to the centre peak. From Figure 1(b) we can see that both
TLBO and CTLBO have better performance than the PSO-
𝑤 algorithm. In addition, the convergence rate and accuracy
of CTLBO are better than those of TLBO.

It can be observed from Figures 1(c)–1(e) that, for the
Griewank, Weierstrass, and Rastrigin functions, TLBO and
CTLBO can achieve the global optimum in a very few
iterations, while the PSO-𝑤 can only reach a local optimum.
Also, the convergence rate of CTLBO is faster than that of
TLBO.
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Table 2: Comparative results of different algorithms over 30 independent runs.

Algorithm Sphere Rosenbrock Ackley Griewank
Mean SD Mean SD Mean SD Mean SD

PSO-𝑤 7.96𝐸 − 051 3.56𝐸 − 050 3.08𝐸 + 000 7.69𝐸 − 001 1.58𝐸 − 014 1.60𝐸 − 014 9.69𝐸 − 002 5.01𝐸 − 002

PSO-cf 9.84𝐸 − 105 4.21𝐸 − 104 6.98𝐸 − 001 1.46𝐸 + 000 9.18𝐸 − 001 1.01𝐸 + 000 1.19𝐸 − 001 7.11𝐸 − 002

PSO-𝑤-local 2.13𝐸 − 035 6.17𝐸 − 035 3.92𝐸 + 000 1.19𝐸 + 000 6.04𝐸 − 015 1.67𝐸 − 015 7.80𝐸 − 002 3.79𝐸 − 002

PSO-cf-local 1.37𝐸 − 079 5.60𝐸 − 079 8.60𝐸 − 001 1.56𝐸 + 000 5.78𝐸 − 002 2.58𝐸 − 001 2.80𝐸 − 002 6.34𝐸 − 002

UPSO 9.84𝐸 − 118 3.56𝐸 − 117 1.40𝐸 + 000 1.88𝐸 + 000 1.33𝐸 + 000 1.48𝐸 + 000 1.04𝐸 − 001 7.10𝐸 − 002

FDR 2.21𝐸 − 090 9.88𝐸 − 090 8.67𝐸 − 001 1.63𝐸 + 000 3.18𝐸 − 014 6.40𝐸 − 014 9.24𝐸 − 002 5.61𝐸 − 002

FIPS 3.15𝐸 − 030 4.56𝐸 − 030 2.78𝐸 + 000 2.26𝐸 − 001 3.75𝐸 − 015 2.13𝐸 − 014 1.31𝐸 − 001 9.32𝐸 − 002

CPSO-H 4.98𝐸 − 045 1.00𝐸 − 044 1.53𝐸 + 000 1.70𝐸 + 000 1.49𝐸 − 014 6.97𝐸 − 015 4.07𝐸 − 002 2.80𝐸 − 002

CLPSO 5.15𝐸 − 029 2.16𝐸 − 28 2.46𝐸 + 000 1.70𝐸 + 000 4.32𝐸 − 10 2.55𝐸 − 014 4.56𝐸 − 003 4.81𝐸 − 003

ABC 7.09𝐸 − 017 4.11𝐸 − 017 2.08𝐸 + 000 2.44𝐸 + 000 4.58𝐸 − 016 1.76𝐸 − 016 1.57𝐸 − 002 9.06𝐸 − 003

Modified ABC 7.04𝐸 − 017 4.55𝐸 − 017 4.42𝐸 − 001 8.67𝐸 − 001 3.32E − 016 1.84E − 016 1.52𝐸 − 002 1.28𝐸 − 002

TLBO 0.00 0.00 1.72𝐸 + 00 6.62𝐸 − 01 3.55𝐸 − 15 8.32𝐸 − 31 0.00 0.00
I-TLBO (NT = 4) 0.00 0.00 2.00𝐸 − 01 1.42𝐸 − 01 1.42𝐸 − 15 1.83𝐸 − 15 0.00 0.00
CTLBO 0.00 0.00 2.47E − 02 8.15E − 02 8.88𝐸 − 16 0.00𝐸 + 00 0.00 0.00

Algorithm Weierstrass Rastrigin NCRastrigin Schwefel
Mean SD Mean SD Mean SD Mean SD

PSO-𝑤 2.28𝐸 − 003 7.04𝐸 − 003 5.82𝐸 + 000 2.96𝐸 + 000 4.05𝐸 + 000 2.58𝐸 + 000 3.20𝐸 + 002 1.85𝐸 + 002

PSO-cf 6.69𝐸 − 001 7.17𝐸 − 001 1.25𝐸 + 001 5.17𝐸 + 000 1.20𝐸 + 001 4.99𝐸 + 000 9.87𝐸 + 002 2.76𝐸 + 002

PSO-𝑤-local 1.41𝐸 − 006 6.31𝐸 − 006 3.88𝐸 + 000 2.30𝐸 + 000 4.77𝐸 + 000 2.84𝐸 + 000 3.26𝐸 + 002 1.32𝐸 + 002

PSO-cf-local 7.85𝐸 − 002 5.16𝐸 − 002 9.05𝐸 + 000 3.48𝐸 + 000 5.95𝐸 + 000 2.60𝐸 + 000 8.78𝐸 + 002 2.93𝐸 + 002

UPSO 1.14𝐸 + 000 1.17𝐸 + 00 1.17𝐸 + 001 6.11𝐸 + 000 5.85𝐸 + 000 3.15𝐸 + 000 1.08𝐸 + 003 2.68𝐸 + 002

FDR 3.01𝐸 − 003 7.20𝐸 − 003 7.51𝐸 + 000 3.05𝐸 + 000 3.35𝐸 + 000 2.01𝐸 + 000 8.51𝐸 + 002 2.76𝐸 + 002

FIPS 2.02𝐸 − 003 6.40𝐸 − 003 2.12𝐸 + 000 1.33𝐸 + 000 4.35𝐸 + 000 2.80𝐸 + 000 7.10𝐸 + 001 1.50𝐸 + 002

CPSO-H 1.07𝐸 − 015 1.67𝐸 − 015 0 0 2.00𝐸 − 001 4.10𝐸 − 001 2.13𝐸 + 002 1.41𝐸 + 002

CLPSO 0 0 0 0 0 0 0 0
ABC 9.01𝐸 − 006 4.61𝐸 − 005 1.61𝐸 − 016 5.20𝐸 − 016 6.64𝐸 − 017 3.96𝐸 − 017 7.91𝐸 + 000 2.95𝐸 + 001

Modified ABC 0.00E + 000 0.00E + 000 1.14𝐸 − 007 6.16𝐸 − 007 1.58𝐸 − 011 7.62𝐸 − 011 3.96𝐸 + 000 2.13𝐸 + 001

TLBO 2.42𝐸 − 05 1.38𝐸 − 20 6.77𝐸 − 08 3.68𝐸 − 07 2.65𝐸 − 08 1.23𝐸 − 07 2.94𝐸 + 02 2.68𝐸 + 02

I-TLBO (NT = 4) 0.00 0.00 0.00 0.00 0.00 0.00 1.10𝐸 + 02 1.06𝐸 + 02

CTLBO 0.00 0.00 0.00 0.00 0.00 0.00 1.99𝐸 + 02 1.26𝐸 + 02

Source. The results of algorithms other than TLBO, I-TLBO, and CTLBO are taken from [32]. The results of TLBO and I-TLBO are taken from [15].

From Figure 1(f), we can see that Schwefel’s function is
difficult for all three algorithms, which converge with low
optimization accuracy.

From the results and analysis, we can see that the pro-
posed TLBO has good searching ability for most functions,
and CTLBO has improved its performance. The convergence
rate and accuracy ofCTLBOare better than those of TLBO. In
order to test the proposed algorithm comprehensively, more
test functions will be introduced in the next section.

4.2. Experiment 2. In this experiment, the performance of
the proposed CTLBO algorithm is compared with those of
the recently developed PS-ABC [33], TLBO, and I-TLBO. In
this part of the work, CTLBO is tested on 13 unconstrained
benchmark functions.These functions have no fixed number
of dimensions. In other words, the dimension of the problems
can be set at will [34]. In this case, we can test the performance
of algorithms for high-dimensional problems.The character-
istics of these functions are described in Table 3.

This experiment is conducted from small-scale to large-
scale by considering 20, 30, and 50 dimensions for all the
benchmark functions. The number of function evaluations
is set as 120000 for all tested algorithms. Each benchmark
function is tested 30 times and the results are obtained in
the form of the mean solution and the standard deviation
of the objective function after 30 independent runs of the
algorithms.

Table 4 shows the comparative results of PS-ABC, TLBO,
I-TLBO, and CTLBO algorithms for the 13 functions with
120000 maximum function evaluations.

It can be observed fromTable 4 that I-TLBO outperforms
the basic TLBO and PS-ABC algorithms for the Quartic,
Penalized, and Penalized 2 functions (for all the dimensions)
and the Rosenbrock function (for 20 dimensions). PS-ABC
outperforms TLBO and I-TLBO for the Rosenbrock (for
30 and 50 dimensions) and Schwefel functions. For the
Schwefel 1.2 function, the performances of TLBO and I-
TLBO are identical and better than that of the PS-ABC
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Table 4: Comparative results of different algorithms over 30 independent runs.

Function Dim. PS-ABC [33] TLBO [15] I-TLBO [15] CTLBO
Mean SD Mean SD Mean SD Mean SD

Sphere
20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Schwefel 2.22
20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Schwefel 1.2
20 1.04𝐸 + 03 6.11𝐸 + 02 0.00 0.00 0.00 0.00 0.00 0.00
30 6.11𝐸 + 03 1.69𝐸 + 03 0.00 0.00 0.00 0.00 0.00 0.00
50 3.01𝐸 + 04 4.11𝐸 + 03 0.00 0.00 0.00 0.00 0.00 0.00

Schwefel 2.21
20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
30 8.59𝐸 − 115 4.71𝐸 − 114 4.9𝐸 − 324 0.00 0.00 0.00 0.00 0.00
50 19.6683 6.31𝐸 + 00 9.9𝐸 − 324 0.00 0.00 0.00 0.00 0.00

Rosenbrock
20 0.5190 1.08𝐸 + 00 15.0536 2.28𝐸 − 01 1.3785 8.49𝐸 − 01 3.04E − 03 3.03E − 03
30 1.5922 4.41E + 00 25.4036 3.50𝐸 − 01 15.032 1.2𝐸 + 00 11.1767 9.40𝐸 − 01

50 34.4913 3.03E + 01 45.8955 2.89𝐸 − 01 38.7294 7.57𝐸 − 01 36.9081 1.15𝐸 + 00

Step
20 2.61𝐸 − 16 3.86𝐸 − 17 9.24𝐸 − 33 4.36𝐸 − 33 0.00 0.00 0.00 0.00
30 5.71𝐸 − 16 8.25𝐸 − 17 1.94𝐸 − 29 1.88𝐸 − 29 0.00 0.00 0.00 0.00
50 1.16𝐸 − 15 1.41𝐸 − 16 3.26𝐸 − 13 5.11𝐸 − 13 1.51𝐸 − 32 8.89𝐸 − 33 0.00 0.00

Quartic
20 6.52𝐸 − 03 2.25𝐸 − 03 1.07𝐸 − 02 5.16𝐸 − 03 5.16𝐸 − 03 4.64𝐸 − 03 1.86E − 04 2.72E − 04
30 2.15𝐸 − 02 6.88𝐸 − 03 1.15𝐸 − 02 3.71𝐸 − 03 5.36𝐸 − 03 3.72𝐸 − 03 1.62E − 04 1.15E − 04
50 6.53𝐸 − 02 1.77𝐸 − 02 1.17𝐸 − 02 5.00𝐸 − 03 5.60𝐸 − 03 3.40𝐸 − 03 1.48E − 04 1.44E − 04

Schwefel
20 −8379.66 4.72E − 12 −8210.23 1.66𝐸 + 02 −8263.84 1.16𝐸 + 02 −7817.05 2.46𝐸 + 02

30 −12564.23 2.55E + 01 −12428.60 1.53𝐸 + 02 −12519.92 1.16𝐸 + 02 −10903.20 3.95𝐸 + 02

50 −20887.98 8.04E + 01 −20620.72 1.89𝐸 + 02 −20700.70 1.64𝐸 + 02 −15744.41 6.51𝐸 + 02

Rastrigin
20 0.00 0.00 6.41𝐸 − 14 6.16𝐸 − 14 0.00 0.00 0.00 0.00
30 0.00 0.00 6.95𝐸 − 13 1.64𝐸 − 12 0.00 0.00 0.00 0.00
50 0.00 0.00 7.90𝐸 − 13 1.89𝐸 − 12 0.00 0.00 0.00 0.00

Ackley
20 8.88𝐸 − 16 0.00 3.55𝐸 − 15 8.32𝐸 − 31 7.11E − 16 0.00 8.88𝐸 − 16 0.00
30 8.88𝐸 − 16 0.00 3.55𝐸 − 15 8.32𝐸 − 31 7.11E − 16 0.00 8.88𝐸 − 16 0.00
50 8.88𝐸 − 16 0.00 3.55𝐸 − 15 8.32𝐸 − 31 7.11E − 16 0.00 8.88𝐸 − 16 0.00

Griewank
20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Penalized
20 2.55𝐸 − 16 4.97𝐸 − 17 4.00𝐸 − 08 6.85𝐸 − 24 2.42𝐸 − 16 1.09𝐸 − 16 3.41E − 32 1.99E − 32
30 5.53𝐸 − 16 8.68𝐸 − 17 2.67𝐸 − 08 6.79𝐸 − 12 4.98𝐸 − 16 2.14𝐸 − 16 6.08E − 22 2.48E − 21
50 1.02𝐸 − 15 1.58𝐸 − 16 5.18𝐸 − 05 1.92𝐸 − 04 9.19𝐸 − 16 5.38𝐸 − 16 3.13E − 16 5.41E − 16

Penalized 2
20 2.34𝐸 − 18 2.20𝐸 − 18 2.34𝐸 − 08 6.85𝐸 − 24 1.93𝐸 − 18 1.12𝐸 − 18 2.26E − 19 8.29E − 19
30 6.06𝐸 − 18 5.60𝐸 − 18 2.37𝐸 − 08 4.91𝐸 − 10 5.92𝐸 − 18 4.74𝐸 − 18 3.80E − 18 1.51E − 18
50 5.05𝐸 − 17 1.53𝐸 − 16 1.52𝐸 − 03 5.29𝐸 − 03 4.87𝐸 − 17 4.26𝐸 − 17 2.13E − 17 2.09E − 17

algorithm. The performances of PS-ABC and I-TLBO are
identical for the Rastrigin function, while the performances
of all three algorithms are identical for the Sphere, Schwefel
2.22, and Griewank functions. For the Ackley function, the
performances of PS-ABC and CTLBO are more or less
similar.

In order to observe the performance of CTLBO visually,
the convergence curves of algorithms for several functions in
20 dimensions are drawn as shown in Figure 2.

From Figure 2(a) we can see that, for the Rosenbrock
function with 20 dimensions, PSO-𝑤 and TLBO become
trapped in local optima and the search accuracy is very low,
while the capability of CTLBO is good and its convergence
accuracy is high.

The Quartic function is unimodal with random noise.
Noisy functions are widespread in real-world problems, and
every evaluation of the function is disturbed by noise, so
the algorithms’ information is inherited and diffused noisily,
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Figure 2: Convergence curve of four functions.

which makes the problem hard to optimize. It can be
observed from Figure 2(b) that CTLBO has better perfor-
mance than the other two algorithms.

From Figures 2(c) and 2(d), we can observe that CTLBO
has a better searching ability for the Penalized and Penalized 2
functions. CTLBO has better results for these two functions,
while TLBO and PSO-𝑤 are trapped in local optima.

From the above analysis, we can see that the proposed
TLBO has good searching ability for most of the functions,
and CTLBO has improved its performance based on TLBO.
The convergence rate and accuracy of CTLBO show better
performance compared to TLBO, which reveals that the
proposed chaotic mechanism is effective and provides an
improvement on TLBO.

4.3. Discussion. This paper formulated a novel TLBO algo-
rithm, based on its combination with chaotic search and
Lévy flight. From a quick look, CTLBO resembles other

swarm-intelligence approaches such as GA and PSO in many
aspects; for example, (1) they are all population-based algo-
rithms and the initial populations are randomly produced;
(2) similarly to other evolution strategies, CTLBO has special
mutation operators like the teacher phase and the learner
phase. However, despite the fact that CTLBO is somewhat
similar to other metaheuristics, there are some significant
differences between them which help it to outperform other
techniques on a number of problems.

It can be seen from the framework of the CTLBO that the
population is first divided into two parts in each iteration,
then these two subparts evolve with the Lévy flight and
teaching-learning mechanisms, respectively, and then the
population is perturbed by using chaotic searching. This can
be viewed as a kind of coevolution to some extent; that is, two
independent subpopulations evolve interactively and, due to
this process, not only are the decision solutions diversely
exploited but also the convergence rate of the algorithm is
accelerated.
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Taking a closer look at the CTLBO, we conclude that
it essentially consists of three components: exploitation by
mutation operator, a global exploration by Lévy flight, and
diversification by chaos mapping. The mutation operators
including the teacher phase and learner phase ensure the
exploitation around the best solution obtained so far. Lévy
flight makes the search move away from the worst place
with a large step and, at the same time, samples the search
space effectively so that the new solutions are thoroughly
diversified. Chaos mapping can disturb the solution so as to
maintain the population diversity as well as avoid falling into
local optima. In general, a good integration of the above three
components may thus lead to an efficient algorithm such as
CTLBO.

Furthermore, from simulation studies in which the
CTLBO algorithm’s controlling parameters were varied, we
observed that the convergence rate is insensitive to algorithm
parameters such as 𝑝

𝑎
. This feature is mainly inherited from

the chaotic search. In this process, the randomness with
nonzero probability ensures that some of the solutions are
discarded and replaced by new ones, which is similar in
spirit to the probability of acceptance of worse solutions in
the annealing process. From this perspective, it means that
there is no need to fine-tune the algorithm parameters of the
proposed CTLBO for a specific problem.

Moreover, it can be seen that the proposed method may
not find the global minima of a few specific functions. This
has its root in the mechanism of the teacher phase in TLBO,
where a mean value is used to update the solutions, which
may lead solutions directly to the centre of a search region.
For those functions whose global minima are not located
in the centre of the feasible solution region, it is usually
challenging to find the global optima of the tested functions.
However, in the CTLBO, the divided population weakens the
effect of the “mean mechanism.”

Finally, in this paper merely logistic map has been
embedded to diversify the population of CTLBO algorithm;
however, other different chaotic maps will be analyzed in the
future work.

5. Conclusion

This paper proposes chaotic teaching-learning-based opti-
mization with Lévy flight (CTLBO). The algorithm is
improved via a Lévywalk andperturbed by chaotic searching,
which can enhance the diversification of the algorithm.
The experimental results demonstrate that the designed
algorithm has better performance than other methods. In
addition, the properties of the proposed algorithm are ana-
lyzed and the characteristics and features are discussed in the
paper.

Future work is likely to apply this novelmethod to a wider
spectrum of problems such as constrained optimization
problems and many engineering applications in the real
world.What ismore, the parallel implementationmechanism
of CTLBO and its application to multiobjective optimization
as well as combinatorial optimization problems will also be
studied.
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