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Vehicles
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Department of Electrical and Computer Engineering, Faculty of Engineering, University of Porto, Porto, Portugal

This paper presents results on recent developments pertaining to the coordinated motion

control of a fleet of marine robotic vehicles. Specifically, we address the Cooperative

Moving Path Following (CMPF) motion control problem, that consists of steering the

robotic vehicles along a priori specified geometric paths that jointly move according to

a target frame, while achieving a pre-defined coordination objective. To this end, each

vehicle will need to communicate with their neighbors in order to cooperatively solve

the CMPF task. Two distinct robust Moving Path Following motion control strategies

for achieving robustness on the moving path following tasks are proposed. Experimental

results demonstrating the application of CMPF to marine vehicles in the context of source

localization and tracking of underwater targets are presented backed with stability and

convergence guarantees.
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1. INTRODUCTION

The motion control problem for underactuated robotic vehicles is a relatively mature area of
research, with important works addressing trajectory tracking and path following schemes. In the
path following (PF) problem, the vehicle is tasked to follow a fixed geometric path without the
need of satisfying explicit time constraints, in contrast to trajectory tracking. A series of results
addressing the PF motion control problem were published, starting with the pioneering work in
Samson (1992), Micaelli and Samson (1993), and Aguiar and Pascoal (2007) for the case of wheeled
mobile robots, Encarnação et al. (2000), Belleter et al. (2016) and references therein for marine
vehicles and Cichella et al. (2011), Xargay et al. (2013) for UAVs.

A generalization of the path following problem is termed the Moving Path Following (MPF)
motion control problem, which consists of steering the robotic vehicle along an a priori specified
geometric path expressed with respect to a moving target frame. This problem finds applications
in source seeking, convoy protection, target tracking, surveillance and monitoring and also
autonomous landing. For example, in target tracking applications in the maritime environment,
it is desirable for the vehicles to perform different types of maneuvers. These maneuvers can
be framed as specific paths to be followed around the tracked target, and often allow the
vehicle to have the necessary flexibility to operate in a highly complex environment, which
is constantly inducing disturbances into its body due to the presence of maritime currents,
waves and hydrodynamic effects. Further, it is observed that the MPF problem retains the
advantages of the classical path following schemes (Aguiar et al., 2005) such as faster convergence
of the robot to the moving path, while allowing the target reference frame to move freely.
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The works in Oliveira and Encarnação (2013) and Oliveira et al.
(2016) introduced the MPF control problem for tracking of
ground targets using Unmanned Aerial Vehicles (UAVs) and
later on, Oliveira et al. (2017) extended the solution to the 3D
case. The proposed approach was suitable for robotic vehicles
requiring a minimum positive forward speed, such as certain
types of AUVs. In Jain et al. (2018b), a Lyapunov-based MPF
control approach was presented for robotic vehicles without
this restriction. Other control methods such as vector field
method (Kapitanyuk et al., 2017) and nonlinear model predictive
control (Jain et al., 2018c) have been proposed to solve the MPF
problem. In contrast to the contributions of this paper, the salient
features of the above reviewed literature are that they do not
consider the external disturbances that depend on the operational
environment, such as maritime currents, wind or rough terrain,
that can affect the performance of the MPF controller. Further,
they assume that the velocity of the target frame is known.

In path following literature, the problem of robustness has
been addressed for example, in Dagci et al. (2003), where
a cascade sliding mode controller for both kinematics and
dynamics of a robotic vehicle was designed. In Aguiar and
Pascoal (2002), a disturbance observer for constant unknown
ocean currents was designed to solve the problem of dynamic
positioning and way-point tracking of an underactuated AUV.
Later on, the problem of robustness against parametric
uncertainty in trajectory tracking and path following was also
addressed in Aguiar and Hespanha (2007). More recently, in
Zhang et al. (2014), a sliding mode technique combined with
a predictive control strategy was developed to compensate
for the impact of the hydrodynamic damping coupling on
a 3D path following task for an Autonomous Underwater
Vehicle (AUV). In Wang et al. (2016), a H∞ robust controller
for ground vehicles is proposed to achieve path following
in the presence of disturbances caused by delays and data
packet dropouts. All of the above schemes consider robustness
for the path following problem. From the best of the
authors knowledge, the only work concerning the problem
of robustness in MPF literature is Reis et al. (2019), where
sliding mode based controllers and a disturbance observer were
designed to compensate external disturbances acting on the
robotic vehicle.

A further extension of the MPF framework for multi-robot
applications and formation control is the Cooperative Moving
Path Following (CMPF) control problem, which consists in
steering N vehicles along N paths defined with respect to a
moving target while achieving some coordination objective.
A special case of CMPF control, where the paths are fixed
with respect to a given reference frame is the framework
of Cooperative Path Following (CPF). As a recent example,
the robustness problem in CPF literature was addressed in
Gu et al. (2019), where two cooperative path following
controllers using an Extended State Observer to estimate and
compensate external disturbances in the kinetic level were
proposed and validated experimentally using Autonomous
Surface Vehicles (ASVs). In (Jain et al., 2018a), an event-
based controller was explicitly designed to reduce the frequency
of communication between the robotic vehicles. The control

strategy effectively decomposes the control structure into
two distinct layers. The first is responsible for the motion
control of each individual vehicle, termed the PF controller.
The second, termed the cooperative controller, is responsible
for achieving coordination between the robots by using a
consensus law. However, (Jain et al., 2018a) does not consider
uncertainties and disturbances acting on the robotic vehicles.
By decoupling the motion control layer from the cooperative
control layer, one could use robust MPF controllers in the
first layer to deal with the presence of certain types of
disturbances acting on the vehicles, without affecting the
formation control.

This paper extends the results obtained for the MPF
controllers proposed by Reis et al. (2019) to the Cooperative
MPF framework. Two MPF control strategies are proposed for
the motion control layer, both using a known target pose and
estimates of the target velocities. The first strategy employs a
First Order Sliding Mode (FOSM) term to achieve robustness
against bounded disturbances. The second strategy seeks to
directly compensate the disturbance by computing an estimate
of the disturbance using a disturbance observer. The cooperative
layer consists of the consensus law proposed by Aguiar (2017).
The stability of the proposed control laws is analyzed and
it is shown that the origin of the path error is stable and
converges to a small neighborhood around zero, even in the
presence of bounded estimation errors on the target velocities
and environmental disturbances. The design and theoretical
results for the two variants of the proposed robust controllers are
experimentally validated in a CMPF scenario using Autonomous
Underwater Vehicles.

2. PROBLEM FORMULATION

2.1. Kinematic Model for an Underactuated
Vehicle
Consider an inertial frame of reference {I} andN robotic vehicles,
each with its body frame {Bi} attached to its center ofmass. Define
the set of N robotic vehicles as I = {1, 2, ...,N}. The kinematic
model of the i-th vehicle moving in R

n with n = 2, 3 can be
expressed by

ṗi(t) = Ri(t) vi + dv,i (1)

Ṙi(t) = Ri(t) S(ωi + dω,i)

where pi ∈ R
n denotes the position of the i-th robot with respect

to the frame {I}, Ri ∈ SO(n) denotes the rotationmatrix from the
frame {Bi} to an inertial frame {I}, vi ∈ R

n andωi ∈ R
n(n−1)/2 are

the linear and angular velocities of the i-th vehicle with respect to
its own body frame, S(ωi) ∈ so(n) is the skew-symmetric matrix
associated to the angular velocity ωi.

Finally, dv,i ∈ R
n and dω,i ∈ R

n(n−1)/2 are kinematic
disturbances acting on each robot. Many different factors can
be the source of these disturbances, depending on the type
of vehicle and the operational environment. Marine vehicles
such as AUVs are affected by unknown sea conditions that can
induce unwanted external velocities due to maritime currents,
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waves and wind. In the case of aerial vehicles, wind and
internal dynamics can induce some unwanted disturbances in
the kinematic model. In this work, we consider the problem of
controlling an underactuated vehicle at the kinematic level, with
the control signal defined as

ui =

[
vf ,i
ωi

]
(2)

where the body linear velocity vi is defined as vi = [ vf ,i 0 ]T

(n = 2) or vi = [ vf ,i 0 0 ]T (n = 3). This is the case for
vehicles where only the longitudinal velocity vf ,i ∈ R and the

body angular velocity ωi ∈ R
n(n−1)/2 can be controlled, such as

some types of AUVs. We assume that the vehicle has an inner-
loop autopilot controller that is responsible to track the linear and
angular velocity commands generated by the controller based on
the kinematic model of the robotic vehicle. Imperfect tracking by
the inner-loop autopilot controller can further contribute to the
velocity disturbances acting on the vehicle, that can be lumped
into the terms dv,i and dω,i.

2.2. Cooperative Moving Path Following
Problem
In the CMPF control problem, the vehicles must follow a priori
specified paths expressed with respect to a moving target whose
position can be accurately estimated, while also maintaining
some coordination objective. Define the target frame {T} with its
origin attached to the target center of mass. Then, the cooperative
MPF problem can be divided in the following two sub-problems.

2.2.1. Moving Path Following Problem
Let pt(t) ∈ R

n denote the position of the target with respect to
the frame {I}, and pt

d,i
(γi) ∈ R

n be the desired path for vehicle i,
specified with respect to the frame {T} and parameterized by the
path variable γi ∈ R. As illustrated by Figure 1, for a given γi and
time t, pd,i(γi, t) and ṗd,i(γi, t) denote the position and velocity
of the virtual reference point that must be followed by the i-th
vehicle, with respect to the inertial frame {I}:

pd,i(γi, t) = pt + Rt p
t
d,i (3)

ṗd,i(γi, t) = vt + Rt

(
∇ptd,i γ̇i + S(ωt) p

t
d,i

)
(4)

where Rt(t) ∈ SO(n) is the rotation matrix of frame {T} with
respect to {I}, vt(t) ∈ R

n, ωt(t) ∈ R
n(n−1)/2 are the linear and

angular target velocities and ∇ ≡ ∂/∂γi is the derivative with
respect to γi.

Assumption 2.1. The geometric path pt
d,i
(γi) is a

differentiable function.

Note that Assumption 2.1 is already needed in order to compute
(4) from (3). Suppose we wish to control the position of the nose
of the i-th vehicle, or more generically, a point p̄i = pi + Ri ǫ
placed at a constant position ǫ = [ ǫ1 ǫ2 ]

T (n = 2) or ǫ =

FIGURE 1 | Coordinate frames and vector notation for N = 3 vehicles.

[ ǫ1 ǫ2 ǫ3 ]
T (n = 3) from the origin of {Bi}. Then, define the

MPF error associated to the i-th vehicle as the vector

ei = RT
i (p̄i − pd,i) , i ∈ I (5)

The objective of the MPF control problem is to design a control
law ui such that the origin ei ≡ 0 is stable and ei → 0 as
t → ∞, ∀i ∈ I. That is, it is desired to steer the vehicles
toward their moving geometric paths, such that p̄i stabilizes
around pd,i(γi, t), ∀i ∈ I.

In order to control the progression of the virtual points
pd,i(t, γi) along the moving paths, the dynamics of the path
variable γ̇i should be explicitly controlled. This can be achieved
by imposing the dynamics for γi as

γ̇i = vd + ϑi , i ∈ I (6)

where the scalar vd is the desired nominal speed of the path
variable and ϑi is a bounded control signal, designed to achieve
CMPF objectives such as: (i) consensus over the path variables
of the robotic vehicles to achieve a desired formation along the
moving path and (ii) faster convergence to the moving path. To
move along the geometric paths with the desired velocity, the
vehicles must satisfy the desired speed assignments |γ̇i− vd| → 0
as t → ∞, ∀i ∈ I.

2.2.2. Cooperative Motion Control Problem
Assume that the i-th vehicle communicates with a fixed setNi ⊂

N of neighbor vehicles. Given the path variables γi (i ∈ I)
for the N vehicles and a given undirected, fixed communication
topology among them, the objective of the cooperative motion
control problem is to design a decentralized control law vr,i(t)
such that the positions of the virtual points are synchronized,
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that is, |γi − γj| converges to zero ∀i, j ∈ I as t → ∞.
To simultaneously achieve the speed assignment, coordination
objective and also two other secondary objectives, function ϑi in
(6) is decomposed as

ϑi = vr,i(t)+ ge,i(t)+ gω,i(t) (7)

where vr,i(t) is the cooperative control signal (to be designed) that
is responsible for achieving consensus between the vehicles, while
ge,i(t) and gω,i(t) represent secondary objectives, where ge,i(t) is
an error correction term, responsible for delaying the evolution
of the path variable in case of momentary vehicle failure, and
gω,i(t) is a rotation correction term, responsible for canceling the
rotational motion induced on the path by the rotation of the
target. These functions are to be properly defined in section 3.3.

3. ROBUST COOPERATIVE MOVING PATH
FOLLOWING CONTROL

3.1. Robust MPF Controller Design
In this section, we consider the kinematic controller proposed
in Jain et al. (2018a) with a modification designed to ensure
robustness against disturbances. For the i-th vehicle, the error
dynamics is given by

ėi = ṘTi (p̄i − pd,i)+ RTi (
¯̇pi − ṗd,i) .

Using model (1) with control signal (2) and MPF error (5), the
error dynamics can be rewritten as

ėi = −S(ωi + dω,i) ei + 1ui + di − RT
i vt

−RT
i Rt

(
∇ptd,i γ̇i + S(ωt) p

t
d,i(γi)

)
(8)

where1 is a constant matrix that can take the forms

1 =

[
1 −ǫ2
0 ǫ1

]
or 1 =



1 0 ǫ3 −ǫ2
0 −ǫ3 0 ǫ1
0 ǫ2 −ǫ1 0




for the planar (n = 2) and 3D (n = 3) cases, respectively. Note
that it is always possible to choose ǫ such that 1 is full rank.
Vector di ∈ Rn is the total external disturbance acting on the
vehicle. In the planar case, it is given by

di =
[
RT
i sǫ

] [dv,i
dω,i

]

sǫ =
[
−ǫ2 ǫ1

]T
(9)

Remark 3.1. Notice that, by the triangle inequality, the total
external disturbance di is bounded by ‖di‖ ≤ ‖dv,i‖ + ‖dω,i‖ ‖ǫ‖.

Assumption 3.1. The total external disturbances di are bounded
vector quantities.

Theorem 1 (Robust MPF). Consider an underactuated robotic
vehicle described by (1) with control signal given by (2). Let the
MPF error kinematics be described by (8), and consider that the
pose of the i-th vehicle {pi,Ri} ∈ R

n × SO(n) and of the target
frame {pt ,Rt} ∈ R

n × SO(n) are known. Under Assumptions 2.1
and 3.1, the control law

ui = 1†
(
−Kp,i ei + RT

i

(
v̂t + Rt S(ω̂t) p

t
d,i

)

+RT
i Rt∇ptd,iγ̇i − wi

)
(10)

wi =

{
ρi

ei
‖ei‖

, ‖ei‖ ≥ ǫw

ρi
ei
ǫw
, ‖ei‖ < ǫw

(11)

ensures that all trajectories of the MPF error are globally uniformly
ultimately bounded and converge to a ball around the origin ei = 0
that can be made arbitrarily small. In (10), the matrix 1† is the
Moore-Penrose pseudo-inverse of 1, Kp ∈ Rn×n is a positive-

definite gain matrix and v̂t ∈ R
n, ω̂t ∈ R

n(n−1)/2 are estimates
of the target velocities. In (11), ρi is a scalar such that

ρi ≥ ‖dv,i‖ + ‖dω,i‖‖ǫ‖ + ‖̃vt‖ + ‖ω̃t × ptd,i(γi)‖ (12)

where ṽt = vt − v̂t , ω̃t = ωt − ω̂t are bounded estimation errors
on the target velocities.

Proof: Define the Lyapunov candidate V(ei) = 1
2 e

T
i ei. Using

the error dynamics in (8), its time derivative along the system
trajectories is

V̇(ei) = eT
i

(
1ui + di − RT

i vt − RT
i Rt

(
∇ptd,i γ̇i + S(ωt) p

t
d,i

) )

(13)

where we have used the fact that eT
i S(ωi + dω,i) ei = 0, since

S(ωi + dω,i) is skew-symmetric. Substituting control law (10) in
(13) yields

V̇(ei) = −eT
i Kp ei + eT

i (Di − wi) , (14)

where Di = di − RT
i

(
ṽt + Rt S(ω̃t) p

t
d,i

)
. Since Kp > 0, the

first term is negative definite and bounded by −λmin(Kp)‖ei‖
2.

Next, we consider the two cases of (11), when ‖ei‖ ≥ ǫw or
‖ei‖ < ǫw.

• For ‖ei‖ ≥ ǫw in (14), we have

V̇(ei) ≤ −λmin(Kp)‖ei‖
2 + eT

i Di − ρi
eT
i ei

‖ei‖

≤ −λmin(Kp)‖ei‖
2 + ‖ei‖ (‖Di‖−ρi)

where the Cauchy-Schwarz inequality was employed on term
eT
i Di. By Assumption 3.1, it is always possible to design ρi
such that (12) is satisfied. Therefore, by Remark 3.1, choosing
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ρi ≥ ‖Di‖ renders the second term on the right-hand side
negative definite, which estabilishes that the trajectory ei(t)
of the closed-loop system reaches the ball B(ǫw) : = {ei ∈

R
n
:‖ei‖ ≤ ǫw} in finite time.

• When the trajectories are insideB(ǫw), we have ‖ei‖ < ǫw, and
(14) gets

V̇(ei) ≤ −λmin(Kp)‖ei‖
2 + eT

i Di − ρi
eT
i ei

ǫw

≤ −(1− θ)λmin(Kp)‖ei‖
2

−

(
θλmin(Kp)+

ρi

ǫw

)
‖ei‖

2 + ‖ei‖‖Di‖

where 0 < θ < 1. Then, using the inequality above, one can
write:

V̇(ei) ≤ −(1− θ)λmin(Kp)‖ei‖
2 < 0 ∀‖ei‖ ≥ µi ,

µi =
‖Di‖ǫw

λmin(Kp) θ ǫw + ρi

Note that µi ≤ ǫw for all 0 < θ < 1, which means that the
trajectory of the closed-loop system ei(t) again reaches the ball
B(µi) ⊆ B(ǫw) in finite time.

This establishes that the trajectories are globally ultimately
uniformly bounded, since V = 1

2‖ei‖
2 is radially unbounded

(Khalil, 2002). Moreover, ei(t) converges to the ball B(µi) ⊆

B(ǫw), which can be made arbitrarily small when ǫw → 0.

3.2. Robust MPF Controller Design With
Disturbance Observer
In the presence of large amplitude disturbances, it may be difficult
to tune the parameters ρi and ǫw so as to satisfy (12). In these
situations, an observer can be designed to provide an estimate of
the disturbance. Furthermore, this estimate can be used in the
control law to compensate the real disturbance directly.

Without loss of generality, consider the planar problem.
Consider that the vehicle pose {pi,Ri} ∈ R

2 × SO(2) is known
and that the vehicle orientation is parameterized by the planar
angle ψi ∈ R, such that Ri = Ri(ψi) ∈ SO(2).

Then, the disturbance observer for the translational
disturbance is defined as

{
˙̂pi = Ri vi + d̂v,i + K1 p̃i
˙̂
dv,i = K2 p̃i ,

(15)

where the estimation errors are defined as p̃i = pi− p̂i and d̃v,i =

dv,i − d̂v,i, and the positions pi, i ∈ I are accurately measured.
For positive-definite matricesK1,K2 ∈ R

2×2, the dynamics of the
estimation errors p̃i, d̃i can be proven to be Input-to-State Stable
(ISS) with respect to the first time-derivative of dv,i (Aguiar and
Pascoal, 2002).

Similarly, observers for the rotational disturbances dω,i ∈ R

can be designed as:

{
˙̂
ψi = ωi + d̂ω,i + kω1 ψ̃i

˙̂
dω,i = kω2 ψ̃i ,

(16)

where the estimation errors are defined as ψ̃i = ψi − ψ̂i and

d̃ω,i = dω,i − d̂ω,i, and the planar angles ψi are measured.
Again, for positive scalars kω1 , kω2 ∈ R>0, the dynamics of the
estimation errors ψ̃i, d̃ω,i can be proven to be ISS with respect to
the first time-derivative of dω,i (Aguiar and Pascoal, 2002).

Theorem 2 (Robust MPF with Disturbance Observer).

Consider an underactuated robotic vehicle described by
(1) and control signal given by (2). Let the MPF error
kinematics be described by (8), and consider that the pose of
the vehicle {pi,Ri} ∈ R

n × SO(n) and of the target frame
{pt ,Rt} ∈ R

n × SO(n) are known. Under Assumptions 2.1 and
3.1, the control law

ui = 1†
(
−Kp,i ei + RT

i

(
v̂t + Rt S(ω̂t) p

t
d,i

)

+RT
i Rt∇ptd,iγ̇i − wi − d̂i

)
(17)

ensures that all trajectories of the MPF error are globally uniformly
ultimately bounded and converge to a ball around the origin
ei = 0 that can be made arbitrarily small. In (17), matrix
1† is the Moore-Penrose pseudo-inverse of 1, Kp ∈ R

n×n is

a positive-definite gain matrix, v̂t ∈ R
n and ω̂t ∈ R

n(n−1)/2

are estimates of the target velocities and d̂i is the total estimated
external disturbance, which is a function of the states of the
disturbance observers

d̂i =
[
RT
i sǫ

] [d̂v,i
d̂ω,i

]
(18)

The term wi is defined by (11), with scalars ρi satisfying

ρi ≥ ‖̃dv,i‖ + |̃dω,i|‖ǫ‖ + ‖̃vt‖ + ‖ω̃t × ptd,i(γi)‖ (19)

Proof: The proof is very similar to Theorem 1, and can be
performed by proposing the same Lyapunov candidate V =
1
2 e

T
i ei. Differentiating it in time and applying the error dynamics

(8) with control law (10) yields

V̇(ei) = −eT
i Kp ei + eT

i

(
D̃i − wi

)
(20)

where D̃i = d̃i − RT
i

(
ṽt + Rt S(ω̃t) p

t
d,i

)
and d̃i is the total

estimation error defined by d̃i = di − d̂i.
Note that (20) is similar to (14), but with disturbance D̃i

instead of Di. Therefore, using the same arguments for the
proof of Theorem 1 with Assumption 3.1 and condition (19),
one can conclude that the trajectories of the MPF error are
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globally uniformly ultimately bounded and ei(t) converges to
the ball B(µ̄i) ⊆ B(ǫw), which can be made arbitrarily small
when ǫw → 0.

Remark 3.2. Comparing conditions (12) and (19) for the choice
of ρi, in (19) the gain ρi must overcome only the norm of
the disturbance estimation errors instead of the norm of the
disturbance. Therefore, if the disturbance observer is properly
designed, this method can reduce the necessary amount of control
effort when compared to the previous method.

Remark 3.3. Both proposed control laws (10, 17) employ estimates
of the target velocities. Since the velocity estimation errors ṽt and
ω̃t appear as additional disturbances in Di and D̃i, they can be
properly compensated by the proposed controllers as long as ρi
satisfies (12) or (19). In this case, the velocity estimation errors
are implicitly assumed to be bounded. Furthermore, notice that in
the case where no velocity estimators are employed (̂vt = 0 and
ω̂t = 0), the velocity estimation errors are simply ṽt = vt and ω̃t =

ωt , which are also bounded. These observations imply that velocity
estimators are not necessarily required for the implementation of
the proposed control laws. However, large velocity estimation errors
would increase the lower bounds for the design of ρi, increasing the
amount of control effort, which could lead to loss of performance.

3.3. Cooperative Moving Path Following
This section provides a proper design for function ϑi in (7). First,
the design of the error correction term ge,i(t) and of the rotation
correction term gω,i(t) are discussed, and finally we make use of
the results from Olfati-Saber et al. (2007) to design a cooperative
control law vr,i(t).

3.3.1. Error Correction Term
The term ge,i(t) is a bounded error correction term that acts as an
external input to the path dynamics, enabling faster convergence
of the robotic vehicle to the moving path. It can be designed to
delay or to stop the motion of the virtual point if the vehicle is too
far away from the path. This can be done by defining the gradient
with respect to the path variable of the MPF error norm squared:

ηe,i = ∇

(
1

2
eT
i ei

)
= −eT

i R
T
i Rt ∇ptd,i(γi) (21)

and then choosing a gradient descent law ge,i = −ke,i sat(ηe,i)
with ke,i > 0. The saturation function guarantees the
boundedness for the correction term. Its effect is to effectively
delay the evolution of the virtual point along the path by explicitly
avoiding the evolution of γi if the MPF error norm is too large.

3.3.2. Path Rotation Correction Term
The term gω,i(t) is designed to delay the evolution of the virtual
point pd,i in a such a way that minimizes the effect of the target
rotational motion, which is evident from the term S(ωt) p

t
d,i
(γi)

in (4). This effect is important since, for large target angular
velocities ωt , the virtual point could move faster than the i-th
vehicle could reach. Therefore, substituting (7) into the error
dynamics (8), we seek to design a scalar gω,i such that

gω,i(t) = argmin
gi∈R

‖∇ptd,i(γi) gi + S(ωt) p
t
d,i(γi)‖ . (22)

If the target angular velocity is known, the minimum can be
achieved by the least squares solution

gω,i(ωt , γi) = −
∇Tpt

d,i
S(ωt) p

t
d,i

‖∇pt
d,i
‖2

, (23)

with minimum given by

min
gi∈R

‖∇ptd,i(γi) gi + S(ωt) p
t
d,i(γi)‖ =

(∇pt
d,i
)Tpt

d,i

‖∇pt
d,i
‖2

S(ωt)∇ptd,i .

Remark 3.4. Note that the minimum is identically null regardless
the rotational motion of the target only if and only if: (i) the path is
perpendicular to its gradient everywhere, i.e., (∇pt

d,i
)Tpt

d,i
= 0 ∀γi,

i ∈ I or (ii) the angular velocity of the target is collinear to the path
gradient everywhere, i.e., ωt = c∇pt

d,i
= 0 ∀γi, i ∈ I for some

constant c ∈ R. Clearly, condition (ii) never holds in the planar
case (n = 2).

Assumption 3.2. The path gradients are non-vanishing
everywhere, i.e., ∇pt

d,i
(γi) 6= 0 ,∀γi , i ∈ I.

From (23) and Assumption 3.2, the error correction term is
bounded by.

|gω,i(t)| ≤
maxγi‖p

t
d,i
(γi)‖

minγi‖∇pt
d,i
(γi)‖

‖ωt‖ .

3.3.3. Cooperative Controller
Consider the distributed consensus law (Aguiar, 2017):

vr,i = −kc,i
∑

j∈Ni

(γi − γ̂
i
j ) , ∀i ∈ I (24)

where kc,i > 0 are consensus gains and γ̂ i
j are estimates of the

path variables of the neighbor vehicles (γj , j ∈ Ni) running
inside the i-th vehicle computer. Assuming that the frequency
of communication is low, its reasonable to assume that γ̂ i

j 6=

γj ,∀t > 0. Therefore, one can write γ̂ i
j = γj − γ̃ i

j , where γ̃
i
j is

a path variable estimation error.

Assumption 3.3. Given a fixed, undirected communication
topology between the vehicles, the i-th vehicle updates its
path variable γi to its j ∈ Ni neighbors in a fixed frequency.
Additionally, assume that no data package is lost during
communication. Consequently, the path variable estimation errors
γ̃ i
j ,∀i, j ∈ I are always bounded.

Define the vectors γ =
[
γ1 γ2 · · · γN

]T
, ge =

[
ge,1 ge,2 · · · ge,N

]T
, gω =

[
gω,1 gω,2 · · · gω,N

]T
and 1N =

[
1 1 · · · 1

]T
∈ R

N . Using (24) in (7) and stacking the dynamic
equations, one can write

γ̇ = vd1N − KcLγ − Kcγ̃ + ge + gω , (25)
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FIGURE 2 | (A) Autonomous underwater vehicles used on the experiments. (B) The Neptus console.

where Kc = diag(kc,1, kc,2, . . . , kc,N) is a positive definite
matrix of consensus gains, L = D − A ∈ R

N×N is the
Laplacian of the network connection graph, defined by D =

diag(|N1|, |N2|, . . . , |NN |) and the adjacency matrix A = [aij],
with aij = 1 if j ∈ Ni and aij = 0 otherwise. Vector γ̃ is defined

as [γ̃ ]i =
∑

j∈Ni
γ̃ i
j , i.e., its i-th element is the sum of all path

variable estimation errors for the i-th vehicle.

Theorem 3 (Cooperative Controller). Consider a fleet of N
underactuated robotic vehicles with dynamics described by (1) and
control signal given by (2). Then, control laws (10) or (17) with
robustness term (11) guarantee that the origin of the MPF error
ei ≡ 0 is stable under the same conditions and assumptions of
Theorems 1 and 2, respectively.

Furthermore, under Assumption 3.3, the cooperative control
law given by (24) ensures that |γi − γj|,∀i, j ∈ I are Input-
to-State Stable (ISS)1 with respect to the path variable estimation
errors [γ̃ ]i, error correction terms ge,i and rotation correction terms
gω,i, ∀ i ∈ I.

Proof: The first part of the Theorem was already proved in
Theorems 1 and 2. The part related to the cooperative control
follows the same core ideas from (Jain et al., 2018a). First, define
the disagreement vector (Olfati-Saber et al., 2007) as δ : = γ −

α1N , with α = (1/N)1T
Nγ .

Note that the consensus condition |γi − γj| = 0,∀i, j ∈ I is
achieved if and only if δ = 0. Additionally, the following two
properties hold: (i) Lγ = Lδ and (ii) 1T

N δ = 0.

1Khalil (2002) A nonlinear system δ̇ = f (t, δ, ǫ) is said to be Input-to-State Stable

(ISS) if there exist a classKL function β and a classK function γ such that for any

initial state δ(t0) and any bounded input ǫ(t), the solution δ(t) exists for all t ≥ t0
and satisfies

‖δ(t)‖ ≤ β(‖δ(t0)‖, t − t0)+ γ

(
sup

t0≤τ≤t
‖ǫ(τ )‖

)

.

Next, define the ISS Lyapunov function candidate

Vcc(δ) = δTLδ ≥ 0

Taking its time-derivative and using (25), yields

V̇cc = −zTKcz − zTKcγ̃ + zTge + zTgω (26)

with z = Lδ, where we used the properties (i) and (ii) introduced
before. Using the Cauchy-Schwartz inequality, yields

V̇cc ≤ −λmin(Kc)‖z‖
2 + λmax(Kc)‖z‖‖γ̃ ‖ + ‖z‖‖ge‖ + ‖z‖‖gω‖

(27)

Applying Young’s inequality to the last three terms in (27),
we have

V̇cc ≤ −

(
λmin(Kc)−

λmax(Kc)

2c
−

1

2c
−

1

2c

)
‖z‖2

+
cλmax(Kc)

2
‖γ̃ ‖2 +

c

2
‖ge‖

2 +
c

2
‖gω‖

2

with a scalar c ∈ R>0. Choosing any c >
λmax(Kc)
2λmin(Kc)

+λ−1
min(Kc) > 0

leaves the first term of the right-hand side strictly negative, which
by Assumption 3.3 and by the boundedness of ge,i, gω,i establishes
that the disagreement vector δ is ISS with respect to the bounded
disturbances [γ̃ ]i, ge,i and gω,i, for all i ∈ I.

4. EXPERIMENTAL RESULTS

4.1. Experimental Setup
The experiments were performed on Porto de Leixões (Porto,
Portugal) using three Light Autonomous Underwater Vehicles
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(LAUVs) from the Underwater Systems and Technology
Laboratory (LSTS) at the Faculty of Engineering of the University
of Porto (FEUP) (Figure 2A). LAUVs are lightweight, portable
vehicles that can be easily launched, operated and recovered with
a minimal operational setup.

The vehicles operate under the DUNE/Neptus environments,
which are part of a software toolchain (Pinto et al., 2013)
developed and maintained by LSTS. DUNE is the on-board
software running on the vehicles, comprising all the software
needed for communications, navigation, control, maneuvering,
plan execution and supervision of multiple types of robotic
vehicles. The control algorithms were implemented on C++,
using the available DUNE libraries. Neptus is a software used
for command, control and monitoring, comprising many typical
functions needed for a typical mission, such as planning,
execution and post-mission analysis (Figure 2B).

A target vehicle was simulated and continuously sends
its position and orientation (computed from GPS/IMU
measurements using an extended Kalman filter (Braga et al.,
2012) to the three follower vehicles through static UDP
connections with a maximum frequency of 1Hz. The control
algorithm for the target vehicle is a vector field method (Nelson
et al., 2007) that is responsible to steer the vehicle along a
circumference with radius equal to 60m in the clockwise
direction at 0.5m/s. The desired moving paths for the follower
AUVs are planar circumference centered at the target vehicle
with phase difference of 2π/3 between them:

ptd,i(γi) = R

[
cos(γi/R+ φi)
sin(γi/R+ φi)

]
, (28)

where R = 25m, φ1 = 0 rad, φ2 = 2π/3 rad and φ3 =

−2π/3 rad. Each vehicle sends its path variable to the neighbor
vehicles with a frequency of 1Hz to maintain coordination,
according to the consensus law (24) and Assumption 3.3. The
consensus gains are kc,i = 0.1 ,∀i ∈ I.

For the construction of the MPF errors ei, the value

ǫ =
[
1 0
]T

was used. The controller gain matrices and
error correction gains were chosen as Kp,i = diag(0.2, 0.2)
and ke,i = 2 ,∀i ∈ I. The reference for the path variable
velocity is vd = 1m/s.

Remark 4.1. We point out the fact that this particular kind of
vehicles cannot generate reliable negative forward velocities due to
its propeller design. Given the fact that control laws (10), (17) can
generate negative forward velocities if the virtual point is behind
the line-of-sight of the vehicle, a substitute controller was designed
to override the original controller in case this happens.

Therefore, while the forward velocity generated by (10) or (17)
is negative (vf ,i < 0), the applied control signal will be

ui =

[
vC

−sgn([ei]y − ǫ2)ωC

]

instead, until (10), (17) generate a positive vf ,i again. Constants
vC, ωC ∈ R are strictly positive. That means that the vehicle

performs a “turning” maneuver with constant velocities until the
virtual point is once again inside its line-of-sight. The direction of
the turn is clockwise if the virtual point is to the right of the vehicle
and counterclockwise if the virtual point is to the left of the vehicle.
This strategy allows arbitrary initial configurations of the vehicles
with respect to the initial position of the virtual point, and also
allows the vehicles to recover from practical dead lock situations
where their line-of-sight is kept facing away from the virtual point,
which could happen, for example, in case of communication losses.
In this case, vC = 1.7m/s and ωC = 1 rad/s, approximately the
upper saturation limits for the actuators.

4.2. Experimental Results
4.2.1. CMPF With Velocity Compensation
The first experiment shows the results of the CMPF controller
with velocity compensation, ρi = 0 and no disturbance

compensation (d̂v,i = 0 and d̂ω,i = 0). Figure 3 shows
the trajectories of the vehicles. The trajectory of the target
is represented as the dashed black circle, in the clockwise
direction. The small colored circles represent the beginning
of the trajectory, while the colored asterisks represent
its end. Noticeably, the three vehicles try to follow their
respective paths (shown in dashed lines) around the
rotating target, while maintaining their phase difference.
Figure 4 shows the obtained results. The initial position of the
vehicles was distant from the network router (located closer
to the northeast part of Figure 3), which affected the wireless
communications for a while. However, the initially large path
variable errors rapidly decrease and remain bounded to less
than 4m (Figure 4B). Because of the communication losses and
possibly the presence of ocean currents, the secondary controller

FIGURE 3 | Vehicle trajectories for the CMPF controller with

velocity compensation.
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FIGURE 4 | Experimental results for the CMPF controller with velocity compensation.

described in Remark 4.1 had to recover some vehicles during
the transient, resulting in some of the turning maneuvers we
see in the beginning of the trajectories (Figure 3). After that
transient, the norm of the MPF errors converge to a small region
of less than 3m while the control signal remains inside its linear
region (Figures 4C,D). Note how the consensus law acts precisely
when the path variable errors are high (Figure 4E), how the
error correction terms acts when the MPF error norm is high (to
prevent the evolution of the path variables), and how the rotation
correction terms is fixed to a small value (≈ 0.18m/s) during the
whole experiment. This is due to the fact that the target moves
with constant angular velocity and the paths are circles to all three
vehicles (see 23).

4.2.2. Robust CMPF With Sliding Mode Term
The second experiment shows the results of the robust CMPF
controller with velocity compensation and Sliding Mode term,
with MPF control law given by (10) with ρi = 0.2 for
the three vehicles and ǫw = 0.5m. The consensus law for
cooperation among the vehicles is given by (24), as before.

Figure 5 shows the vehicle trajectories around the target, starting
and ending in the southwest and southeast corners, respectively.
Once more, due to communication losses and the presence
of ocean currents in the southwest location, the secondary
controller described in Remark 4.1 was activated for some of
vehicles during the transient. However, the proposed controller
was able to stabilize the error faster than the nominal controller.
Besides, from Figure 6A, it is possible to notice the practical
sliding mode phenomena around the origin ei ≡ 0. That means
that the controller is able to achieve better performance than
the previous one, given that ǫw can be designed to be arbitrarily
small. However, from (11), small values of ǫw can result in higher
gains for wi, which can potentially saturate the control inputs.
In fact, sometimes the control saturation limits are reached after
the transient, as shown in Figures 6C,D, and practical sliding
mode is momentarily lost. The reason is the limited velocity
range allowed by the actuators, combined with our particular
value choice for ǫw, and moments of occasional increase in the
target velocity. Even so, performance is slightly better than in the
previous case, and the amount of control chattering is acceptable.
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FIGURE 5 | Vehicle trajectories for the robust CMPF controller.

FIGURE 6 | Results for the robust CMPF controller.

The consensus law, error correction signals and rotation
correction signals are omitted, but are similar to those observed
in Figure 4.

4.2.3. Robust CMPF With Sliding Mode Term and

Disturbance Compensation
The third and last experiment shows the results of the robust
CMPF controller with velocity compensation, SlidingMode term
and direct disturbance compensation using a linear observer. The
control law is given by (17) with ρi = 0.2 and ǫw = 0.5m,
as before. Again, the consensus law for cooperation among the
vehicles is given by (24).

FIGURE 7 | Vehicle trajectories for the robust CMPF controller with

disturbance observer.

As seen from Figure 7, only the vehicles Noptilus 1 and 3
were used on this experiment, since the battery on Noptilus 2 was
depleted. However, the results obtained by Noptilus 1 and 3 can
still be compared to the previous results obtained for the same
two vehicles. The chosen paths are the same circles defined in
(28), but this timewith φ1 = 0 and φ3 = π rad. Thismodification
was used to guarantee that the two vehicles stay as far as
possible from each another. Once again, in Figure 8A, notice the
practical sliding mode phenomena around the origin ei ≡ 0,
except during the instants where the control inputs are saturated
(Figures 8C,D). However, in this case, the control chattering
is significantly smaller than the one observed in Figures 6C,D,
under the same experimental conditions. We explain this fact
by the presence of the disturbance estimator. Since part of the
disturbance is compensated, the sliding mode term can spend
less effort compensating the remaining total disturbance, a result
compatible with the theoretical insight of Remark 3.2. The path
variable errors remain bounded by 4m, as shown in Figure 8B.
The estimated disturbances are shown in Figure 9. The linear
velocity disturbances remained bounded by < 0.3ms after the
transient, while the angular velocity disturbances showed higher
variation, but remained bounded to< 0.5rad s after the transient.

5. CONCLUSIONS

This work addressed the robust cooperative MPF problem
for marine vehicles. We demonstrated that the origin of the
MPF errors associated to the vehicles are stable with the two
proposed robust CMPF control schemes in the presence of
bounded disturbances acting on the vehicles. Furthermore, it was
theoretically demonstrated that the cooperative control scheme
is ISS with respect to the path variable estimation errors and
to two other bounded, auxiliary input variables, named error
correction term and rotation correction terms. The proposed
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FIGURE 8 | Results for the robust CMPF controller with disturbance observer.

FIGURE 9 | Results obtained with the disturbance estimator.

robust controllers (10, 17) guarantee that the MPF error is
globally uniformly bounded to a small neighborhood of the
origin while maintaining acceptable control chattering. The
narrow linear region of the actuators imposes limits on how small
ǫw can be designed in practice. Lastly, we conclude that control
law (17) actually improved the control chattering in practice,
corroborating the theoretical insight of Remark 3.2.

Some of the future works are: (i) to investigate how to extend
the proposed controllers to the case of unknown bounds for the
disturbances (ii) to take the existence of actuator saturation limits
in the control design and (iii) to incorporate obstacle avoidance
techniques into the cooperative MPF approach to prevent vehicle
collision during the cooperation tasks.
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