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Abstract: In this study, we developed a novel cerium/ascorbic acid/iodine active species to design
a redox flow battery (RFB), in which the cerium nitrate hexahydrate [Ce(NO3)3·6H2O] was used
as a positive Ce3+/Ce4+ ion pair, and the potassium iodate (KIO3) containing ascorbic acid was
used as a negative I2/I− ion pair. In order to improve the electrochemical activity and to avoid
cross-contamination of the redox pair ions, the electroless plating and sol–gel method were applied
to modify the carbon paper electrode and the Nafion 117 membrane. The electrocatalytic and
electrochemical properties of the composite electrode using methanesulfonic acid as a supporting
electrolyte were assessed using the cyclic voltammetry (CV) test. The results showed that the Ce
(III)/Ce (IV) active species presented a symmetric oxidation/reduction current ratio (1.09) on the
C–TiO2–PdO composite electrode. Adding a constant amount of ascorbic acid to the iodine solution
led to a good reversible oxidation/reduction reaction. Therefore, a novel Ce/ascorbic acid/I RFB was
developed with C–TiO2–PdO composite electrodes and modified Nafion 117–SiO2–SO3H membrane
using the staggered-type flow channel, of which the energy efficiency (EE%) can reach about 72%. The
Ce/ascorbic acid/I active species can greatly reduce the electrolyte cost compared to the all-vanadium
redox flow battery system, and it therefore has greater development potential.

Keywords: Ce/ascorbic acid/I RFB; electroless plating; sol–gel; C–TiO2–PdO composite electrode;
electrocatalytic; Nafion 117–SiO2–SO3H membrane

1. Introduction

Electrochemical energy storage technology has been developed for many energy stor-
age methods over recent years. Among them, the development of the redox flow battery
(RFB) has received the most attention. The RFB has been developed for large-scale energy
storage systems (KWh–MWh) during the last decade to address the power instability of
renewable energy resources (e.g., wind power and solar power) because of climate change.
RFBs have been regarded as suitable for large-scale energy storage because of their modu-
lar design, good scalability, flexible operation, high storage capacity and efficiency, long
operating life, safety, and environmentally friendly properties [1–5]. E. Sánchez-Díez et al.
provided a review of the status of and perspective towards sustainable stationary energy
storage of the RFB, which can potentially fulfill cost requirements and enable large-scale
storage [1]. A. Clemente et al. reviewed the concept of the RFB, such as the composi-
tion and operation, including battery sizing, main existing applications and installations,
mathematical models, and control and supervision [2]. L. Sanz et al. proposed the novel
electrochemistry of the all-copper system, which is well suited to application in RFB tech-
nologies [3]. F. Pan et al. reviewed different categories of storage active species for RFB
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applications, such as inorganic ions (metal complexes) and metal-free organic compounds
(e.g., polysulfide/sulfur and lithium) storage and suggested the future development of
redox species towards higher energy density [4]. S. N. Garcia et al. synthesized four
different benzyl-morpholino hydroquinone derivatives as potential redox active species [5].
The all-vanadium redox flow battery (all-VRFB) is one of the most promising technologies
for mid- to large-scale application (KW–MW) and has the advantages of fast response
time, flexible design, high cycle life, and non-flammable and non-explosive properties.
M. Skyllas-Kazacos et al. first put forward the VRFB in the 1980s [6]. M. Pugach et al. pro-
posed a new methodology for estimation of the key characteristics for a commercial scale
(5 KW/15 KWh) VRFB at different operating conditions [7]. T. Sarkar et al. approached
the optimal design and implementation of a solar PV–wind–biogas–VRFB storage inte-
grated smart hybrid microgrid to ensure zero loss of power supply [8]. While the all-VRFB
power storage system has many advantages, it is still limited by the narrow operating
temperature range, low energy density, precipitation of vanadium dioxide, and expen-
sive vanadium salt. The VRFB system presents poor thermal stability of V5+ electrolyte
solution [9]. Y.K. Zeng et al. carried out a comprehensive comparison of the VRFB and
ICRFB (iron/chromium) large-scale energy storage systems, and the ICRFB showed a
lower cost than the VRFB [10]. N. Gurief et al. introduced a new concept of redistributing
reactants within the flow frame to reduce the concentration overpotential and increase the
limiting current density and cycle efficiencies [11]. These restrictions have prompted re-
searchers to find a new reduced-cost RFB system. Thus, various RFBs have been developed,
such as the V/Fe [12,13], V/Br [14], V/Ce [15], and V/I [16] semi-vanadium systems and
Zn/Br [17], Zn/Fe [18], Zn/Ce [19], Ce/Pb [20], Fe/Pb [21], Fe/Cl [22], soluble all-lead
(all-Pb) [23], and all-Fe RFB [24] non-vanadium systems. P.K. Leung and Z. Xie et al. [25–29],
reviewed the developments and challenges of the Zn/Ce RFB, including single or mixed
electrolytes, supporting electrolytes, additives, and the electrode and reaction mechanism.
The Zn/Ce RFB has the potential to store a large amount of energy economically and
efficiently because of the high thermodynamic open-circuit cell voltage. However, there
are still numerous problems that must be overcome, such as the zinc deposition on the
negative electrode, the evolution of oxygen during charging, and requirement of high
chemical stability for a positive electrode. In addition, the supporting electrolyte plays an
important role. By using sulfuric acid (H2SO4) as a supporting electrolyte with various
concentrations and temperatures, different cerium ions can easily produce a variety of
ion-combined coordination substances, which makes the electrochemical behavior of the
Ce(III)/Ce(IV) redox pair more complicated [25–27]. G. Nikiforidis et al. used methanesul-
fonic acid (CH3SO3H) mixed with hydrochloric acid (HCl) as the supporting electrolyte for
a positive Ce(III)/Ce(IV) redox pair that showed higher redox reversibility and a higher
reduction current density than the pure CH3SO3H solution [27]. Z. Na [29] et al., using an
acid-treated graphite carbon felt (PGF) electrode, achieved good electrocatalytic activity.
In our previous research, we found that the C–TiO2–CoP and C–TiO2–PdO composite
electrodes synthesized by the sol–gel process and electroless plating method can greatly
improve the voltage efficiency of the RFB for non-vanadium electrolytes such as iodide
and iron salts [13,16]. Compared with the all-vanadium RFB, the V/I RFB can reduce the
cost of the vanadium salt, and the ascorbic acid can effectively increase the electrochemical
reversibility of the iodide salt as shown by our previous study [16]. However, the V/I
RFB system still has the problems of low standard potential (about 0.46 V) and expensive
vanadium salts [16]. The main aim of this research was to develop a new Ce/ascorbic
acid/I active species redox couple for the RFB design. Using the cerium nitrate hexahy-
drate Ce(NO3)3·6H2O salt with high reduction potential (1.28 to 1.72 V) from Ce(III) to
Ce(IV), and ascorbic acid with low reduction potential (0.06 V) and high solubility, can
assist the reversibility of the electrochemical reaction of the iodine solution [4,16,20]. A
new non-vanadium Ce/ascorbic acid/I RFB system combined with the modification of
the key materials such as electrodes and isolation membranes was designed. This system



Molecules 2021, 26, 3443 3 of 14

can obtain a higher standard potential and energy density than of the all-VRFB system and
effectively reduce the costs.

2. Materials and Methods
2.1. Fabrication of the Composite Electrodes and the Modification of the Nafion 117 Membrane

We fabricated a series of composite electrodes including carbon paper–titanium diox-
ide (C–TiO2), carbon paper–palladium oxide (C–PdO), and carbon paper–titanium dioxide–
palladium oxide (C–TiO2–PdO) from our previous study [13]. First of all, graphite car-
bon paper electrodes (C electrodes; Shenhe Carbon Fiber Materials Co. Ltd., Liaoning,
China) were acid-treated and modified using the sol–gel and electroless plating methods
to form various composite electrodes. The C–TiO2 electrode was fabricated using the
tetrabutyric acid mixed with EtOH/HCl (pH = 1) aqueous solution with a tetrabutyric
acid/EtOH/HCleq molar ratio of 1:8:4 in a flask, which was mechanically stirred to carry
out the hydrolysis reaction at room temperature. The electroless plating solution was
19 g/L Na2C4H4O4·6H2O, 10 g/L PdCl2, 8.5 g/L HCl, and 25.6 g/L C2H4(NH2)2. The
effective area of the electrode was 5 × 5 cm2. Finally, these composite electrodes were
sintered at 400 ◦C in an oven for one hour. In addition, we modified a Nafion 117–SiO2–
SO3H (N-117–SiO2–SO3H) membrane using 3-mercaptopropyl trimethoxysilane (MPTMS,
Acros Organics, Bergen County, NJ, USA) and hydrogen peroxide (H2O2, SHIMAKYU,
Japan) in our laboratory [30]. The Nafion 117(N-117) and Nafion 212 (N-212) membranes
were purchased from DuPont Inc. (DuPont de Nemours, Inc., Wilmington, DE, USA). All
chemicals used were of analytical reagent grade.

2.2. Electrocatalytic Activity Test of Composite Electrodes

The electrocatalytic activity of the composite electrode was evaluated using the hy-
drogen evolution reaction (HER). In addition, the exchange current density (Io), Tafel
slope value (−b), overpotential (Eop) were calculated [16]. The cyclic voltammetry (CV)
experiments were conducted in a three-electrode cell with a CHI 6273 C electrochemical
instrument (CH Instruments, Inc., Austin, TX, USA). The cathodic polarization curves
were acquired at a constant negative potential and scan rate (1 mV/s) to measure a steady
current value in 0.1 M CH3SO3H supporting electrolytes. The composition of the three-
electrode cell was as follows: an Ag/AgCl electrode served as a reference electrode, a
platinum gauze was used as a counter electrode, and a composite electrode with a surface
area of 0.3 × 0.3 cm2 was used as a working electrode. The electrochemical properties,
such as anodic current (Ia), cathodic current (Ic), anodic potential (Ea), cathodic potential
(Ec), potential interval (∆Ep), and the ratio of the anodic/cathodic current (Ia/Ic), were
obtained from the CV data [31,32].

2.3. Measurement of Electrochemical Characteristics of Active Species on Composite Electrodes
2.3.1. Cerium Salt Active Species

The cerium nitrate hexahydrate Ce(NO3)3·6H2O, as an active species, was dissolved
in solutions of 0.1 M CH3SO3H supporting electrolytes. The CV test was carried out on
various composite electrodes in 0.01 M [Ce(NO3)3·6H2O]/0.1 M CH3SO3H solution. The
electrochemical properties were defined from the CV test data.

2.3.2. Iodine/Ascorbic Acid Active Species

The iodine (I2)/ascorbic acid solutions were obtained through dissolving the potas-
sium iodate (KIO3) and potassium iodide (KI) in H2SO4 acidic reaction. The reaction
equation is expressed as Equation (1).

IO−3 + 5I− + 6H+ → 3I2 + 3H2O (1)

The electrochemical properties were assessed using the CV experiment for 1.0 M
I2/2.0 M H2SO4 solutions with different ascorbic acid content.



Molecules 2021, 26, 3443 4 of 14

2.4. Charge/Discharge Test
2.4.1. Preparation of Positive and Negative Electrolytes

There were two active electrolytic solutions, 1.0 M Ce(NO3)3·6H2O) and 1.0 M I2,
employed as positive and negative electrolytes. Both 2.0 M H2SO4 and 2.0 M CH3SO3H
were used as the supporting electrolytes, respectively. The 1.0 M I2/ascorbic acid/2.0 M
H2SO4 solutions were obtained through dissolving the KIO3 and KI in acidic reaction, as
expressed in Equation (1), then adding 0.25 M ascorbic acid. All chemicals used were of
analytical reagent grade.

2.4.2. Cell Performance of a Single Ce/Ascorbic Acid/I RFB System by Modifying
Electrode and Separation Membrane

The charge/discharge tests were carried out using 1.0 M Ce(NO3)3·6H2O/2.0 M
CH3SO3H as the positive electrolyte, 1.0 M I2/ascorbic acid/2.0 M H2SO4 as the negative
electrolyte, C–TiO2–PdO as both positive and negative electrodes, and Nafion 117–SiO2–
SO3H as the separation membrane at a current density of 20 mA/cm2 and using 20 mL of
electrolyte solutions. A charge/discharge test was conducted using a WBCS3000 battery
cycler system (Top Trans, Korea) and CT2001C 10 V/2A (Wuhan Land Co., Wuhan, China)
apparatus.

3. Results and Discussion
3.1. Electrocatalytic Characteristics of Composite Electrodes

In this experiment, the electroless plating and sol–gel methods were used to fabricate
the composite electrodes, which were then sintered at 400 ◦C. The crystal structure iden-
tification and surface morphology analysis of the composite electrodes were conducted
according to the XRD diffraction patterns and the SEM/EDS in our previous studies [16].
The electrolysis of aqueous electrolyte produces hydrogen gas (H2), which is defined as the
HER. The HER requires an electrocatalyst where reaction kinetics and electrode stability
are prime factors.

The typical Tafel polarization curve was proposed in 1905, and an empirical for-
mula relating overpotential (Eop) and electrochemical reaction current (I) is expressed in
Equation (2).

E = a + b log I (2)

The diagram of polarization potential (E) vs. log I is called the Tafel curve; the b
value is the slope of the straight line, which is called the Tafel Slope. From the slope,
the electron transfer coefficient (a) can be obtained, and the intercept (E = 0) can obtain
the exchange current (Io). Overpotential (Eop) is the difference between the electrode
potential when an electrode reaction deviates from the equilibrium and the equilibrium
potential of this electrode reaction, i.e., the potential difference between no current passing
(under equilibrium) and current passing [33,34]. The occurrence of hydrogen gas on the
electrode was an active polarization phenomenon. The HER is usually used to evaluate
the electrocatalytic activity of metal/alloy or non-metallic element composite materials
(such as NiP, Co–Mo–TiO2, and conductive polymers) [33]. The linear polarization curve
has been widely identified as one of the most important analysis tools for determining
the HER kinetic parameters [34]. The exchange current density (Io), Tafel slope value
(−b), overpotential (Eop), and transmission coefficient (a) can be calculated to determine
the electrocatalytic effect, active surface area, and electrode stability [13]. Simply stated,
for a good metal electrocatalytic mechanism, at a low Eop, the rate determination step
(rds) is determined by the Tafel equation. At a higher Eop, the rds is dominated by
the Volmer equation and the Heyrovsky equation for secondary discharge, as shown in
Equations (3)–(5). The rds is determined by the Tafel equation if the value (−b) is near
30 mV/dec; in general, the metal electrode belongs to this model. However, when the
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value is near 120 mV/dec, the rds is decided by the Volmer and Heyrovsky equations, and
the composite electrode might be better suited to the other two models [13,35].

Volmer equation : H3O+ + e−+∗ → H∗+H2O (3)

Heyrovsky equation : H∗ + H3O+ + e− → H2 + H2O (4)

Tafel equation : 2H∗ → H2 (5)

where * represents the active site on the electrode surface, and H* represents a hydro-
gen atom adsorbed on the active site. Generally, the one step that kinetically limits the
electrochemical reaction is called the rds [35].

Figure 1a shows the steady-state cathodic polarization curves of the various composite
electrodes in methanesulfonic acid (0.1 M CH3SO3H) at a scan rate of 1 mV/s and the
corresponding linear polarization curves. The kinetic parameters are as shown in Figure 1b
and Table 1. The results show that the C–PdO electrode has a low Eop and the highest
exchange current density, with an Io value of 4.2 µA/cm2, and presents the best electrocat-
alytic properties. The order of the electrocatalytic activity was C–PdO > C–TiO2–PdO >
C–TiO2 > C from the exchange current density value. All electrodes exhibit a single-stage
Tafel slope (−b) value in the CH3SO3H solution. At the higher Eop values between −300
and −900 mV, the (−b) values of the C, C–TiO2, C–PdO and C–TiO2–PdO electrodes are
120, 169, 79, and 88 mV/dec, respectively. The C–TiO2–PdO electrode has the lowest value.
The rds was dominated by the Volmer and Heyrovsky equations [13,35].
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Figure 1. CV tests for (a) cathodic polarization curves and (b) linear polarization curves recorded on various electrodes in
0.1 M CH3SO3H solution at a scan rate of 1 mV/s.

Table 1. The HER kinetic parameter analysis of the linear polarization curves for various electrodes
in 0.1 M CH3SO3H solution.

Electrode
−b Io Eeq/Eop I

(mV/dec) (µA/cm2)
−(mV) at

−10 (mA/cm2)
(mA/cm2) at
−900 (mV)

C 120 0.25 754/1034 2.87
C–TiO2 169 0.85 606/947 6.5
C–PdO 79 4.2 276/458 95.38

C–TiO2–PdO 88 2.69 367/560 66.09
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3.2. Electrochemical Characteristics of Active Electrolytes on Composite Electrodes
3.2.1. Cerium Salt Active Electrolyte

The electrochemical characteristics of the Ce (III)/Ce (IV) active species and CH3 SO3H
supporting electrolyte on various composite electrodes were investigated using the CV test.
The cyclic voltammograms of various electrodes in 10 mL of 0.01 M Ce(NO3)3·6H2O/0.1 M
CH3SO3H solution at a scanning rate of 20 mV/s in the range of 0.7 to 1.7 V are as
presented in Figure 2, and the electrochemical characteristics are as summarized in Table 2.
The values of Ia and Ic were high, indicating excellent redox efficiency of the composite
electrodes in the Ce(NO3)3·6H2O/CH3SO3H solutions. The Ia values were in the following
order: C–TiO2–PdO (4.24 mA) > C–PdO (4.22 mA) > C (3.59 mA) > C–TiO2 (3.40 mA)
for Ce(NO3)3·6H2O/CH3SO3H solutions. The potential interval values (∆Ep) were in the
following order: C–TiO2 (0.18 V) > C–TiO2–PdO (0.15 V) > C (0.14 V) > C–PdO (0.13 V).
The high ∆Ep value demonstrated that the energy barriers of the redox reactions were
higher because of the effects of the Ce(NO3)3·6H2O/CH3SO3H electrolyte solutions on the
tested electrodes. The C–PdO electrode presented a better electrocatalytic activity than the
C–TiO2–PdO electrode according to the HER kinetic parameter analysis, but the ratio of
the anodic–cathodic current (Ia/Ic) was 3.13. By comparison, the C–TiO2–PdO electrode
exhibited a higher anodic/cathodic current and a more symmetric Ia/Ic value (1.09), near
unity, which indicated a quasi-reversible redox reaction in the Ce(NO3)3·6H2O/CH3SO3H
solutions. In addition, the TiO2 particles between a carbon matrix and the Pd metal/Pd
oxide layer increased the active surface area of the electrode, improving the electrocatalytic
effect of the electrode [13]. Consequently, the C–TiO2–PdO electrode performed most
favorably among all the electrode types in the redox kinetic reactions.
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Figure 2. Cyclic voltammograms for 0.01 M Ce(NO3)3·6H2O/0.1 M CH3SO3H solution.

Table 2. Electrochemical characteristics of 0.01 M Ce(NO3)3·6H2O solution on various electrodes
with 0.1 M CH3SO3H as a supporting electrolyte.

Electrode Ea (V) Ec (V) ∆Ep (V) Ia (mA) Ic (mA) Ia/Ic

C 1.31 1.17 0.14 3.59 2.47 1.45
C–TiO2 1.30 0.12 0.18 3.40 2.05 1.31
C–PdO 1.29 1.16 0.13 4.22 1.35 3.13

C–TiO2–PdO 1.33 1.18 0.15 4.24 3.89 1.09

3.2.2. Iodine/Ascorbic Acid Active Species

Ascorbic acid (C6H8O6) with low reduction potential (+0.06 V) easily occurs in the
oxidation reaction to form the dehydroascorbic acid (C6H6O6). On the contrary, the iodine
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(I2) electrolyte with high reduction potential (+0.54 V) was more suitable to the reduction
reaction to form the anion (I−). In previous literature [36], the experiments demonstrated
that vitamin C can be utilized in a reversible redox reaction consisting of its reduced
(ascorbic acid), radical (semidehydroascorbic acid), and oxidized (dehydroascorbic acid)
forms using enzymatic (by ascorbate oxidase) and non-enzymatic (by iodine) reactions.
Previous research confirmed that the C–TiO2–PdO composite electrode showed good
electrochemical activity in the V/I RFB [16]. Figure 3 shows the CV curves with the
addition of ascorbic acid into the iodine electrolyte solutions for the C–TiO2–PdO composite
electrode and the related electrochemical characteristics, as summarized in Table 3. The
oxidation current (Ia, 27 mA) of iodine electrolyte solution without adding ascorbic acid
was less than the reduction current (Ic, 40 mA), so the ratio of Ia/Ic value (0.68) was much
smaller than the unity value. The oxidation current of iodine solution with added ascorbic
acid increased, and the Ia/Ic value was close to unity, at 0.18 (0.96) and 0.36 M (1.04),
respectively. However, the reduction current of the iodine solution decreased when the
concentration of ascorbic acid was more than 0.36 M, and the Ia/Ic deviated more than the
unity value. This means that this redox reaction was an irreversible trend, and the optimum
ascorbic acid amount was between 0.18 and 0.36 M, as listed in Table 3. In addition, from
Figure 4, it can be seen that the I2/ascorbic acid/H2SO4 active electrolyte at molarity ratio
of 1.0/0.18/2.0 M for 10 cycles shows a good cyclic stability of the reversible redox reaction.
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Figure 3. The effect of adding ascorbic acid on the electrochemical properties of I2/ascorbic
acid/H2SO4 active electrolyte (a) 1.0/0.0/2.0 M (without ascorbic acid) (b) 1.0/0.18/2.0 M (c)
1.0/0.36/2.0 M (d) 1.0/0.54/2.0 M (e) 1.0/0.72/2.0 M (f) 0.0/1.0/2.0 M (without I2 solution).

Table 3. Electrochemical characteristics of I2/ascorbic acid/H2SO4 solution on C–TiO2–PdO composite electrode with 2.0 M
H2SO4 as a supporting electrolyte.

Electrode Electrolyte
I2/Ascorbic Acid/H2SO4Conc. (M)

Ea
(V)

Ec
(V)

∆Ep
(V)

Ia
(mA)

Ic
(mA) Ia/Ic

C–TiO2–PdO

(a) 1.0/0.00/2.0 M 0.31 −0.43 0.74 27 40 0.68
(b) 1.0/0.18/2.0 M 0.48 −0.19 0.67 44 46 0.96
(c) 1.0/0.36/2.0 M 0.51 −0.24 0.75 50 48 1.04
(d) 1.0/0.54/2.0 M 0.54 −0.20 0.74 38 28 1.36
(e) 1.0/0.72/2.0 M 0.70 −0.47 1.17 44 20 2.2
(f) 0.0/1.00/2.0 M 0.75 −0.05 0.80 44 19 2.31
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Figure 4. Cyclic voltammograms of I2/ascorbic acid/H2SO4 active electrolyte at a concentration
ratio of 1.0/0.18/2.0 M for 10 cycles at a scanning rate of 10 mV/s.

3.3. Cell Performances

We designed a single cell for the Ce/ascorbic acid/I RFB system. This cell comprised
a pair of electrodes, a separation membrane, a pair of flow channels, and a pair of current
collectors similar to our previous study of the RFB system [13], as shown in Figure 5. A
schematic depiction of flow channels is given in Figure 6.

The overall reactions of the positive and negative redox couples electrolytes for the
Ce/ascorbic acid/I RFB system can be expressed as Equations (6)–(10).

Positive electrode:

2Ce4++2e−
discharge

�
charge

2Ce3+ Eo= +1.72 V vs. SHE (6)

Negative electrode:

2I−
discharge

�
charge

I2+2e− Eo= 0.54 V vs. SHE (7)

C6H8O6

discharge
�

charge
C6H6O6 + 2H+ + 2e− Eo = 0.06 V vs. SHE (8)

Overall reactions:

2Ce4+ + 2I−
discharge

�
charge

2Ce3+ + I2 Eo
cell= 1.18 V (9)

2Ce4+ + C6H8O6

discharge
�

charge
2Ce3+ + C6H6O6+2H+ Eo

cell= 1.66 V (10)

Therefore, the standard electromotive forces Eo
cell of the Ce/ascorbic acid/I RFB

system were between 1.18 and 1.66 V in the discharging mode.
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Figure 5. Schematic of the Ce/ascorbic acid/I RFB under a charge–discharge cycle.
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3.3.1. Cell Performance of a Single Ce/Ascorbic Acid/I RFB System with Different
Supporting Electrolyte

Figure 7 shows the charge/discharge diagram of a Ce/ascorbic acid/I RFB system with
the staggered-type flow channels at the current density of 20 mA/cm2. The unmodified
Nafion 117 and carbon paper were used as a separation membrane and positive/negative
electrodes, respectively. The 1.0 M I2/2.0 M H2SO4 solutions were used as a negative active
electrolyte with 2.0 M H2SO4 as a supporting electrolyte. The positive active electrolyte
was 1.0 M Ce(NO3)3 with 2.0 M H2SO4 or 2.0 M CH3SO3H as a supporting electrolyte, as
presented in Figure 7a,b, and the performance data are summarized in Table 4. The longer
charging curve in the first round may be related to the HER effect of the positive electrode
during charging. It can be clearly seen from Figure 7a that the efficiency and capacity of the
battery have obviously declined over time, and the battery has serious leakage when it runs
to the third lap, so it cannot be charged and discharged smoothly. We found that the white
precipitates were deposited on the electrodes and the flow channels; it was known from
the literature that this precipitate was cerium oxide [37]. This system cannot be charged or
discharged because the reduction of the active electrolyte causes a rapid decrease in the
battery capacity. Figure 7b is the charge–discharge diagram of a Ce/ascorbic acid/I RFB
system with 2.0 M CH3SO3H as a supporting electrolyte for the 1.0 M Ce (NO3)3 active
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electrolyte. The HER effect can also be seen; however, the capacity degradation of the
battery was less serious than that of the H2SO4 supporting electrolyte. Compared with
the sulfuric acid, it can be clearly found that the CE, VE, and EE values after the third
lap were about 68%, 65%, and 46%, and the discharge capacity was improved from 36
to 263 mAh. Therefore, the methanesulfonic acid (CH3SO3H) was more suitable as the
supporting electrolyte of the Ce (NO3)3 active electrolyte, but the key materials still need
to be modified to obtain a suitable Ce/ascorbic acid/I RFB system.
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Figure 7. Charge–discharge diagrams of a Ce/ascorbic acid/I RFB system with H2SO4 or CH3SO3H as positive supporting
electrolyte (a) 1.0 M Ce(NO3)3/2.0 M H2SO4 (b) 1.0 M Ce(NO3)3/2.0 M CH3SO3H. Other components: 1.0 M I2/0.20 M
ascorbic acid/2.0 M H2SO4 as a negative electrolyte, Nafion 117 as a membrane, and carbon papers as positive/negative
electrodes, as well as two staggered-type flow channels at a current density of 20 mA/cm2 and 20 mL of electrolyte solutions.

Table 4. The performance of the Ce/ascorbic acid/I RFB system with various key components at the third lap charge–
discharge test.

Key Materials Types CE
(%)

VE
(%)

EE
(%)

Eo
cell

(V)
Discharge Capacity

(mAh)

Supporting
electrolyte *

H2SO4 18 51 9 1.25 36
CH3SO3H 68 65 44 1.15 263

Electrode * C–TiO2–PdO 73 79 58 1.20 280

Separation
membrane N-117–SiO2–SO3H 90 81 72 1.46 360

* Separation membrane: Nafion 117.

3.3.2. Cell Performances of a Single Ce/Ascorbic Acid/I RFB System by Modifying
Electrode and Separation Membrane

Figure 8 shows the charge/discharge cycle diagrams of the Ce/ascorbic acid/I RFB
system in the third lap with N-117 and the modified N-117–SiO2–SO3H as a separation
membrane. The C–TiO2–PdO composite electrodes were used as the positive and negative
electrodes. The electrochemical activity of the C–TiO2–PdO composite electrodes was
better than that of the carbon paper (C electrode) and showed a good cell performance;
the VE% increased from 65% to 79%, and the EE% was raised from 44% to 58%, as shown
in Figure 8a and Table 4. In order to improve the ion cross-contamination, using the
modified N-117–SiO2–SO3H membranes to replace the commercial N-117 can effectively
enhance the cell efficiency, as shown in Figure 8b. Particularly, the CE% of the modified
N-117–SiO2–SO3H membrane was raised from 73% to 90%, and the EE% increased from
44% to 72%, as listed in Table 4. In addition, from the charge and discharge capacity curve
of Figure 9, it can clearly be seen that the standard potential ( Eo

cell) and capacity exhibited
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an improved tendency after replacing the N-117 separation membrane, and the data are
summarized in Table 4. The Eo

cell and the capacity of the single Ce/ascorbic acid/I cell
were 1.20 V/280 mAh (N-117) and 1.46 V/360 mAh (N-117–SiO2–SO3H), respectively.
The results mean that the modified N-117–SiO2–SO3H membrane can effectively inhibit
the ion cross-contamination, thus, the standard potential of this Ce/ascorbic acid/I RFB
system significantly increased from 1.20 to 1.46 V and the discharge capacity from 280
to 360 mAh. A plausible explanation for these results is that the modified membrane
with low permeability/water uptake and high ion exchange capacity (IEC) value not only
inhibits the cross-over pollution of the active species ions and avoids the non-equivalent
concentration effect of the Nernst equation but also increases the conductivity of H+

protons [30]. Thus, the modified membrane can help to effectively enhance the standard
potential and discharge capacity of this Ce/ascorbic acid/I RFB system.
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Figure 8. The charge/discharge diagrams of a Ce/ascorbic acid/I RFB system with 1.0 M Ce(NO3)3/2.0 M CH3SO3H as
a positive electrolyte, 1.0 M I2/0.25 M ascorbic acid/2.0 M H2SO4 as a negative electrolyte and C–TiO2–PdO composite
electrodes as positive/negative electrodes, with two serpentine-type flow channels at a current density of 20 mA/cm2 and
20 mL of electrolyte solutions with (a) N-117 (b) modified N-117–SiO2–SO3H as a separation membrane.
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Figure 9. The charge and discharge capacity curves of the third cycle of the Ce/ascorbic acid/I RFB
system with different separation membranes: (a) N-117, (b) N-117–SiO2–SO3H.

Figure 10 shows charge–discharge performance over 30 cycles (2nd to 31st) in terms of
(a) CE, (b) VE, (c) EE, and (d) discharge capacity of a single Ce/ascorbic acid/I RFB system.
The results showed that the VE and discharge capacity values were decreased with the
increase of the charge/discharge cycle number because of factors such as internal ohmic
resistance, overcharge, and concentration polarization. The average CE, VE, and EE of this
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Ce/ascorbic acid/I RFB system were 89.51%, 75.88%, and 68.04% after 30 cycles, and the
average discharge capacity, was 337.67 mAh. The attenuated percentage was less than 6%
for the EE value and discharge capacity.
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Figure 10. Cyclic efficiency and capacity in terms of (a) CE, (b) VE, (c) EE, and (d) discharge capacity
of a Ce/ascorbic acid/I RFB system with modified N-117–SiO2–SO3H as the separation membrane
and staggered-type flow channels, 1.0 M Ce(NO3)3/2.0 M CH3SO3H as a positive electrolyte, 1.0 M
I2/0.25 M ascorbic acid/2.0 M H2SO4 as a negative electrolyte, and C–TiO2–PdO composite electrodes
as positive/negative electrodes at a current density of 20 mA/cm2 and 20 mL of electrolyte solutions.

For large-scale commercial applications, the stacks of the RFB system are often fab-
ricated in series and parallel cross combinations to enhance storage capacity and control
the voltage of the battery module. The Ce/ascorbic acid/I RFB system with high standard
potential and low-cost electrolyte shows a potential for a KWh-scale energy storage system
application via the assembly of the battery stacks.

4. Conclusions

The TiO2 layer of the C–TiO2–PdO composite electrode disperses the Pd metal parti-
cles, which reduces the metal particles agglomeration and increases the active area of the
C–TiO2–PdO composite electrode. The PdO formed after sintering for the C–TiO2–PdO
composite electrode has excellent electrocatalytic properties. The steady-state cathodic
polarization curve data showed a lower overpotential (Eop) and a higher exchange current
density (Io) in the methanesulfonic acid than that of the carbon paper electrode (C). In addi-
tion, the novel Ce/ascorbic active/I active species have excellent electrochemical activity on
this composite electrode. The most suitable reversibility of oxidation/reduction reactions
was obtained when the molarity ratio of the iodine solution/ascorbic acid was about 1/0.25.
In the Ce/ascorbic acid/I RFB system, the modified N117–SiO2–SO3H as a separation
membrane inhibits the ion cross-contamination, and the C–TiO2–PdO composite electrodes
enhance the electrocatalytic activity. Therefore, this Ce/ascorbic acid/I RFB system pre-
sented good cell performance due to the modified key materials, which greatly increased
the EE% value by 64%, the standard potential by 27%, and the discharge capacity by 37%.
The attenuated percentage was less than 6% for the EE value and discharge capacity.
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