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Abstract

In this article we introduce the software SimKinet, a free tool specifically designed to solve

systems of differential equations without any programming skill. The underlying method is

the so-called Network Simulation Method, which designs and solves an electrical network

equivalent to the mathematical problem. SimKinet is versatile, fast, presenting a real user-

friendly interface, and can be employed for both educational and researching purposes. It is

particularly useful in the first courses of different scientific degrees, mainly Chemistry and

Physics, especially when facing non-analytic or complex-dynamics problems. Moreover,

SimKinet would help students to understand fundamental concepts, being an opportunity to

improve instruction in Chemistry, Mathematics, Physics and other Sciences courses, with

no need of advanced knowledge in differential equations. The potency of SimKinet is dem-

onstrated via two applications in chemical kinetics: the photochemical destruction of strato-

spheric ozone and the chaotic dynamics of the peroxidase-oxidase reaction.

Introduction

Differential equations allow a very convenient modelling of some essential natural phenomena

that evolve over time in a continuous way. This is a prime reason why differential equations

are ubiquitous in so many scientific and technological disciplines [1–3]. In this context, know-

ing how to pose and solve a particular set of differential equations is a crucial issue in order to

describe a wide range of fundamental processes, as well as to recognize and control the vari-

ables governing them.

Not only researchers and qualified professional, but also students, who will frequently be

faced with the learning of phenomena of diverse nature in various scientific disciplines, require

of this knowledge. A multitude of examples can be found in very diverse scientific areas at

undergraduate levels, for instance, the damped and forced oscillator, the coupled pendulum,

diffusion phenomena, RLC electrical circuits, radioactive decays, bacterial growth, predator-

prays models [3], or time evolution of atmospheric pollutants [4].
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One matter requiring frequently of the analysis and solution of differential equations is

Physical Chemistry. This branch of Chemistry is concerned with how, why and when of the

chemical reaction. Chemical kinetics and reaction dynamics, fundamental subfields of Physical

Chemistry, deal with the rates of processes and with how reactions take place. Chemical reac-

tions govern our environment and pollutants evolution, life processes, food production,

energy power and many other industrial processes designed to produce all kinds of goods

indispensable for our life as we know it nowadays. We are in daily contact with fragrances,

food additives, medicines, detergents and surfactants, dyes and pigments, plastics, elastomers,

synthetic fibers, agrochemicals, etc., just to put a few examples, along with a myriad of prod-

ucts and new materials with important technological applications [5–7].

Chemical kinetics and reaction dynamics are not only a central intellectual cornerstone of

Chemistry [8,9], but they become essential to gain a deep understanding of the chemical reac-

tion and to get control over the products composition and the rates which they are obtained.

To this end, it is mandatory to elucidate and understand the kinetics of the chemical processes

by means of coupled differential equations [10–15].

In this context, the mathematical resolution of kinetic differential equations is often not a

trivial task, and in many cases it becomes necessary the use of approximations, both theoreti-

cal, such as the well-known steady stationary approximation (SSA) [16–18], and numerical,

generally implemented via computational algorithms such as the Runge-Kutta method (RKM)

[3]. Recently, the authors have described how to solve a complex system of differential kinetic

equations via numerical simulations [19] by means of the so-called Network Simulation

Method (NSM), a numerical approach which employs an electrical analogy, being topologi-

cally equivalent to the original mathematical problem. This method is well-spread and effi-

cient, showing applications in many scientific areas, and specifically in Chemistry [20]. The

results were very satisfactory, but they required advanced numerical and programming skills,

as well as deep knowledge in electrical circuits. Then, the authors realized that making avail-

able this approach for students and researchers would demand the design of a software with

specific requirements, including: (a) a user-friendly interface which allows a simple way to

introduce the system of differential equations; (b) a black box structure, with no need of pro-

gramming or advanced numerical skills; (c) versatility, in order to solve kinetic problems and

also other kind of differential equations associated with scientific phenomena; (d) a didactic

focus, which allows the use of computer simulations to learn central concepts in Chemistry or

Physics courses by means of guided-inquiry activities; (e) free software.

With these goals in mind we have developed SimKinet, a software which can be employed

for students to solve a wide range of problems involving first-order ordinary differential equa-

tions. Besides, SimKinet can also help students to understand fundamental concepts, taking

advantage of computing-learning applied to improve instruction in Chemistry, Mathematics,

Physics and other Science courses [21–23], even regarding the possibility of carrying out low-

cost laboratory practices [24]. A learning environment with computer simulations allows the

student to confirm predictions or to test hypotheses, thus deeping in the conceptual back-

ground of the scientific phenomena. Nowadays, SimKinet is employed for the subjects Physics

and Chemistry of first course of Industrial Engineering degree in the University Centre of

Defence at the Spanish Air Force Academy to broaden the study of Kirchhoff’s laws and chem-

ical kinetics, respectively. It has also been employed for Final Degree Projects, to determine

the kinetic-thermodynamic switching point in a tandem of pericyclic reactions and to follow

the dynamics of pursuit-predator aircraft models [25,26].

In this work we introduce SimKinet along with some interesting applications in chemical

kinetics, showing its strength for solving advanced numerical problems. Although a wide spec-

trum of software designed to solve kinetic chemical equations is available, the most recognized
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among them are not free [27,28], while others present restrictions in the timestepping [29,30],

considered as fixed, or demand additional computing skills [31]. Due to its simple handling

and adaptative timestepping, SimKinet becomes an outstanding alternative.

With the aim of clarifying the numerical approach underlying this software, in section “The

electrical analogy” we introduce the basis of the electrical analogy and the NSM. In section

“The SimKinet software”, the user-friendly SimKinet interface is shown via a prototypical

chemical reaction. In addition, in section “Applications” we show the educational and

researching capabilities of SimKinet through two particular examples: a kinetic system of dif-

ferential equations with no analytical solution, the Chapman model, and a chemical system

with chaotic dynamics, known as the Olsen attractor. Additionally, a test with numerical meth-

ods implemented in software Mathematica [32] and MATLAB [33] has been performed in

order to check the accuracy of SimKinet.

The electrical analogy

The electrical analogy of scientific problems is well recognized as a very useful and attractive

educational subject, which constitutes a standard procedure in some undergraduate textbooks

[34]. This approach is no more than a formal equivalence between the governing equations of

the problem and an electrical network. In this analogy, the terms of the original equations are

usually identified with appropriate electrical devices. Within this framework, the mechanical-

electrical analogies are well-known since James Clerk Maxwell’s era [35]. A classical example,

found in the subjects Physics and Mechanics belonging to first courses in Physics, Chemistry

and Engineering degrees, is the equivalence between a non-forced damped oscillator and an

electric circuit [36]. The differential equation that describes the original problem, through

Newton’s second law of motion, is:

m
d2x
dt2
þ b

dx
dt
þ kx ¼ 0 ð1Þ

where m is the mass, x is the position coordinate along the X axis, b is the damping constant

and k is the restoring constant. On other hand, Kirchhoff’s second law for electric circuits can

be easily applied to a series RLC circuit [37], thus obtaining:

L
d2q
dt2
þ R

dq
dt
þ

1

C
q ¼ 0 ð2Þ

where L is the inductance, q is the electrical charge, R is the resistance and C is the capacitance

of the electric circuit, respectively. Eqs (1) and (2) present the same mathematical structure so,

by establishing the particular equivalence m! L, b! R, k! 1/C and x! q, the analogy is

completed. Then, the dynamics of the system can be followed through the resolution of New-

ton’s or Kirchhoff’s laws, equivalently. This particular example is easy to solve theoretically in

both cases, and usually presents strictly academic interest. However, in some other problems,

the use of the electrical analogy allows an easier handling of the theoretical solution, which can

be particularly valuable in Lagrangian dynamics, when dealing with many-body systems

[34,38]. Furthermore, the electrical analogy can be extended to other scientific areas, such as

heat transfer, fluid flow, diffusion or chemical reactions [20,39,40].

The aim of the analogy is always building an electrical network equivalent to the original

equations, which can be carried out in different ways, thus leading to different electrical analo-

gies [20,41]. The NSM becomes an outstanding alternative, because it makes use of an electri-

cal analogy which employs very few and simple electrical devices to build the equivalent circuit

[20].

SimKinet: Free software for chemical kinetics

PLOS ONE | https://doi.org/10.1371/journal.pone.0213302 March 8, 2019 3 / 21

https://doi.org/10.1371/journal.pone.0213302


As far as the chemical kinetics is concerned, the full kinetic study of a chemical process fre-

quently comprises a set of coupled first order differential equations. Each species has an associ-

ated equation, where the time variation of its concentration, [xi], is related with those of the

other species and a set of kinetic constants, kj, j = 1, m, as shown in Eq (3):

d ½xi�
dt
¼ f ½x1�; ½x2� . . . ½xn�ð Þ ð3Þ

Frequently, the whole mathematical problem does not present analytical solution [19]. This

fact requires either theoretical approximations or numerical methods. Among the latter,

numerical methods such as the 4th order RKM generally give accurate results, except in several

circumstances when dealing with complex kinetic systems. For example, kinetic schemes

involving multiple reaction steps whose values of rate constants show quite different orders of

magnitude [9,11,42–45]. A simple case can be found when the rate constant value for the step

exerting the strongest effect on the overall reaction rate is very low.

To illustrate how the running time of a simulation can be affected by the value of the rate

constant corresponding to this step, kR, consider the case in which it has frequency units (1/s).

Consequently, the corresponding reaction step must take place once every 1/kR seconds.

When kR is too small, standard simulation algorithms consume very large CPU times to reach

the steady state of the system [19]. In particular, in such circumstances the RKM becomes too

slow, being desirable to employ alternative numerical algorithms, which, in general, require

advanced programming skills [46].

In those situations, where traditional algorithms may be inefficient, the electrical analogy

introduced by the NSM and implemented in SimKinet becomes particularly useful, because of

its simple circuit design that can take advantage of the powerful capabilities of modern circuit

simulation computer codes, which employ the more complex algorithms of calculus. Since the

electrical analogy creates an equivalent electrical circuit from the original differential equa-

tions, to complete the NSM the numerical problem has to be solved via an appropriate circuit

software. The choice for SimKinet has been PSpice [47], due to its well-know numerical effi-

ciency [39] and the avaliability of a free version, which has to be installed previously.

In the next section we shall introduce the basis of the NSM, directly appling the analogy to

chemical reactions.

The Network Simulation Method. Application to chemical reactions

The numerical procedure known as the Network Simulation Method, which is properly based

on the electric analogy of the transport process, is capable of solving the set of differential equa-

tions associated with a chemical process in a time orders of magnitude lower than the tradi-

tional algorithms, presenting an advantage in terms of scientific computing [48,49]. The

method comprises the design and solution of an electric circuit formally equivalent to the orig-

inal set of differential equations. However, this is not a trivial task. The general method

involves establishing the following equivalences: I (electric current, in W/m2)! flow variable

of the problem; V (electric potential, in V)! potential variable of the problem.

From the point of view of the network model, each equation of the set of differential equa-

tions is considered as a circuit described by Kirchhoff’s current law (KCL). The complete set of

equations is equivalent to a global electric network containing as many electric circuits as

equations [20]. For chemical kinetic equations as Eq (3), the electrical devices employed by the

NSM to model each differential equation are: (a) a capacitor, associated with the first derivative

of the concentration in Eq (3); (b) voltage-controlled current sources, which easily implements

the coupling of the equations, and whose value can be defined as the function f, whatever its
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expression, in the right side of Eq (3); (c) a resistor of high value, only employed to guarantee

criteria of continuity.

The NSM electrical analogy between a set of kinetic coupled differential equations and an

electric circuit network can be established as follows. Let us start by applying the equivalence

to the particular case of a one-step chemical reaction, whose balanced equation can be

expressed in the following way:

Xn

i¼1

aiRi$
kF

kR

Xm

j¼1

bjPj; ð4Þ

where ai and bj are the stoichiometric coefficients belonging to reactant Ri and product Pj,
respectively. The rate constant for the forward reaction is denoted by kF, whereas kR is that for

the reverse step.

Since the number of moles of these species, nRi
and nPj

, are proportional to their stoichio-

metric coeffcients, we can define a quantity dξ which is, in general, a function of time, but

equal in magnitude for all reactants and products:

dx ¼ dxRi ¼ dxPj ; 8 i; j ð5Þ

dxRi ¼ �
dnRi

ai
; dxPj ¼

dnPj

bj
: ð6Þ

The reaction rate R at constant volume can be defined for i-th species as:

R ¼ �
1

aiv
dnRi

dt
¼

1

bjv

dnPj

dt
¼

1

v
dx
dt
; ð7Þ

Where v is the volume of the reaction. We can state from Eqs (5) and (6) that R is independent

of the chosen species, but it is a time-varying function.

Now we define JRi and J�Ri as the standard and renormalized flow of the reactant Ri as fol-

lows (equivalent for products, not shown):

JRi ¼ �
dnRi

dt
ð8Þ

J�Ri ¼
JRi
ai
¼

dxRi
dt

: ð9Þ

It is more suitable to write Eq (9) and its equivalent for products in terms of the concentra-

tion of the species, which defines the electric currents that establish the analogy between the

chemical and electrical systems:

J�Ri ¼ �
dnRi

aidt
¼ �

v
ai

d½Ri�

dt
ð10Þ

J�Pj ¼
dnPj

bjdt
¼

v
bj

d½Pj�

dt
: ð11Þ
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In these expressions, [Ri] and [Pj] are the concentrations of the i- and j-th reactant and

product, respectively. From Eqs (5) and (6) it is depicted that:

J� ¼ J�Ri ¼ J�Pj ; 8 i; j: ð12Þ

This last relation is the mass local balanced equation corresponding to Ri and Pj, which is a

process of creation-annihilation. From Eq (12):

J� � J�Ri ¼ 0; 8 i; ð13Þ

which remains valid for products. That is, each species will follow an equation such as Eq (13).

From the point of view of the network model, the last equation can be considered as

Kirchhoff’s current law, being equivalent to the corresponding differential equations describ-

ing the evolution of the concentration of the chemical species over time [20]. Each chemical

species presents a flow term J�Ri , whose theoretical expressions, Eqs (10) and (11), resemble the

expression of the current intensity Ic at the ends of a capacitor: Ic = CdV/dt (C and V being the

capacitance and voltage at the ends of the device). Because of this similarity, the first order

derivative of the concentration inside each differential equation, Eq (4), is modeled via a capac-

itor, whose voltage Vi is then equivalent to [Rj] (analogous for products). The remaining term

of Eq (13), J�, which was unknown at the beginning, is now easy to determine, since each dif-

ferential equation has to satisfy the KCL, because they constitute mass local balanced equa-

tions. Examining each differential equation, J� just represents the remaining addends of the

equation, implemented via voltage-controlled current sources. The application of the method

to a prototypical reaction is shown in the S1 Appendix.

The generalization of the NSM approach to a multi-step chemical reaction can be per-

formed in an equivalent way.

In this way, SimKinet has been designed to automatically implement the NSM for solving a

system of differential equations corresponding to any chemical kinetic scheme. The software

creates the equivalent electric network whatever be the terms of the equation and their expres-

sions, and directly run the model in the electric circuit software PSpice. For that, it employs a

numerical algorithm which combines the trapezoidal method and a modified Gear method,

both of them of 2nd order with variable time-stepping [49]. The user does not need to manage

the mathematical equations involved since this work is done by PSpice.

The interface communication of SimKinet is immediate and user-friendly through the win-

dow environment created in the visual C# source code. The resulting simulation data can be

graphically displayed in the SimKinet environment or using MATLAB, an even can be

exported as data files, due to appropriate routines implemented in the software. Besides, Sim-

Kinet is able to cover a wide range of applications involving systems described by first order

ordinary differential equations.

The SimKinet software

SimKinet satisfies two basic requirements for simulating kinetic chemical differential equa-

tions. Firstly, it has a simple, editable and visual environment allowing an easy management.

This enables the user to understand the sequential steps taking place in the simulation. Sec-

ondly, the program is fast and reliable, thus offering numerical advantages over traditional

simulation algorithms. When employed for academic purposes, once students have solved a

series of simple educational problems, they can naturally evolve into more complex systems.

In general, we must define in SimKinet as many equations as participant species. The differ-

ential equation associated to the n-th species involved in a chemical reaction has the following

SimKinet: Free software for chemical kinetics
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general form [20]:

d½xn�
dt
¼
X

i
ki
Y

j
½xij�

aij ð14Þ

where [xn] is the concentration of the n-th species, [xi,j] is the concentration of species involved

in the reaction, ki is the kinetic rate constant of addend i and αij is an appropriate stochio-

metric coefficient. To complete the mathematical model we must also specify the initial con-

centrations of all species, i. e., [xn](t = 0).

Once finished the data input process, the program automatically designs the network

model, which can be handled by the user before the simulation, if necessary. Then, the system

performs the numerical simulation in PSpice and displays a window where the user can per-

form graphical representations. Besides, the data can be exported in Excel or MATLAB for-

mats for further manipulation by suit the user. To outline the overall working of SimKinet, we

show in Fig 1 the simplified flow diagram of the software.

Fig 1. Simplified flow diagram for the software SimKinet.

https://doi.org/10.1371/journal.pone.0213302.g001
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In the following, we will illustrate the use of SimKinet, step by step, through a prototypical

organic reaction: the Diels-Alder cycloaddition reaction between s-cis-1,3-butadiene and eth-

ene leading to cyclohexene. This chemical process corresponds to a single kinetic scheme as

shown in Fig 2.

Where A (s-cis-1,3-butadiene), B (ethene) and C (cyclohexene) are the chemical species

involved in the process, and k1 and k2 are the corresponding forward and reverse rate con-

stants, respectively. The set of differential equations associated with the chemical reaction are:

d½A�
dt
¼

d½B�
dt
¼ �

d½C�
dt

d½A�
dt
¼ � k1½A�½B� þ k2½C�

ð15Þ

with the following initial conditions: ½A�
0
¼ ½B�

0
¼ 1 mol

l ; ½C�0 ¼ 0 mol
l .

Input data and network design

Firstly, we should define the number and name of each species involved in the chemical pro-

cess. The first dialog window of input data is called “Species”, shown in Fig 3 for the academic

problem defined in Eq (15).

The next window, “Rate constants”, deals with the kinetic rate constants of the chemical

reaction. By choosing “constants” from the dropdown menu squared in red in Fig 4, which is

the option by default, we can introduce the name and value of each rate constant. If the tab

“Energy Barriers” is selected, the values of the free energy barriers associated to each step have

to be introduced, as shown in Fig 5. We can customize the name of the barriers and, once the

values are entered, the corresponding rate constants are calculated in real time by means of

Eyring’s equation [50] and displayed on the screen (orange box). We will follow this latter pro-

cedure for the Diels-Alder reaction, by introducing the energy barriers corresponding to the

kinetic profile, equal to ΔG1 = 113110.8 J�mol-1 and ΔG−1 = 248626.4 J�mol-1 (see Fig 5) [51].

The system of differential equations has to be defined in subsequent windows. It will appear

as many windows as species we initially selected. The corresponding equation for species A is

called “Eq 1: A” and has the form depicted in Fig 6. In “Equation preview” we can see at any

time the appearance of the corresponding differential equation. To include new addends to the

equation “Add new” has to be clicked. For our example, the differential equation is configured

with two addends, and the complete result is shown in the preview (see Fig 6). The dialog

box “initial condition” sets the initial concentration of the compound, in mol/l, which corre-

sponds to the initial condition of the differential equation. The equations associated to the

Fig 2. Diels-Alder cycloaddition reaction between 1,3-butadiene and ethene leading to cyclohexene showing the

rate constants for the forward and reverse processes.

https://doi.org/10.1371/journal.pone.0213302.g002
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remaining species can be defined by pressing the “Next” button. Similar windows to Fig 6 will

appear on the screen. Once the system of differential equations is defined, we can check each

equation in the next window, “Summary”, but at this point we cannot change any setting. In

case of error, we can go back by clicking the button “Previous”. The summary of Eq (15) is

shown in Fig 7. It is possible to save all the steps taken so far by clicking the button “Save sys-

tem” in the lower left corner on this last window. The extension of the saved file is .eq, and can

be loaded in subsequent executions from the “Species” window (corresponding to Fig 3) by

pressing the button “Load from file”, located on the lower left region. All parameters and equa-

tions will be loaded, and the user will just move through the windows by pressing the “Next”

button until reaching “Summary”, changing any input data if necessary.

Fig 4. Window-dialog screen to introduce the number, names and values of the rate constants. For this option, the values are

directly introduced.

https://doi.org/10.1371/journal.pone.0213302.g004

Fig 3. Window-dialog screen to introduce the number and names of the participant chemical species.

https://doi.org/10.1371/journal.pone.0213302.g003
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In the next window, “Simulation Options” (see Fig 8), PSpice parameters employed in the

simulation are selected. Their meaning can be found by clicking on the help question mark.

“Total time” is the time reached by the simulation, in seconds; “Time step” is the print time

between data; “RELTOL” adjusts the precision of the numerical algorithm; “NUMDGT” is the

number of decimal digits in the output. In the next window, it is shown the “CIR Code” (not

shown here), which represents the programming code in PSpice. It is possible to save the CIR

by clicking “Save CIR” or load a Pspice out file for the current model by pressing “LoadOUT”.

Simulation and output data

The simulation starts by pressing “Next”. Once the model has been successfully solved in

PSpice, the window “Results” appears on the screen (Fig 9). This window makes up the graphi-

cal environment of SimKinet. In this particular example, the dependence of [A] and [C] on

time until 107 s is shown. Finally, we can click on the “Export” menu (upper right zone) to

export data in diverse formats to suit the user. It is possible to export the data in Excel format

by clicking on “Generate Excel file” under the label “Filtered data”, and handle the file with

advanced software such as Origin.

Applications

In this section, we will show two practical cases of SimKinet involving researching and aca-

demic interest. The first one adresses a problem without analytical solution, guided by the

Chapman mechanism for the formation and decomposition of atmospheric ozone. This exam-

ple may be particularly useful in undergraduate Chemistry courses, where it can be employed

to study in depth the order of chemical reactions. Furthermore, in the context of non-analyti-

cal solutions, SimKinet is a suitable tool for researchers who need to solve complex kinetic

schemes [19,52]. The second practical example, the Olsen attractor, constitutes a very interest-

ing illustration of chaotic dynamics. The study of oscillating chemical reactions becomes

essential to understand some key aspects of the behaviour of living organisms. In this way,

Fig 5. Window-dialog screen to determine the values of the rate constants via the input of the energy barriers corresponding to

the kinetic profile of the reaction.

https://doi.org/10.1371/journal.pone.0213302.g005
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students can be introduced in nonlinear dynamics, a common feature for some crucial chemi-

cal reactions. Non-linear and chaotic dynamics are universal, and have special interest in other

related subjects such as Physics or Mathematics at undergraduate courses [53]. From the

researching point of view, SimKinet simplifies the determination of chaotic patterns, as for

example the insight of chaos in phase diagrams for Josephson junctions [41].

Non-analytic differential equations associated to a chemical scheme

Even when dealing with simple chemical schemes, we can find a set of differential equations

that cannot be solved analytically or be difficult to solve. In these situations, it is customary to

carry out theoretical approximations, such as the SSA (steady stationary approximation) or the

RSL (rate limiting step) approximation [15]. Even where applicable, they restrict the range of

Fig 6. Definition of the differential equation associated to a generic species.

https://doi.org/10.1371/journal.pone.0213302.g006
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validity for the solutions. Consequently, to obtain accurate results, and without restrictions,

numerical approaches become more convenient.

Nowadays, the RKM has been improved to include variable step-size and other numerical

features, but it is still found to be an inefficient method when dealing with large numerical sim-

ulations, including the dynamics of complex soft matter systems in physics, or complex kinetic

chemical schemes [54]. More efficient numerical procedures have been developed along the

years, such as the Bulirsch-Stöer method or integration packages in software such as Mathema-

tica or MATLAB [46]. Nevertheless, the user needs to develop programming skills. SimKinet

becomes an efficient alternative to these approaches due to its ease of use and power of

calculus.

An interesting non-analytic example, in which is common to employ the SSA, is the forma-

tion and destruction of stratospheric ozone [55]. A determined concentration of ozone in the

stratosphere is vital for life in the Earth as the ozone layer, placed around 25 km of altitude,

absorbs the ultraviolet light. To explain the steady state concentration of ozone in the ozone

Fig 7. Summary window, which shows the complete set of differential equations corresponding to the chemical profile.

https://doi.org/10.1371/journal.pone.0213302.g007

Fig 8. Parameters selection screen for the simulation.

https://doi.org/10.1371/journal.pone.0213302.g008
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layer, Chapman proposed an approximation to the reaction mechanism involving the cycle of

reactions outlined in Fig 10. The principal reaction for ozone production is the recombination

of oxygen atoms with O2 molecules, steps 1 and 2, whereas steps 3 and 4 account for its

destruction. M represents a chemical species, usually molecular oxygen or molecular nitrogen,

which stabilizes the ozone by absorbing as kinetic energy that which is given off when the step

2 occurs.

The system of differential kinetic equations associated to this mechanism is described by

the following set of coupled differential equation, which presents no analytical solution. It is

usually solved making use of the SSA for the concentration of intermediate species [9]:

d½O2�

dt
¼ � k1½O2� � k2½M�½O�½O2� þ k3½O3� þ 2k4½O�½O3�

d½O�
dt
¼ 2k1½O2� � k2½M�½O�½O2� þ k3½O3� � k4½O�½O3�

d½O3�

dt
¼ k2½M�½O�½O2� � k3½O3� � k4½O�½O3�

ð16Þ

Suppose we are interested in determining the change of concentrations of the involved spe-

cies over time. By using SimKinet, and entering the appropriated data for the initial concentra-

tions of each species [56,57], we solve this set of equations and obtain the following solution

for concentrations [O2], [O] and [O3] up to 107s, shown in Figs 11, 12 and 13:

To test the validity of solutions, we have compared SimKinet results with those obtained via

powerful numerical routines implemented in software Mathematica and MATLAB. To this

aim, in Fig 13 it is shown the dependence of [O3] on time up to 8 × 107 s obtained from SimKi-

net (solid line), Mathematica (blue empty triangles) and Matlab (green empty dots). It can be

inferred by comparing the different plots that the three methods lead to equivalent results.

As can be derived from the above plots, [O] and [O3] are monotonically increasing func-

tions within the time range considered, while [O2] is monotonically decreasing. The stationary

regime for species O3 is shown in Fig 13, yielding a stationary value [O3] = 3.06 × 10−8 mol/l.

Fig 9. Results window of SimKinet, which displays a graphical environment to plot the data.

https://doi.org/10.1371/journal.pone.0213302.g009
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Fig 10. Chapman mechanistic proposal for the photochemical destruction of stratospheric ozone showing the rate constants of

each step.

https://doi.org/10.1371/journal.pone.0213302.g010

Fig 11. Dependence of (a) [O] and (b) [O2] on time corresponding to the simplified Chapman mechanism.

https://doi.org/10.1371/journal.pone.0213302.g011
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Fig 12. Dependence of [O3] on time corresponding to the simplified Chapman mechanism.

https://doi.org/10.1371/journal.pone.0213302.g012

Fig 13. Comparison of the dependence of [O3] on time for the stationary state computed via SimKinet (solid line),

Mathematica (blue empty triangles) and MATLAB (green empty dots).

https://doi.org/10.1371/journal.pone.0213302.g013
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By contrast, applying the SSA for solving Eq (6), assuming d[O]/dt = 0, yields [O3] =

6.51 × 10−9 mol/l, which indicates that the approximation fails for this problem. In general,

SimKinet allows the user to test the validity of theoretical approximations in mathematical

models described by differential equations.

Chaotic dynamics: The Olsen attractor

The discovery of oscillating reactions aroused the interest of the scientific community in the

last century. Two classic examples are the Lotka-Volterra oscillator and the Belousov-Zhabo-

tinsky reactions [58–60]. Both have been studied extensively, showing oscillating concentra-

tions of reactants. Oscillating chemical reactions constitute an important area of study,

becoming essential to understand the behaviour of living organisms. In 1978, H. B. Rössler

proposed that chaos could be found in a chemical oscillating system open to its surroundings

[61]. Early experimental evidence for chaos was reported for an oscillating enzyme reaction:

the peroxidase-oxidase reaction [62]. From then, numerous examples of chaotic behaviour

have been found in both abstract and real chemical systems [52,60].

In the peroxidase-oxidase reaction the reduced form of nicotinamide adenine dinucleotide

(NADH), is oxidized being molecular oxygen the final electron acceptor:

O2 þ NADHþ 2 Hþ ! 2 NADþ þ 2 H2O

This reaction is catalysed by peroxidase enzymes. By continuously supplying NADH and

O2, and depending on the amount of enzyme present in the reaction mixture, the system will

show both periodic and non-periodic oscillations. The mechanism of the peroxidase-oxidase

reaction is intricate and involves about twenty individual reactions steps, some of which are

not known in detail, not even the rate constants. However, its oscillatory behavior, as well as

Fig 14. Eight-step simplified mechanism proposed for Olsen for the peroxidase-oxidase reaction.

https://doi.org/10.1371/journal.pone.0213302.g014
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several of the dynamic features of the experimental system, could be successfully modeled by

means of the eight-step simplified mechanism known as the Olsen model (see Fig 14).

T he classical Olsen model outlined in Fig 14 describes the nonlinear dynamics of the per-

oxidase-oxidase reaction, showing both periodic and chaotic attractors [63]. INT-1 and INT-2

are radical intermediates. Note that reaction 6 in Fig 14 involve the spontaneous formation of

the free radical intermediate INT-1, which is indispensable for the start of the reaction. Step 7

represents the diffusion of molecular oxygen from the gas phase into the liquid one, whereas

step 8 accounts for the infusion of NAHD. Consequently, the associated set of differential

equations would be:

d½O2�

dt
¼ � k3½O2�½NADH�½INT � 2� þ k7ð½O2�0 � ½O2�Þ

d½NADH�

dt
¼ � k1½NADH�½INT � 1� � k3½O2�½NADH�½INT � 2� þ k8½NADH�

0

d½INT � 1�

dt
¼ k1½NADH�½INT � 1� � 2k2½INT � 1�

2
þ 3k3½O2�½NADH�½INT � 2� � k4½INT � 1� þ k6½INT � 1�

0

d½INT � 2�

dt
¼ 2k2½INT � 1�

2
� k3½O2�½NADH�½INT � 2� � k5½INT � 2�

ð17Þ

Fig 15. Three dimensional phase space diagram ([O2], [NADH] and [INT−1]) of a chaotic attractor for the peroxidase-oxidase

reaction. Time and concentrations are dimensionless.

https://doi.org/10.1371/journal.pone.0213302.g015
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The mathematical model, Eq (17), has been computed in SimKinet (parameters are taken

from literature) [63]. The phase space diagram for concentrations [O2], [NADH] and [INT−1]

are shown in Fig 15, showing a typical chaotic attractor. These results prove that SimKinet

becomes a powerful tool to simulate relevant chaotic systems, such as the Rössler attractor,

Lotka-Volterra equations, and others [52], and it can help students and researchers to deepen

into the mathematical nature of chemical reactions. For example, it is common in some scien-

tific degrees to study oscillating chemical reactions, such as the Belausov-Zhabotinskii or the

Briggs-Rauscher [64,65]. The numerical solution of the corresponding mathematical problem

via SimKinet allows the user to take control over the variables of the system and to predict the

behaviour of the reaction.

Conclusions

The software SimKinet, a powerful and versatile software, has been designed to solve kinetic

chemical equations, and it can be successfully applied for educational and researching

purposes. SimKinet is a free and user-friendly tool able to solve a wide range of problems

involving differential equations. Its simple handling makes it also suitable for teaching at

undergraduate levels without having to resort to theoretical approximations, and allowing the

student to deepen into the mathematical nature of scientific models. Two interesting practical

examples have been explained to illustrate the capabilities of the software: the Chapman model

and the Olsen attractor. Among other interesting uses, it can be employed to determine the

range of validity for theoretical approximations, to distinguish between chaotic and periodic

behaviour in nonlinear dynamics, or to take control over the product composition in chemical

reactions.
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DFT Study of the Pericyclic/Pseudopericyclic Character of Cycloaddition Reactions of Ethylene and

Formaldehyde to Buta-1,3-dien-1-one and Derivatives. J Phys Chem A. 2005; 109: 5636–5644. https://

doi.org/10.1021/jp050624x PMID: 16833896

52. Strogatz SH. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and

Engineering. 2nd ed. Boca Raton: Taylor & Francis Group; 2018.

53. Yang XS, Li Q. A Computer-Assisted Proof of Chaos in Josephson Junction. Chaos Soliton Frac. 2006;

27: 25–30.

54. Gustafsson K. Control-Theoretic Techniques for Stepsize Selection in Implicit Runge-Kutta Methods.

ACM Trans Math Softw. 1994; 20 (4): 496–517.

55. Johnston H. S. Atmospheric Ozone. Ann Rev Phys Chem. 1992; 43: 1–32.

56. Warneck P. Chemistry of the Natural Atmosphere. London: Elsevier Science; 1988.

SimKinet: Free software for chemical kinetics

PLOS ONE | https://doi.org/10.1371/journal.pone.0213302 March 8, 2019 20 / 21

http://www.chemstations.com/
http://www.reactiondesign.com/products/chemkin/chemkin-2/
http://www.reactiondesign.com/products/chemkin/chemkin-2/
https://sourceforge.net/projects/chemecher/reviews
https://sourceforge.net/projects/jkinetics/
http://bililite.com/tenua/
http://www.wolfram.com/mathematica/
https://es.mathworks.com/products/matlab.html
https://doi.org/10.1039/c5cp07476b
https://doi.org/10.1039/c5cp07476b
http://www.ncbi.nlm.nih.gov/pubmed/26763107
https://doi.org/10.1002/cphc.201100137
http://www.ncbi.nlm.nih.gov/pubmed/21523880
http://www.orcad.com/
https://doi.org/10.1039/c4cp05702c
http://www.ncbi.nlm.nih.gov/pubmed/25600122
https://doi.org/10.1021/jp050624x
https://doi.org/10.1021/jp050624x
http://www.ncbi.nlm.nih.gov/pubmed/16833896
https://doi.org/10.1371/journal.pone.0213302


57. Sander SP, Friedl RR, DeMore WB, Ravishankara A, Kolb CE. Chemical Kinetics and Photochemical

Data for Use in Stratospheric Modeling Supplement to Evaluation 12: Update of Key Reactions, vol.

97–4. California: JPL publication; 1997.

58. Lotka A. Contribution to the Theory of Periodic Reactions. J Phys Chem. 1910; 14 (3): 271–274.

59. Goel NS, Maitra SC, Montroll EW. On the Volterra and Other Nonlinear Models of Interacting Popula-

tions Nonlinear Models in Interacting Populations. New York: Academic Press; 1971.

60. Epstein IR, Showalter K. Nonlinear Chemical Dynamics: Oscillations, Patterns, and Chaos. J Phys

Chem. 1996; 100 (31): 13132–13147.
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