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Abstract
Signal detection theory (SDT) is used to quantify people’s ability and bias in discriminating stimuli. The ability to detect
a stimulus is often measured through confidence ratings. In SDT models, the use of confidence ratings necessitates the
estimation of confidence category thresholds, a requirement that can easily result in models that are overly complex. As
a parsimonious alternative, we propose a threshold SDT model that estimates these category thresholds using only two
parameters. We fit the model to data from Pratte et al. (Journal of Experimental Psychology: Learning, Memory, and
Cognition, 36, 224–232, 2010) and illustrate its benefits over previous threshold SDT models.

Keywords Signal detection theory · Confidence ratings · Bayesian hierarchical models

Our ability to recognize stimuli allows us to interact
smoothly with the world. We know that if we want to drink
water it is a good idea to poor it into a cup instead of
onto a piece of paper. We also know that if we want to
write something down it is a good idea to use a pen instead
of a yoga mat. Although recognizing stimuli is sometimes
straightforward, often it is not. Most of the times, our
ability to recognize a stimulus is accompanied by a certain
amount of noise. When picking mushrooms, it can be hard
to distinguish between the mushrooms you can use to top
your beautiful saffron risotto, and the mushrooms that will
turn your dinner party into the next Jonestown. Not only
do eatable and poisonous mushrooms differ in perceptual
similarity—it is easy to classify a mushroom with a red
cap and white spots as poisonous, but difficult to do so
for a poisonous mushroom that looks similar to a common
white button mushroom—but the amount of risk involved
in making the wrong decision can also differ between
situations: when you are starving you might decide to eat
a suspicious looking mushroom sooner than when you just
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had a full course meal. Signal detection theory (SDT; Tanner
& Swets, 1954; Green & Swets, 1966) disentangles these
aspects of recognition by providing different parameters: (1)
the amount of information that is available in the stimulus,
and (2) the threshold you set for making one or the other
decision.

In order to separately estimate these two aspects of
recognition, an SDTmodel needs two pieces of information:
(1) the proportion of correctly identified signal stimuli (hit
rate, HR; the proportion of poisonous mushrooms that were
correctly identified as poisonous), and (2) the proportion
of incorrectly identified noise stimuli (false alarm rate,
FAR; the proportion of non-poisonous mushrooms that were
incorrectly identified as poisonous). Table 1 depicts the
four possible outcomes when discriminating two types of
stimuli; Eqs. 1 and 2 show how these outcomes can be
converted to hit rate and false alarm rate:

Hit Rate = Hits

Hits + Misses
, (1)

False Alarm Rate = False Alarms

False Alarms + Correct Rejections
. (2)

SDT is a popular model for the analysis of experiments in
recognition memory. The most common experiment in this
field first requires that participants study a list of words (i.e.,
the study list). Following a retention interval, participants
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Table 1 Possible outcomes when trying to discriminate signal from noise stimuli

Truth

esioNlangiS

Signal Hit False Alarm
Response

noitcejeRtcerroCssiMesioN

The rows represent the estimates and the columns represent the truth

are presented with another (i.e., the test list, containing
words from the study list and new words). For each word
on the test list, participants are asked to decide whether
the word was from the study list (i.e., ‘old’), or not (i.e.,
‘new’). Figure 1 illustrates how the SDT model uses hit and
false alarm rates to identify the strength of the signal, d ′,
in this task and the threshold, λ, that is set to make one or
the other decision. To estimate these two parameters, the
model assumes that both the signal (i.e., ‘old’ words) and
the noise (i.e., ‘new’ words) stimuli can be placed on a
latent continuous scale of familiarity. The latent scores are
drawn from a signal normal distribution or a noise normal
distribution and d ′ represents the difference in means of
these distributions. To translate the latent familiarity scores
into the dichotomous decision, the model assumes there
is a threshold, λ, and if the familiarity is lower than that
threshold people classify the stimulus as noise while if the
familiarity is higher than the threshold people will classify
the stimulus as signal.

When estimating only these two parameters, the SDT
model has been quite popular (a Google Scholar search
for papers published in the last 10 years with keywords
‘signal detection theory’ and ‘psychology’ yielded more
than 20,000 results). However, this SDT model assumes
that the two distributions have equal variances. Analyses of
empirical data in the field of recognition memory, however,
often show that the variance of the signal distribution is

larger than the variance of the noise distribution (e.g.,
Macmillan & Creelman, 2005; Swets, 1986; DeCarlo, 2010;
Starns & Ratcliff, 2014; Mickes et al., 2007). Unfortunately,
adding a third parameter σ (for the ratio of the variance of
the signal-to-noise distribution) to the SDT model creates
an identifiability problem; three parameters (i.e., d ′, λ, and
σ ) are estimated using only two data points (i.e., hit rate
and false alarm rate). To estimate the extra parameter, the
model needs more informative data. One way of obtaining
more informative data is by having participants rate the
familiarity of each item on a confidence rating scale (e.g.,
“how confident are you that the word presented was on the
study list?”, indicated on a Likert scale from 1–7) instead
of asking for dichotomous answers (“was the word on
the study list or not?”). However, with confidence rating
data the number of thresholds that need to be estimated
increases with the number of categories. For instance, if
the SDT model is fit to data from a four-point Likert
scale, this requires estimation of five parameters—d ′, σ ,
and three thresholds—but if the model were fit to data from
a ten-point Likert scale, this requires estimation of eleven
parameters—d ′, σ , and nine thresholds. The estimation of
additional thresholds requires larger data sets; to estimate
thresholds reliably, it is important that there are a certain
number of observations for each category. This in turn
means that models with more categories (and therefore
more thresholds that need to be estimated) require a

Fig. 1 The interaction between the two parameters d ′ and λ lead to a certain hit rate (HR) and false alarm rat (FAR). Increasing the decision
criterion leads to a lower FAR but also a lower HR, while d ′ stays the same
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larger number of total observations. In recognition memory,
accuracy decreases with successive test trials (Criss et al.,
2011), limiting the number of observations any individual
participant can contribute. This problem is compounded in
a typical study where multiple conditions, each requiring
many observations, are under investigation simultaneously.
Here we introduce a parsimonious method of estimating
the thresholds by restricting the way the thresholds can be
placed. This parsimony is obtained by modeling thresholds
as a linear transformation of ”unbiased” thresholds, which
only requires two parameters for any number of thresholds.
We estimate parameters in a Bayesian way, and introduce
a hierarchical extension to our model that allows the
estimation of group-level parameters.

The outline of this paper is as follows. First, we
will briefly elaborate on Bayesian methods of parameter
estimation. Next, we will introduce our model and the
associated receiver operating characteristics (ROC) curves.
We will also show how our model leads to Bayesian
estimates of detection measures while taking into account
the uncertainty of the estimate. Lastly, we will introduce
the hierarchical extension and apply the model to memory
recognition data from Pratte et al. (2010).

Modeling the thresholds

The key concepts in our SDT threshold model are
summarized in Fig. 2. This figure represents an example
where an individual observer rated how familiar six items—
three signal items and three noise items—are on a Likert
scale from one to six. The model describes the process with
which these data are generated. The model assumes that the
observer makes internal appraisals of the familiarity of the
noise items f (n) and the signal items f (s), both of which

are latent and continuous. These appraisals come from the
noise distribution for noise items—a normal distribution
with mean μ(n) and standard deviation σ (n)—or from the
signal distribution for signal items—a normal distribution
with mean μ(s) and standard deviation σ (s). For reasons
of identifiability, we assume that the noise distribution is a
standard normal distribution; i.e., μ(n) = 0 and σ (n) = 1.
Equation 3 describes the formal process of this step in the
model.

f ∼
{
N (0, 1)
N (μ(s), σ (s))

if
noise (f (n)),
signal (f (s)).

(3)

Once observers have made an internal appraisal of the
familiarity of an item, they have to translate this appraisal
to the ordinal Likert scale, in this case a scale from one
to six. An observer is assumed to accomplish this mapping
by placing thresholds λc (the c represents the order of the
threshold) on the latent continuous scale and comparing the
internal appraisal with the thresholds resulting in the ratings
x(n) for the noise items and x(s) for the signal items. As
shown in Fig. 2 the internal appraisal of the familiarity of
the noise items—f

(n)
1 , f

(n)
2 , and f

(n)
3 —leads to observed

ratings x(n) = (1, 2, 5), and the internal appraisal of the
familiarity of the signal items—f

(s)
1 , f (s)

2 , and f
(s)
3 —leads

to observed ratings x(s) = (3, 5, 6).
An important property of the ordinal scale is that

the differences between consecutive numbers cannot be
assumed equal; on a Likert scale the distance between
‘completely agree’ and ‘agree’ can be larger than the
difference between ’agree’ and ’neither agree nor disagree’.
Therefore, the translation between the latent continuous
appraisal to the ordinal score is relatively lax, and observers
are free to use the ordinal scale in different ways. For
instance, some observers prefer to use the outer values of the
scale while others prefer to use the inner values. To adjust

Fig. 2 A graphical representation of the SDT threshold model for confidence ratings. Familiarity ratings are drawn from both the noise f (n) and
the signal f (s) distribution. The associated confidence ratings x(n) and x(s) are generated through the thresholds λc
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for these individual differences, a proper model needs to be
able to estimate the thresholds that are set by an observer
to choose a certain answer. In previous SDT models, the
number of parameters that needed to be estimated was
directly related to the coarseness of the confidence scale
that was used (e.g., Morey et al., 2008). Consequently, these
models are not parsimonious and increase in complexity
as the Likert scale becomes less coarse. In addition, the
previous approaches are not easily adjusted to incorporate
effect of other functional parameters (e.g., a covariate). To
arrive at a more efficient way of estimating the thresholds,
our model is based on a method introduced by Anders
and Batchelder (2013) that uses the Linear in Log Odds
function. The Linear in Log Odds function requires only
two parameters to estimate a potentially large number of
thresholds instead of needing a parameter per threshold (Fox
& Tversky, 1995; Gonzalez & Wu, 1999). To estimate C

thresholds, we first assume a best-guess placement of the
thresholds. First, we do so on for the interval [0, 1] because
it is straightforward to place thresholds in an uninformative
way (e.g., the intervals are of equal length). However, since
the uncertainty in the SDT threshold model is expressed
on the interval [−∞, ∞] we next translate the threshold
placement from the [0, 1] interval to the [−∞, ∞] interval.1

Equation 4 shows how this translation is achieved if we
were to assume that μs = 1 and σ s = 1. Equation 5
shows how these ‘unbiased’ thresholds are subsequently
translated into the individual ‘biased’ thresholds using a
linear transformation.

γc = log

(
c/C

1 − c/C

)
. (4)

λc = aγc + b. (5)

Here, γc is the unbiased threshold for each position
c (e.g., γ1 represents the first unbiased threshold). Scale
parameter a allows the thresholds to be distributed more
closely to the center of the scale or further away from the
center of the scale. Shift parameter b allows the thresholds
to focus more on the left or right side of the scale and
could, for example, model response bias. Figure 3 illustrates
how these two parameters can result in different threshold
placements. Compared to the unbiased thresholds in panel
a, panel b shows that the thresholds have shifted to the right,
and compared to the thresholds in panel b, panel c shows
that the thresholds are placed closer to each other. Compared
to panel c, the thresholds in panel d have shifted more to the
right. This shows that two parameters can account for many
different ways of threshold placement and can be extended
to any number of thresholds without requiring additional
parameters.

1For the translation we used a logistic quantile function. Other choices,
such as a Gaussian quantile function, are also possible.

Note that the outer thresholds are always farther away
from their neighboring thresholds than the inner thresholds.
At first sight this may look like a major assumption of the
model, but it is not. The probability of observing a certain
rating is not related to the distance between thresholds, but
rather to the area under the curve (i.e., the integral from
one threshold to the next over either the noise or the signal
distribution).

Bayesian parameter estimation

SDT models have been applied using both classical
(Macmillan & Creelman, 2005) and Bayesian frameworks
(Rouder & Lu, 2005). In this paper, we adopt the Bayesian
framework (Etz et al., 2016; Lee & Wagenmakers, 2013).
An important goal of Bayesian statistics is to determine the
posterior distribution of the parameters. This distribution
expresses the uncertainty of the parameter estimates after
observing the data; the more peaked this distribution
the more certain the estimate. To obtain the posterior
distribution of a parameter (e.g., d ′ or λ), the likelihood is
multiplied with the prior distribution, see Eq. 6.

p(θ | data,M)︸ ︷︷ ︸
posterior

distribution

proportional to︷︸︸︷∝ p(θ | M)︸ ︷︷ ︸
prior

distribution

× p(data | θ,M)︸ ︷︷ ︸
likelihood

. (6)

In our case, it is not possible to derive the posterior
distribution analytically and hence we used MCMC
sampling techniques (i.e., implemented in JAGS; Plummer,
2003) to draw samples from the posterior distribution;
with enough samples the approximation to the posterior
distribution becomes arbitrarily close. As priors, we used
normal distributions for all unbounded parameters (mean
and shift). For bounded parameters (variances and scale),
we used either a gamma prior or a normal distribution
truncated from 0 to ∞. Formal model definitions and prior
distributions can be found in the Appendix.

To confirm the performance of the model, we conducted
a parameter recovery study. First, we randomly generated
100 values for μ(s), σ (s), a, and b2. Each combination of
parameters was used to generate ordinal six-point Likert
scale data (240 noise and 240 signal items), after which
the SDT threshold model was fit to the data. Subsequently,
we compared the parameter values used to generate the
data with the means of the posterior distributions of the
parameter estimates. The correlations between the data

2The individual values for the parameters were drawn from: μsi ,
normal distribution with mean 1 and standard deviation 0.5 truncated at
[0, 3], σsi , normal distribution with mean 1 and standard deviation 0.5
truncated at [1, 3], a, gamma distribution with shape parameter 2 and
rate parameter 2, and b, normal distribution with mean 0 and standard
deviation 0.5.
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Fig. 3 Panel a shows the position of the thresholds when an observer is ‘unbiased’, panel b shows the position of the thresholds when an observer
prefers the lower part of the scale, panel c shows the position of the thresholds when an observer is ‘unbiased’ but distinguishes more between
values around the center of the scale, and panel d shows the position of the thresholds when an observer prefers the lower part and distinguishes
more between values where the signal distribution is high and noise distributions is low

generating parameter values and the recovered parameter
estimates were high (rμ(s) = 0.96, rσ (s) = 0.89, ra = 0.99,
rb = 0.98) showing that the SDT threshold model has good

parameter recovery. More details on this parameter recovery
study can be found in the Supplemental Materials at https://
osf.io/ypcqn/.

Fig. 4 The thresholds parameters, λc, from the SDT model can be transformed to coordinates of the ROC curve. The hit rate and false alarm rate
corresponding to each threshold can be used as coordinates for the ROC curve
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Fig. 5 Example ROC curves. The solid line represents a theoretical ROC curve. The dashed line represents chance performance

ROC curve

A widely used metric to interpret parameter values of the
SDT model is the receiver operating characteristic (ROC)
curve (Hanley & McNeil, 1982). The ROC curve displays
how the hit rate and false alarm rate are affected by
changes in thresholds. The translation from the SDT model
parameters to the ROC curve is visualized in Fig. 4. Each
threshold in the SDT model is associated with a specific hit
rate and false alarm rate. For λ3 the hit rate is the part of the
signal distribution shaded light gray, and the false alarm rate
is the part of the noise distribution shaded dark gray. This
associated mapping can be established for each threshold,
resulting in a number of coordinates for the ROC curve.
Subsequently, drawing a line through the points leads to the
ROC curve.

Figure 5 shows three example ROC curves. In these
graphs, the x-axis represents the false alarm rate and the
y-axis represents the hit rate. Setting the threshold to its
lowest possible value will always result in a hit or a false
alarm and setting the threshold to its highest possible value

will never result in a hit or a false-alarm. Therefore, the
ROC curve will always go through [0, 0] and [1, 1]. The
dashed diagonal represents the hypothetical ROC curve if
the signal distribution equals the noise distribution, that is,
the participant is performing at chance. If the ROC curve is
above the dashed diagonal this, means that the participant
is performing above chance, and the average strength of the
signal exceeds zero.

Panel a in Fig. 5 shows the ROC curve with near perfect
detection: the hit rate reaches 1 for low values of the false
alarm rate. Panel b shows a typical ROC curve when the
signal and noise distribution have equal variances: the curve
is symmetrical around the minor diagonal. Panel c shows
an ROC curve when the distributions do not have equal
variances: the curve is not symmetrical around the minor
diagonal.

The mathematical relation between the SDT and ROC
parameters is shown in Eq. 7 (Marden, 1996).

ZHR = ZFAR

σ (s)
+ μ(s)

σ (s)
. (7)

Fig. 6 Visualization of area under the curve (AUC) of an ROC curve for the two hypothetical observers. The difference in the variance of the
signal distribution is expressed in the difference in the AUC
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Fig. 7 Effect of threshold parameters on familiarity judgments. Nine large datasets (N = 10,000) were simulated to visualize the range of model-
implied probability distributions over familiarity judgments. The datasets were simulated with the same μ(s) and σ (s), but with either a small,
medium, or large-scale parameter a and either a small, medium, or large shift parameter b

Using this equation, the z-transformed hit rate can be
calculated using the z-transformed false alarm rate, and the
mean and variance of the signal distribution.3

Detectionmeasures

As we saw in the previous section, the ROC curve is able to
accommodate inequality of variances. The ROC curve can
easily be converted to a detection measure by calculating the
area under the curve (AUC, Wickens, 2001); the larger the
AUC, the higher the ability to detect the signal. It is clear
that the AUC takes into account the inequality of variances.
Also, the AUC will always be between 0.5—if detection
is based purely on chance—and 1—if detection is perfect.
This makes it straightforward to compare twomeasurements
of the AUC (Fig. 6).

3Note that z-transformed ROC functions are linear. In addition, when
the equal variance assumption is met, the slope is one. When the
variance of the signal distribution is larger than that of the noise
distribution, as is generally found to be the case in recognition memory,
the slope is less than one.

The AUC of the ROC has the attractive property of taking
into account differences in variance of the signal distribution
between observers, and hence we focus on this measure. The
AUC is calculated using Eq. 8 (Wickens, 2001, p. 68), where
the noise distribution is assumed to be a standard normal
and � is the cumulative normal distribution:

AUC = �

(
μ(s)

√
1 + σ (s)2

)
. (8)

Thresholds

The most important way in which our threshold model
improves upon existing confidence ratings SDT models is
by estimating the thresholds in a more parsimonious way.
Instead of estimating the thresholds individually, which
requires one parameter per threshold, the thresholds are
modeled using a linear equation. This allows for better
estimates of the thresholds in the face of limited data. A
consequence of this method is that the threshold placement
in our model is restricted to a be linear instead of freely
estimated. However, the thresholds can still be placed in a
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Fig. 8 Parameter estimates for all 97 participants from Pratte et al. (2010); the dot represents the median and the line represents the 95% central
credible interval. The dashed line represents the median of the group distribution and the accompanying 95% credible interval is indicated in grey
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wide variety of ways. Because the threshold model takes
into account that observers can set their thresholds in
different ways, similar abilities in signal detection can lead
to different data, underscoring the difficulties of drawing
conclusions directly from the data. To illustrate this point,
we performed a simulation study.

Toobtain plausible values for the simulation study,we first
fitted the threshold SDT model to data from Pratte and
Rouder (2011), who gathered confidence ratings on a mem-
ory recognition task for 97 participants (this data set is des-
cribed inmore detail below). Based on the estimated parame-
ter values,we chose three values of the scale parameters based
on the 1st , 50th, and 99th percentiles of the estimated values
(i.e., a1 = 0.12, a50 = 0.84, a99 = 1.74), and three values of
the shift parameters based on the 1st , 50th, and 99th per-
centiles of the estimated values (i.e., b1=−0.98, b50=0.14,
b99=1.10).Weused fixed values ofμ(s) =1 and σ (s) =1 and
all possible combinations of the scale and shift parameters
to simulate data from the threshold SDT model, resulting
in nine different data sets. Figure 7 shows histograms of
the simulated data. It is clear that the model can describe
various datasets by varying the threshold placement, even
when the underlying familiarity distributions are identical.

Figure 7 illustrates that as the scale parameter increases
(i.e., moving along the columns from left to right), more
answers on the inside of the scale are given and as the shift
parameter increases (i.e., moving along the rows from top
to bottom), the left side of the scale is used more often. This
coverage of possible outcomes makes the model nearly as
flexible as having an independent parameter for each thresh-
old while minimizing the number of parameters to estimate.

Hierarchical extension

The threshold SDT model can be used to fit data from
a single observer. However, often there is interest in the
detection ability of a group of observers, which requires
some sort of aggregation or pooling. One way of pooling is
by aggregating the data and then fitting the model on the
aggregated data. Another way of pooling is by estimating
the parameters for each observer individually and then take
the mean or median from these parameter values. Although
these methods are computationally simple, they lack a
formal model that describes how the group level distribution
relates to individual parameter values.

In contrast, in theBayesianhierarchical approach, individ-
ual subject parameters are drawn from a group distribution
(Gelman & Hill, 2006). Because the subjects are modeled
as part of a group, the individual parameters shrink towards
the group mean (Efron & Morris, 1977). The benefit of
shrinkage is that the model is much more resistant to over-
fitting, as the group-level information makes the individual

estimates less susceptible to noise fluctuations (Shiffrin
et al., 2008). In the hierarchical threshold model, we intro-
duce group distributions for the mean and variance of the
signal distribution, and for the scale and shift parameters of
the thresholds. The priors for unbounded parameters (mean
and shift) are normal distributions whereas the priors for
bounded parameters (variance and scale) are either gamma
distributions or truncated normal distributions. Exact model
specifications and priors are shown in the Appendix4.

To confirm the performance of the model we conducted a
parameter recovery study. The formal model definitions
including prior distributions can be found in the Appendix.
First, we fitted the hierarchical SDT threshold model to the
data of Pratte et al. (2010) (see next section for a more elab-
orate explanation).We used themeans of the posterior distri-
butions for the individual level parameters μ(s), σ (s), a, and
b to generate plausible data.Next, we fit themodel to the syn-
thetic data and drew posterior samples from the hierarchical
SDT threshold model. Subsequently, we compared the data-
generating parameter values to the means of the posterior
distributions for the parameter estimates. The correlation
between the data-generating parameter values and the recov-
ered parameter estimates was high (rμ(s) =0.96, rσ (s) =0.90,
ra = 0.99, rb = 0.99, see Fig. 15) showing that the hierar-
chical SDT threshold model has good parameter recovery.
More details on this parameter recovery study can be found
in the Supplemental Materials at https://osf.io/ypcqn/. The
next section applies the model to experimental data.

Application to experimental data

We fitted the hierarchical SDT threshold model to data from
Pratte et al. (2010) who had gathered confidence ratings
on a memory recognition task from 97 participants. Each
participant studied 240 words—each word for 1850 ms
with 250-ms blank periods between two words—randomly
selected from a set of 480 words. After the study phase,
participants had to indicate how confident they were that a
word was part of the study list on a six-point Likert scale
(using the ratings “sure new”, “believe new”, “guess new”,
“guess studied”, “believe studied”, and “sure studied”) for
the whole batch of 480 words. In this experiment, the words
in the study list represent the signal items, while the words
that were not in the study list represent the noise items.

Figure 8 shows the estimated median and 95% credible
intervals for each parameter in themodel. The dashed vertical

4We opted not to use highly uninformative priors as the resulting
prior ROC curves are implausible. See Figs. 13 and 14 for the
prior and posterior ROC curves under slightly informed and highly
uninformative priors. Different priors had negligible effect on the
posterior distribution, see the Supplemental Materials Figures on
https://osf.io/ypcqn/ for a comparison.
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line represents the median of the group level estimation with
the 95% credible interval shaded gray. The parameters are
estimatedwith agoodprecision; in general, the credible inter-
vals are narrow.We investigated the fit of the thresholdmodel
to the data from Pratte using posterior predictive checks.
Although there is some misfit for lower proportions, the
model appears to describe the data adequately, see Fig. 16.

The model parameters can also be used to produce an ROC
curve. Figure 9 shows theROCcurve for the group level, where
the shaded area represents the uncertainty in the estimate,
and the density plot shows the posterior distribution for the
AUC. Note that the uncertainty in the ROC and the AUC is
induced by the uncertainty in the model parameters.

Discussion

The threshold SDT model describes how people estimate the
familiarity of signal and noise items. The main contribution
of the model is that it provides a parsimonious way of estimat-
ing the thresholds instead of sacrificing one parameter per
threshold. We also showed how this model can be applied to
experimental data. This paper presents a first effort in par-
simonious threshold estimation that should be applicable to
many SDT applications. It can also be used as a starting
point for more complicated applications of SDT models. A
straightforward empirical test of the threshold SDT model
is to examine how experimental manipulations map onto the
model parameters. For example, one may conduct a test of
specific influence and examine the extent to which effects
of changes in base-rate are absorbed by the threshold a and
b parameters.

Because the threshold SDT model features only four
parameters, it is relatively straightforward to add other

Fig. 9 Group level ROC curve with the 95% credible interval in grey
and the area under the curve (AUC) with the uncertainty in the estimate
expressed through the posterior distribution

effects, e.g., the item effects mentioned in the discussion of
Pratte and Rouder (2011). For example, a researcher could
hypothesize that there is a difference in responsebias between
two conditions, and that this difference maps onto the shift
parameter. To incorporate this into the model, Eq. 5 could
be modified to include a covariate on the shift of the thresh-
olds. Such a modification is identical to adding a predictor
to a regression model. This allows for relatively easy group
comparisons; in contrast, such comparisons are difficult
for models that require one parameter per threshold, as
multiple estimates need to be considered simultaneously.

Expanding the transformation of the thresholds into a
linear model introduces the need for model comparison. To
assess the relevance of a predictor, one compares a model
without the predictor to a model with the predictor. Within
the Bayesian framework, comparing models is often done
by means of Bayes factors (Mulder & Wagenmakers, 2016;
Jeffreys, 1961). Although no analytical formulas exist for
calculating Bayes factor for SDT models, an approximation
can be obtained using numerical techniques on the obtained
MCMC samples, e.g., via bridge sampling Gronau et al.
(2017) and Meng and Wong (1996).

In sum, the threshold SDT model provides a parsimo-
nious and straightforward account of confidence rating data,
allowing researchers to quantify not only discriminability
but also confidence category thresholds. The uncertainty
in the model’s parameter estimates can be used to induce
uncertainty in crucial SDT measures such as the area under
the ROC curve.
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Appendix

This Appendix contains both the formal BUGS model
definition and the graphical representation of the SDT
threshold model and the hierarchical SDT threshold model.
The R code that calls the BUGS code is available at
https://osf.io/v3b76/. The model definition and graphical
representation define all priors and relations between
parameters and data. For more information on the BUGS
modeling language and the graphical representation of these
models, see Lee and Wagenmakers (2013).
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Fig. 10 Graphical model representation of the SDT threshold model

Fig. 11 Graphical model representation of the hierarchical SDT
threshold model

SDT ThresholdModel
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Fig. 12 Bivariate hex plots of the group-level parameters. A brighter color indicates a higher frequency of samples. The Pearson correlation
between the posterior samples is shown on top of each panel. Note the negligible trade-off between the parameters

Fig. 13 Prior predictive ROCs for the proposed priors (left panel; see Fig. 11 for the priors) versus the standard uninformative gamma priors (right
panel; α, β, ξ, ζ ∼ Gamma(0.01, 0.01))
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Fig. 14 Posterior predictive ROCs for the proposed priors (left panel; see Fig. 11 for the priors) versus the standard uninformative gamma priors
(right panel; α, β, ξ, ζ ∼ Gamma(0.001, 0.001))

Fig. 15 Parameter retrieval of the group level parameters of the
simulation study with the hierarchical model

Fig. 16 Posterior predictive check for the data from Pratte et al.
(2010). Observed proportions of a rating per person (x-axis) versus
posterior predictive means of the model (y-axis). The model fits ratings
with a higher observed proportion better than those with a lower
observed proportion. This occurs because those ratings constitute
more observations and are weighed more by the likelihood. Lower
proportions are captured less well by the model. Likewise, the lower
proportions are based on less data and are therefore more noisy
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