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Abstract
Increasing availability of electronic health databases capturing real-world experiences with medical products has garnered 
much interest in their use for pharmacoepidemiologic and pharmacovigilance studies. The traditional practice of having 
numerous groups use single databases to accomplish similar tasks and address common questions about medical products can 
be made more efficient through well-coordinated multi-database studies, greatly facilitated through distributed data network 
(DDN) architectures. Access to larger amounts of electronic health data within DDNs has created a growing interest in using 
data-adaptive machine learning (ML) techniques that can automatically model complex associations in high-dimensional 
data with minimal human guidance. However, the siloed storage and diverse nature of the databases in DDNs create unique 
challenges for using ML. In this paper, we discuss opportunities, challenges, and considerations for applying ML in DDNs 
for pharmacoepidemiologic and pharmacovigilance studies. We first discuss major types of activities performed by DDNs 
and how ML may be used. Next, we discuss practical data-related factors influencing how DDNs work in practice. We then 
combine these discussions and jointly consider how opportunities for ML are affected by practical data-related factors for 
DDNs, leading to several challenges. We present different approaches for addressing these challenges and highlight efforts 
that real-world DDNs have taken or are currently taking to help mitigate them. Despite these challenges, the time is ripe for 
the emerging interest to use ML in DDNs, and the utility of these data-adaptive modeling techniques in pharmacoepidemio-
logic and pharmacovigilance studies will likely continue to increase in the coming years.
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Key Points 

Many opportunities exist for distributed data networks 
(DDNs) to use machine learning in pharmacoepide-
miologic and pharmacovigilance studies; however, the 
practical data-related characteristics of DDNs also create 
unique challenges for applying machine learning.

In this review, we discuss various challenges that DDNs 
face when applying machine learning and present differ-
ent approaches for addressing these challenges, including 
issues for consideration and examples of how real-world 
DDNs have addressed or are working to help mitigate 
these challenges.

The use of machine learning in DDNs is an emerging 
area of interest that holds much promise, and the utility 
of these data-adaptive modeling methods for enhancing 
pharmacoepidemiologic and pharmacovigilance studies 
will likely continue to increase in the coming years.
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1  Introduction

The digital revolution has led to a growing abundance and 
availability of electronic health data capturing real-world 
uses of and experiences with medical products [1]. Increas-
ing access to amassing amounts of digital health data, 
including data from administrative claims databases, elec-
tronic health record (EHR) systems, and disease-specific 
or product-specific registries, has garnered much inter-
est in their use for studies in pharmacoepidemiology and 
pharmacovigilance [2]. The traditional practice of having 
numerous groups around the world use single databases to 
accomplish similar tasks and address common questions 
about medical products can be made more efficient through 
well-coordinated multi-database studies. By leveraging 
more data, multi-database studies are capable of producing 
more precise and generalizable findings, and they are better 
suited to investigate rare exposures and outcomes, as well as 
heterogeneous treatment effects [3]. Multi-database studies 
also facilitate the identification of larger cohorts of exposed 
patients in a shorter period of time—a crucial capability 
when timely answers to important questions are needed but 
limited data exist, such as ensuing the approval of new medi-
cations or public health emergencies, such as the COVID-19 
pandemic [4].

Although the pooling of individual-level data from dif-
ferent databases, especially from similar healthcare sys-
tems, into a centralized location is an instinctive approach 
for conducting multi-database studies, it is often impractical 
because of ethical, legal, logistical, and administrative barri-
ers [3, 5]. These obstacles have led to the rise of distributed 
data networks (DDNs), where databases (comprised of any 
type of data) are not pooled centrally and data partners main-
tain full control over the physical storage and use of their 
data (Fig. 1). Given the sensitive nature of the information 
contained in electronic health data, a DDN approach repre-
sents a conceptually favorable, and in most circumstances, 
more feasible approach to conducting multi-database analy-
ses [3, 5].

There is a strong interest to incorporate machine learn-
ing (ML) in pharmacoepidemiologic and pharmacovigilance 
activities within DDNs [6, 7]. This interest is well founded 
given that ML in healthcare has been successfully applied 
to diagnose pathologies from medical images [8], extract 
structured information from unstructured clinical notes [9, 
10], construct dense representations of medical concepts [9, 
11, 12], predict health outcomes [13], identify data-driven 
descriptors of illnesses and diseases (i.e., phenotypes) [9, 
14], and enhance confounding control in pharmacoepidemi-
ology [15, 16]. Given the substantial amount of electronic 
health data accessible through DDNs, these ML advance-
ments could be valuable for enhancing the use of such boun-
tiful data. However, the siloed structure of DDNs and the 
disparate and diverse nature of the databases they contain 
also create unique challenges for applying ML.

In this paper, we discuss opportunities, challenges, and 
considerations for applying ML in DDNs for pharmacoepi-
demiologic and pharmacovigilance studies. We first discuss 
major types of activities performed by these DDNs and the 
ways in which ML may be used to help accomplish these 
activities (Sect. 2). Next, we discuss practical data-related 
factors that influence how DDNs work in practice (Sect. 3). 
We then bring together these discussions and jointly con-
sider how the opportunities for using ML in pharmacoepi-
demiologic and pharmacovigilance activities are affected 
by the practical data-related factors of DDNs, leading to a 
number of challenges. We discuss different approaches for 
addressing these challenges, including issues for considera-
tion and examples of how real-world DDNs have addressed 
or are working to help mitigate these challenges (Sect. 4). 
Finally, we conclude the paper by summarizing our main 
observations and perspectives on the use of ML in DDNs 
for pharmacoepidemiologic and pharmacovigilance studies 
(Sect. 5).

Throughout our discussion, we use the term “machine 
learning” to refer to highly flexible and data-adaptive algo-
rithms that can automatically learn complex associations in 
high-dimensional data with minimal human guidance (e.g., 
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Fig. 1   Key domains of activities performed by distributed data networks conducting studies in pharmacoepidemiology and pharmacovigilance. 
On the left, a schematic of a generic distributed data network is shown, where data partners do not pool their databases and instead maintain full 
control over the use and sharing of their data with the analysis center. The gray rectangles represent key domains of activities performed by dis-
tributed data networks that conduct studies in pharmacoepidemiology and pharmacovigilance
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random forests, support vector machines with Gaussian ker-
nels, deep learning models) [17]. We focus our discussion 
on DDNs that conduct population-based pharmacoepidemio-
logic research, post-market medical product safety surveil-
lance, or comparative effectiveness evaluations of medical 
products using databases of real-world data, in which the 
application of machine learning is particularly common and 
relevant. In the Box, we list select DDNs in pharmacoepide-
miology and pharmacovigilance and refer interested readers 
elsewhere [3] for more details about these networks and their 
general characteristics.

1.1 � Box. Examples of Distributed Data 
Networks in Pharmacoepidemiology 
and Pharmacovigilance

 •	 Asian Pharmacoepidemiology Network (AsPEN) [18]
 •	� Canadian Network for Observational Drug Effect Stud-

ies (CNODES) [19]
 •	� European Health Data and Evidence Network (EHDEN) 

[20]
 •	 Health Care Systems Research Network (HCSRN) [21]
 •	� National Patient-Centered Clinical Research Network 

(PCORnet®) [22]
 •	� Observational Health Data Sciences and Informatics 

(OHDSI) Collaborative [23]
 •	 Sentinel System [24]
 •	 Vaccine Safety Datalink [25]

2 � Opportunities for Machine Learning

Many activities of DDNs that conduct studies in pharma-
coepidemiology and pharmacovigilance fall into one of 
four key domains (Fig. 1). While some activities play a 
more intermediary role by supporting the creation of study 
cohorts and measurements, other activities generate hypoth-
eses about medical product safety concerns, test hypotheses 
about medical products through addressing causal questions 
on effectiveness and safety, or identify high-risk individu-
als to inform planning and prevention efforts to improve 
patient outcomes and minimize harm from medical prod-
ucts. Below, we discuss each of these domains and highlight 
opportunities where ML may be used to help accomplish 
these activities.

2.1 � Computable Phenotyping

Computable phenotyping (or simply “phenotyping”) refers 
to the process of deriving computer-executable algorithms 
to identify individuals with specific health conditions, dis-
eases, or clinical events based on measurable biological, 

behavioral, and clinical features [26]. Phenotyping activi-
ties are fundamental to the use of electronic health data in 
pharmacoepidemiology and pharmacovigilance [27], as 
they support essential tasks such as measuring study eligi-
bility criteria, health outcomes of interest, confounders of 
treatment-outcome relations, and predictors of future health 
outcomes.

Phenotyping algorithms have traditionally consisted of 
expert-defined rules based on structured health data, such as 
medical codes or laboratory tests [26, 27]. Although inter-
pretable and relatively simple to implement, rule-based 
phenotyping algorithms can only accommodate pre-existing 
knowledge or beliefs about a medical condition [26] and may 
be particularly challenging to develop when complex clinical 
criteria and tacit knowledge are required to make a diagnosis 
[28]. Furthermore, limiting phenotyping algorithms to using 
only structured data forgoes the opportunity to capitalize on 
the abundance of clinical information stored in unstructured 
data (e.g., clinical text), above and beyond that available in 
structured data, which are more challenging to extract but 
could be valuable for phenotyping activities [27].

In contrast, the use of ML for disease classification rep-
resents a more data-driven approach that can consider a 
multitude of clinical features to identify latent associations 
and potentially new phenotyping definitions. This process 
typically involves representing the information to be con-
sidered in the phenotyping algorithm as a feature vector, 
tagging a set of observations with labels (i.e., having or not 
having the phenotype of interest), and then allowing the 
data to train a supervised ML algorithm that maps the input 
features to the labels [9, 26]. Machine learning may also 
be used to facilitate the extraction of potentially relevant 
phenotypic information from clinical text as part of a natural 
language processing (NLP) tool, the output of which can 
then be used to identify phenotypes directly [29] or create 
NLP-derived features to be combined with other structured 
data in a downstream ML algorithm [27]. Phenotyping algo-
rithms have been found to achieve better performance when 
developed using supervised ML compared to conventional 
decision rules [30] and when presented with features derived 
from both structured and unstructured data compared to 
structured data alone [31, 32]. In addition, ML has been 
used in other unique ways to enhance phenotyping activities, 
such as to estimate “probabilistic gold standard” phenotype 
probabilities on large groups of individuals to facilitate the 
efficient estimation of complete validation parameters (i.e., 
sensitivity and specificity, in addition to predictive values) 
for simple rule-based phenotyping algorithms commonly 
used for cohort development (e.g., one or more occurrences 
of a diagnosis code for the phenotype) [33].
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2.2 � Safety Signal Detection

Signal detection activities monitor the safety of medical 
products in real-world settings by detecting the emergence 
of new or unsuspected adverse events that may be associ-
ated with a product’s use, where the identified signals are 
then further investigated for evidence of a potential causal 
association (discussed in Sect. 2.3). Compared to the other 
three domains of activities discussed in this section, safety 
signal detection activities are generally more specific to the 
field of pharmacoepidemiology and pharmacovigilance. 
Though signal detection activities have been traditionally 
performed using data from spontaneous reporting systems 
(SRSs), electronic health databases are being increasingly 
recognized as a valuable alternative data source because of 
their potential to address many limitations of SRS data (e.g., 
reporting bias, inability to estimate rates due to a lack of 
population denominators), among other reasons [34].

A variety of approaches for signal detection have been 
tested with electronic health databases, including approaches 
that transport methods originally designed for SRS data 
(e.g., disproportionality analyses), adopt traditional phar-
macoepidemiologic designs (e.g., new-user cohort design, 
self-controlled case series), or utilize other methods such 
as the tree-based scan statistic, among many others [35, 
36]. Within these approaches, several opportunities exist 
to use ML. For example, Bayesian Confidence Propagation 
Neural Networks [37] are used to estimate the Information 
Component  (a well-known Bayesian disproportionality 
measure), and although traditionally used with SRS data, 
the approach has been tested with longitudinal (observa-
tional) data [35]. Machine learning may also be used to help 
reduce the effects of potential confounding in signal detec-
tion activities through the estimation of propensity scores 
(described later), which may be used with approaches such 
as the new-user cohort design or tree-based scan statistic 
[34, 38, 39]. In addition, other innovative approaches for 
using ML with longitudinal data in signal detection activities 
are being explored. For example, Reps et al. [40] proposed 
a supervised ML framework to predict the likelihood of a 
drug-event pair being an adverse drug reaction based on a 
vector of risk ratios calculated under different simple cohort 
study designs, where a ML classifier is trained on a sam-
ple of drug-event pairs known to be adverse drug reactions 
or not. There is also a growing interest to use ML meth-
ods, especially deep learning models, to extract mentions 
of drug-adverse event pairs from unstructured clinical text 
[41, 42]—an NLP task with the potential to improve the 
identification of adverse drug events that are typically under 
coded in structured EHR and claims data [43, 44].

2.3 � Causal Inference

Among the most well-recognized pharmacoepidemiologic 
activities of DDNs, causal inference activities address 
important questions about the comparative safety and effec-
tiveness of medical products to provide actionable evidence 
for informing clinical and public health decisions. A key 
component of causal inference is clearly defining the hypoth-
esis or question of interest and statistically formulating a 
corresponding causal parameter that answers the question 
and can be validly estimated from available data [45].

When longitudinal data from electronic health databases 
are used to estimate causal parameters, the ability to con-
trol for imbalances in risk factors between treatment groups 
(i.e., confounding) is crucial and often achieved through esti-
mating “nuisance functions” that are not of direct interest, 
but rather used as a means of estimating causal parameters 
[45–47]. Technically, nuisance functions estimate the proba-
bility of the treatment (called propensity scores) or outcome, 
conditional on a set of observed covariates that should fol-
low sound epidemiologic principles (e.g., propensity score 
models should not include covariates associated with only 
the treatment and not the outcome [15, 48]). Depending on 
the causal effect estimation method, one or both nuisance 
functions may be used. For example, propensity score-based 
methods use the treatment nuisance function, G-computa-
tion methods use the outcome nuisance function, and dou-
bly-robust methods such as targeted maximum likelihood 
estimation and augmented inverse probability weighting 
use both treatment and outcome nuisance functions [47]. 
Regardless of the method, at least one nuisance function 
must be properly specified to attain consistent estimates of 
causal parameters [47].

Parametric regression models are commonly used to esti-
mate nuisance functions, but the strong functional assump-
tions they make are prone to misspecification, particularly 
when there are many covariates with potentially complex 
associations. Alternatively, data-adaptive supervised ML 
techniques offer a more flexible modeling approach for 
estimating nuisance functions that impose less restrictive 
assumptions on covariates, thus increasing the likelihood of 
attaining properly specified nuisance models for more valid 
inferences [15, 49], especially when used with cross-fitting 
estimation procedures [47]. Nuisance functions estimated 
using ensemble ML techniques [50], which can consider col-
lections of different ML algorithms and different covariate 
sets (e.g., using various thresholds of top-ranked covariates 
from the high-dimensional propensity score algorithm [51]), 
have been shown to yield more consistent estimates of causal 
parameters [47, 52, 53]. Machine learning methods may also 
be useful for further automating the confounding adjustment 
process by efficiently extracting and prioritizing appropri-
ate covariates from high-dimensional spaces in claims data, 
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structured EHR data, and unstructured EHR data (e.g., word 
stems or N-grams) for inclusion in nuisance function models 
[54].

2.4 � Forecasting

Forecasting activities predict the risk of future health events, 
outcomes, or behaviors (e.g., adverse drug events, treatment 
response, or nonadherence behaviors) to inform early inter-
vention, planning, and prevention efforts, with the ultimate 
goal of improving patient outcomes, minimizing risks, and 
managing healthcare services [55]. Approaches to forecast-
ing have been classified as judgmental or statistical [56]. 
Healthcare providers inherently use their expert judgment 
about the likelihood of future health events whenever they 
make decisions about treatments or recommend healthcare 
services for their patients. Though essential to the practice of 
medicine, judgment-based forecasting by clinicians is sub-
jective and does not always translate into accurate predic-
tions [57–59]. Moreover, it does not scale well to forecasting 
on large groups of individuals to provide healthcare delivery 
systems with the macro-level estimates needed for planning 
and management.

In contrast, statistical forecasting uses statistical models 
based on historical data to predict the occurrence of future 
health events (i.e., for prognostic modeling). Such prognos-
tic models not only enable population-level forecasting, but 
they can also be used to further inform clinicians’ judgments 
and enhance decision making at the patient level (e.g., as 
decision support tools). Similar to the use of supervised ML 
for diagnostic modeling in phenotyping activities, the use 
of supervised ML for prognostic modeling offers a data-
adaptive approach for identifying potentially complex asso-
ciations and interactions between a plethora of features to 
predict future health outcomes. Supervised ML has been 
used with electronic health data to create accurate risk pre-
diction models for many health events for which prospective 
surveillance, prevention, early intervention, and advanced 

planning is invaluable, including opioid overdose [60, 61], 
cancer-related mortality [62], suicidality [63], and high 
healthcare costs [64].

3 � Practical Data‑Related Factors

In this section, we shift our attention to practical matters, 
focusing on three data-related factors that influence how 
DDNs perform their activities (Fig. 2). We discuss each of 
these factors and the “spectrum of possibilities” along which 
DDNs may fall, using examples of well-known DDNs to 
highlight their similarities and differences. Although other 
factors may also influence how DDNs carry out their activi-
ties (e.g., funding, experience working together, data infra-
structure) [3], we focus on these data-related factors for their 
proximate influence on the application of ML in DDNs (dis-
cussed in Sect. 4).

3.1 � Modality of Source Data

Electronic health data exist in formats that are either struc-
tured or unstructured [65]. Structured data have a well-
defined format (e.g., tables), where information is often 
stored using standardized values and can be easily extracted 
and analyzed. Information commonly stored as structured 
data include patient demographics (e.g., age), medications, 
coded diagnoses and procedures, certain laboratory tests 
(e.g., international normalized ratio), and certain quanti-
tative clinical measures (e.g., blood pressure). In contrast, 
unstructured data (e.g., clinical notes, discharge summaries, 
radiology and pathology reports, and medical images) con-
tain valuable information beyond that captured in structured 
data, but their lack of any pre-defined structure makes them 
challenging for computers to process and analyze [65]. 
Depending on the source of electronic health data, one or 
both data modalities may exist. For example, administrative 
claims databases contain exclusively structured data, while 

Fig. 2   Practical data-related 
factors of distributed data 
networks. These three data-
related factors influence how 
distributed data networks 
operate in practice. For each 
factor, distributed data networks 
may theoretically fall anywhere 
along the spectrum between the 
two extremes
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EHR databases typically contain a mixture of structured 
and unstructured data, with the majority of these data often 
being unstructured [66].

Currently, most DDNs in pharmacoepidemiology and 
pharmacovigilance primarily use structured data from their 
source systems to perform activities; thus, most DDNs are 
situated toward the leftward end of the spectrum in Fig. 2. 
For DDNs comprised solely of administrative claims 
databases, the use of only structured data occurs because 
unstructured data are not available. However, for many 
DDNs containing EHR databases amongst their data part-
ners, such as the Sentinel System, National Patient-Centered 
Clinical Research Network (PCORnet®), Health Care Sys-
tems Research Network (HCSRN), European Health Data 
and Evidence Network (EHDEN), and Observational Health 
Data Sciences and Informatics (OHDSI) Collaborative, both 
structured and unstructured data often exist in these data-
bases. However, the unstructured data in these databases 
have been traditionally underutilized, not because of a lack 
of interest, but rather owing to the significant complexities 
associated with handling and extracting information from 
these complex data types. Given the rapid advancements 
in NLP methods and growing literature on clinical NLP 
applications in recent years [67–69], there is increasing 
interest among many DDNs to move rightward along the 
spectrum and make greater use of the unstructured data that 
may exist in their source systems. For example, the Senti-
nel System, as part of its 5-year strategy, has committed 
to exploring emerging data science innovations, including 
NLP, to expand the use of EHR data in its activities [6], and 
the OHDSI collaborators have established an NLP working 
group that develops methods and software to promote the 
use of clinical text in activities within the OHDSI commu-
nity [70].

3.2 � Degree of Data Standardization

In their native environments, most electronic health data-
bases vary greatly in their schemas, content, and coding 
terminologies [71]. Given the significant discrepancies that 
often exist between disparate databases in a DDN, a range 
of approaches may be used to deal with these differences 
when conducting a distributed analysis. At one end of the 
spectrum, DDNs can have all their data partners standard-
ize the format of their source data to a common data model 
(CDM). A CDM specifies a standardized structure and set of 
tables to which data partners in a DDN convert their source 
data [3, 71]. Some CDMs, such as the Observational Medi-
cal Outcomes Partnership (OMOP) CDM, maintained by 
the OHDSI group and also used by EHDEN and AsPEN, 
additionally standardize coding terminologies to a common 

vocabulary [72], whereas other CDMs such as the Sentinel 
CDM only store the original coded values to be later mapped 
to a common vocabulary on a study-specific basis [73]. 
Although CDMs require significant up-front investment to 
both develop the infrastructure and implement the specifica-
tions, the invested time and effort pay increasing dividends 
as more studies are performed [3]. In particular, use of a 
CDM offers the ability to apply validated software and tools 
that have been developed for the CDM, thus promoting not 
only the rapid, reliable, and reproducible implementation of 
analyses across sites, but also reducing the amount of site-
specific programming required and coding errors encoun-
tered [71]. The Sentinel System, PCORnet, and OHDSI are 
examples of DDNs that have developed libraries of custom-
ized tools for use with data formatted to their CDMs [3]. For 
example, members of the OHDSI community may utilize 
open-source R packages available in the Health Analytics 
Data-to-Evidence Suite (HADES) [74] to perform various 
study analyses on data converted to the OMOP CDM.

At the other end of the spectrum, DDNs may choose not 
to use a CDM. Rather than invest time and energy up-front 
to standardize their data partners’ source systems, data 
management, quality, and harmonization issues are instead 
addressed at the study level. Often, this approach involves 
creating a meticulous data management plan along with a 
detailed statistical analysis plan representing components of 
a structured pre-specified protocol developed collaboratively 
between researchers and stakeholders involved in the study 
[73]. This approach was used by the historical Pharmacoepi-
demiological Research on Outcomes of Therapeutics by a 
European ConsorTium (IMI-PROTECT) project [75] and in 
the early years of the Canadian Network for Observational 
Drug Studies (CNODES) [19]. Intermediary approaches 
between these two extremes are also possible. For example, 
a CDM may be developed for only some data partners within 
a DDN, or only a small fraction of information within data 
partners’ source systems may be converted to a CDM.

Currently, most DDNs conducting pharmacoepidemio-
logic and pharmacovigilance studies use a CDM to stand-
ardize primarily structured data from their data partners’ 
source systems. Thus, most DDNs tend to lie more leftward 
along the spectrum in Fig. 2. Distributed data networks once 
located more rightward along the spectrum have also been 
inclined to shift leftward over time toward adopting a CDM, 
indicating the clear advantages of investing in a CDM when 
DDNs conduct increasing numbers of distributed analyses 
over time. For example, although CNODES initially used 
a phased common protocol approach without a CDM to 
conduct their studies, they recently launched an initiative to 
gradually transition their sites toward adopting a Sentinel-
like CDM [7].
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3.3 � Granularity of Shared Data

Once all sites have prepared their analytic datasets contain-
ing the necessary study variables for all eligible individuals 
in their databases, there are different ways in which these 
individual-level datasets may be used to perform the activity 
at hand. At one end of the spectrum, each site in the net-
work can share its individual-level dataset with the analysis 
center, which may also be a data-contributing site. Once 
the individual-level datasets have been pooled, the result 
is a single centralized dataset [3]. This process is distinct 
from a centralized data approach because only the final study 
datasets—not the underlying data sources from which they 
were curated—are shared, subject to each data partner hav-
ing approved the request and reviewed its final dataset before 
sharing. Although this approach requires the most granular 
level of data sharing (and is thus the least privacy protect-
ing), it offers the most analytic freedom, such that decisions 
about the methods used and how they are applied to the data 
can be based solely on the scientific needs of the study [76]. 
For example, if the analysis center felt it was best to fit a sep-
arate treatment nuisance model for each site but a global out-
come nuisance model across all sites, then this plan could be 
easily implemented. To minimize privacy and confidentiality 
concerns, the individual-level datasets are typically de-iden-
tified (e.g., by removing personal identifiers), and if desired, 
extra care can be taken to reduce their dimensionality (e.g., 
by combining individual variables into summary measures 
that contain essentially the same information using fewer 
variables) [3]. In addition, the ability to share de-identified 
individual-level data generally requires proper governance, 
appropriate data use agreements, and established collabora-
tive relationships between sites, leading to a shared sense 
of trust. Such elements are important pre-requisites that are 
necessary, though not always sufficient, to allow for sharing 
of individual-level data between entities [3].

At the other end of the spectrum, each site in the net-
work can share only summary-level data with the analysis 
center. Different types of summary-level data may be shared 
depending on the type of activity being performed, the meth-
odologic approach being used, and the degree of privacy 
protection desired. For example, when conducting causal 
inference activities while sharing only summary-level data, 
a stratified analysis can be implemented by having each site 
send aggregated counts of the total number of persons (or 
person-time) and outcomes in each treatment group per stra-
tum to the analysis center, essentially representing a coars-
ened version of the individual-level dataset [76]. Another 
approach is to use distributed regression, which produces 
identical results to a centralized outcome regression analy-
sis of individual-level data. Distributed regression can be 
implemented by having each site fit a local regression on 
its own data and share only intermediate model statistics 

(e.g., sums of squares and cross-products matrix) with the 
analysis center, which then calculates the global parameter 
estimates, and if necessary, sends them back to each site for 
additional processing to update the global parameters itera-
tively until a pre-specified convergence criterion is met [3]. 
A third possible approach, which offers the greatest amount 
of privacy protection, is to have each site conduct its own 
analysis and estimate a site-specific causal parameter esti-
mate that can then be pooled by the analysis center via a 
meta-analysis [76]. Regardless of the approach, when sites 
share only summary-level data, the analysis plan is typically 
more constrained because it must consider not only the sci-
entific needs of the study, but also the practical challenges 
of being unable to combine and process individual-level data 
from each site. In addition to sharing only individual-level 
or summary-level data, other data sharing combinations are 
also possible. For example, only some sites within a DDN 
may share individual-level data with the analysis center, or 
all sites may share individual-level data for some projects 
but only summary-level data for other projects.

Currently, DDNs that conduct pharmacoepidemiologic 
and pharmacovigilance studies are scattered across the spec-
trum of possibilities in Fig. 2. For example, data partners 
within PCORnet and HCSRN have been known to share de-
identified individual-level data for some studies, while data 
partners within Sentinel, CNODES, OHDSI, and EHDEN 
generally share only summary-level data.

4 � Challenges and Considerations

In this section, we combine our prior discussions and con-
sider how the opportunities for using ML in pharmacoepi-
demiologic and pharmacovigilance studies (discussed in 
Sect. 2) are affected by practical data-related factors for 
DDNs (discussed in Sect. 3). To guide the discussion, we 
consider four select scenarios, each with different charac-
teristics in terms of a DDN’s location along the spectrum 
of data-related factors (Table 1). For each scenario, we dis-
cuss unique challenges that arise for DDNs during the ML 
process, as well as possible approaches for addressing these 
challenges and issues for consideration. We also highlight 
efforts that real-world DDNs have taken to help mitigate 
these challenges, focusing largely on initiatives within the 
Sentinel System and OHDSI community, and we describe 
examples of select studies where ML has been used in DDNs 
(Table 2).

4.1 � Scenario 1: Base Case

We first consider a DDN located at the leftmost end of the 
spectrum for all three data-related factors in Fig. 2. In this 
scenario, all sites in the DDN utilize only structured data 
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from their source systems, these structured data populate a 
CDM containing all information needed to create the inputs 
for an activity, and all sites share their final de-identified 
individual-level datasets with the analysis center. We refer 
to this scenario as the “base case”, which also serves as the 
reference for Scenarios 2–4.

From a technical perspective, the base case represents 
the most simple and straightforward setting for applying 
ML in DDNs. In the data preparation stage, the use of only 
structured data greatly facilitates the creation of a CDM, 
and the use of inputs derived entirely from standardized 
fields within the CDM facilitates the feature engineering 
process and curation of datasets for ML. In the model fit-
ting stage, the ability to pool the site-specific datasets into a 
centralized dataset essentially allows the modeling process 
to proceed with the same flexibility as in a single database 
setting. Although DDNs under this scenario may still face 
technical challenges (e.g., missing data), the nature of these 
challenges will be comparable to those encountered in single 
database settings (albeit on a larger scale), and in theory, 
can be addressed using the same approaches as for single 
databases (e.g., imputation) [77].

From a scientific perspective, the base case still presents 
issues for consideration when applying ML because of het-
erogeneity that may exist between databases in a DDN. In 
other words, although it is technically possible to combine 
all the datasets and apply ML to the centralized dataset, 
should it be done? Heterogeneity between databases can 
exist for a variety of reasons, including differences in data 
encoding (e.g., data quality and coding practices) and con-
tent (e.g., available data elements and domains), as well as 
variations in patient characteristics and care. To help dis-
entangle true heterogeneity in patient populations and care 
from data quality problems, it is important that DDNs con-
duct regular and robust data quality assessments, ideally 
according to a systematic and conceptually based framework 
[78–81]. For example, to minimize data quality issues and 
errors that may arise during the CDM creation process, the 
Sentinel System requires that all extracts from their data 
partners first pass an extensive data quality review process 
[73, 82]. The OHDSI collaborators have also developed the 

Data Quality Dashboard [83], representing an open-source 
tool that performs a series of systematic data quality checks 
on databases mapped to the OMOP CDM to report potential 
data quality issues before these databases are used in mod-
eling activities [13]. To further identify and reduce poten-
tial heterogeneity in coding practices between data partners, 
the Sentinel System is currently exploring the use of novel 
code translation methods, which incorporate unsupervised 
learning and language translation methods, to generate data-
driven code mappings that could be used as a scalable and 
automated approach to help address idiosyncrasies in the 
coding process and harmonize medical codes across data-
bases [84, 85]. Such initiatives highlight the importance of 
preserving the original data values to the greatest extent pos-
sible when populating the CDM to maintain high fidelity and 
minimize information loss during the conversion process—a 
guiding principle of both the Sentinel and OMOP CDMs 
(the OMOP CDM both maps codes to a common vocabulary 
and retains the original source codes) [73, 86].

Ultimately, even if it is technically possible to cre-
ate a centralized dataset across sites, the most appropri-
ate approach for applying ML (e.g., analyzing the data all 
together or stratified by site) will depend on the purpose of 
the ML model and the extent of known or suspected het-
erogeneity across databases. In causal inference activities, 
as the prevalence of treatment and the impact of patient 
covariates on the probability of treatment often vary across 
databases, propensity scores are generally estimated using 
models that are stratified by database or flexible enough 
to allow for database-specific effects of covariates on the 
propensity score [76]. For example, in a multi-site study 
conducted within PCORnet [87], ML was used with the lat-
ter approach to calculate propensity scores for confounding 
control in assessing the comparative effectiveness and safety 
of different bariatric procedures (Table 2). In contrast, when 
estimating the outcome nuisance function in causal inference 
activities, it may be appropriate to fit a global model on all 
the data as it is reasonable to suspect that the impact of indi-
vidual risk factors on the probability of the outcome may be 
more stable across databases [76]. Fortunately, when sites 
are able to share their individual-level datasets, the analysis 

Table 1   Four select scenarios of distributed data networks

Scenario 1 represents the most simple and straightforward case for applying machine learning in distributed data networks. Scenarios 2–4 each 
deviate from the base case with respect to characteristics under one of the three practical data-related factors, as indicated in bold

Scenario Modality of source data Degree of data standardization Granularity of shared data

1 (base case) Structured data only Common data model for all inputs Individual-level data for all sites
2 (less standardized data available) Structured data only No common data model for some inputs Individual-level data for all sites
3 (more complex data modalities used) Structured and 

unstructured data
Common data model for all inputs Individual-level data for all sites

4 (less granular data shared) Structured data only Common data model for all inputs Summary-level data for all sites
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center has the freedom to experiment with various analytic 
options to better understand the potential influence of data-
base heterogeneity on the study findings and select the most 
appropriate approach for the task at hand.

4.2 � Scenario 2: Less Standardized Data Available

In this scenario, we consider a DDN with the same charac-
teristics as the base case, but instead of the CDM containing 
all information needed to create the study inputs, some infor-
mation of interest exists outside the CDM in the native (and 
thus unstandardized) structured data within data partners’ 
source systems. When using data-adaptive ML methods, this 
situation may be encountered frequently because it is often 
of interest to consider a wide range of features that may not 
all be measurable from existing fields in the CDM.

When information of interest exists outside the CDM, 
the unstandardized data across sites creates challenges 
during the feature engineering process. One approach for 
addressing this challenge is to standardize the unstandard-
ized information, which may be done by having sites create 
“data sidecars” for the study (i.e., tables containing addi-
tional data elements that can be linked to the primary tables 
in the CDM) [88] or by expanding the CDM itself to include 
new fields or tables. However, because these approaches are 
often costly and time consuming to implement, the antici-
pated benefits must be carefully weighed against the antici-
pated costs. For example, the HCSRN requires that any 
specification changes or table additions to its Virtual Data 
Warehouse CDM are first proposed by workgroups, then 
discussed by the Virtual Data Warehouse Implementation 
Group, and finally approved through a formal voting process 
[89]. Often, these efforts are only pursued if the informa-
tion of interest can be easily obtained (low effort), will be 
frequently used (high yield), or is urgently required (high 
demand). For example, to support public health efforts dur-
ing the COVID-19 pandemic, both PCORnet [90] and the 
Sentinel System [91] added new fields to their core CDMs 
to capture important information needed to better charac-
terize infected patients. In addition, the Sentinel System, 
as part of its 5-year strategy [6], is looking to expand its 
CDM (currently mostly claims based) to include additional 
fields containing more granular clinical information from 
structured data fields in EHRs (e.g., vital signs and body 
mass index)—an initiative that will broaden the range of 
stakeholder questions the Sentinel System can consider in 
future projects.

Another approach for handling unstandardized informa-
tion of interest outside the CDM is to allow sites to perform 
site-specific modeling with the additional (unstandard-
ized) variables. Sites can also compare their results with 
and without the additional variables to see if their inclusion 
produces any meaningful changes. In many cases, this less 

resource-intensive approach may be more practical if some 
sites do not contain the additional data elements of inter-
est and because when fitting data-adaptive ML models, it 
is often of interest to consider a large number of variables 
whose importance in the ML model, both individually and 
collectively, may be unknown during the feature engineering 
stage. Thus, it may not always be worth the extra resources 
to standardize additional variables unless one has strong rea-
son to believe that their inclusion will produce an important 
impact on the model performance and results.

4.3 � Scenario 3: More Complex Data Modalities Used

In this scenario, we again consider a DDN with the same 
characteristics as the base case, but instead of using only 
structured data from its data partners’ source systems, it also 
uses unstructured data. For the purposes of this discussion, 
we only consider the use of unstructured text (e.g., clinical 
notes), but the ideas discussed here similarly apply to other 
types of unstructured clinical data (e.g., medical images). 
The richer clinical information stored in unstructured text 
provides the opportunity to enhance the performance and 
value of using data-adaptive ML methods in DDN activities. 
However, the more complex requirements for handling and 
processing unstructured text also create challenges for ML 
during the feature engineering process. In essence, one can 
view these challenges as an extension of the challenges in 
Scenario 2, where in this case, the information of interest 
outside the CDM is unstructured text.

Similar to the second approach described in Scenario 2, 
one practical approach is for sites to perform a site-specific 
analysis, such that all processing and information extrac-
tion that happens on the unstructured text occurs outside 
the CDM according to a pre-defined protocol. The Sentinel 
System followed this approach in a series of pilot projects 
using structured and unstructured EHR data to create a phe-
notyping algorithm for anaphylaxis [92, 93], where the use 
of features derived from unstructured clinical text was found 
to improve the performance of the phenotyping algorithm 
compared with using features from structured data alone—a 
finding that persisted even when the phenotyping algorithm 
(developed at one Sentinel site) was transported to a second 
Sentinel site [94] (Table 2). This pilot project is now guiding 
the development of a general framework for using ML and 
NLP techniques to improve the Sentinel System’s capacity 
to identify health outcomes of interest for post-market safety 
assessments [95].

However, because of the desire to use unstructured text 
regularly in the activities of DDNs, there is also a strong 
interest among DDNs to find ways of formally incorporating 
unstructured text into the CDM. One approach is to store the 
entire raw text directly as a single field in the CDM (e.g., as a 
character string). This approach is simple to implement, has 
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high fidelity (i.e., minimizes information loss), and offers the 
most flexibility in how ML may be applied to the unstruc-
tured text in different activities (e.g., end-to-end vs pipeline 
approaches). However, it can also create unwieldy storage 
requirements, and for DDNs that normally allow for sharing 
of de-identified individual-level data, the highly sensitive 
nature of information stored in clinical text cannot be eas-
ily masked, thus creating significant privacy and confiden-
tiality concerns for both patients and institutions [96]. In 
addition, the raw text cannot be immediately analyzed and 
must still be further processed by NLP tools before it can be 
used in downstream activities or combined with structured 
data. Another approach for incorporating unstructured text 
into the CDM involves processing the information upfront, 
which typically requires using NLP tools to extract informa-
tion of interest from the raw clinical text (e.g., mentions and 
attributes of clinical concepts) and then encoding the output 
as structured data within the CDM (i.e., as a set of NLP-
derived fields). The clear advantage of this approach is that 
the raw text is stored as structured data in the CDM, which 
can be immediately used and more easily de-identified. 
However, this approach requires significantly more time and 
resources to implement, including a data management team 
with expertise in NLP methods, and is more susceptible to 
information loss or even misclassification depending on the 
quality of the NLP tools used. In addition, this approach 
requires foreseeing the eventual use cases of unstructured 
text in future projects to ensure that the appropriate informa-
tion and insights have been extracted at analysis time.

These two approaches for incorporating unstructured text 
into the CDM are not mutually exclusive, and one or both 
may be used. For example, the OMOP CDM includes two 
tables for unstructured text, one of which can store the origi-
nal content of a note and another that can store the encoded 
output after applying NLP, where each row in the table rep-
resents a single extracted term from a note [97]. To facilitate 
the use of open-source NLP tools on unstructured text stored 
in the OMOP CDM, the OHDSI NLP working group has 
created several wrappers for NLP tools such as cTAKES 
and MetaMap that can be used by the OHDSI community 
[98]. Other commercial NLP tools also exist that can be 
used with raw text stored in the OMOP CDM. For example, 
a Health Insurance Portability and Accountability Act-com-
pliant NLP service recently launched under Amazon Web 
Services, called Amazon Comprehend Medical [99], uses 
state-of-the-art deep learning models to extract clinical men-
tions and insights from unstructured text in the OMOP CDM 
and then writes the extracted insights back into the OMOP 
CDM using standardized ontological codes [100]. Although 
other DDNs such as the Sentinel System and PCORnet have 
not yet expanded their CDMs to include fields for unstruc-
tured text, they are actively pursuing efforts in this area and 
have funded several ongoing projects to explore scalable 

NLP processes for extracting clinical features from unstruc-
tured text and optimal approaches for incorporating these 
extracted insights into their CDMs to support future activi-
ties [101–103].

4.4 � Scenario 4: Less Granular Data Shared

In this last scenario, we consider a DDN with the same char-
acteristics as the base case, but rather than its data partners 
sharing individual-level data with the analysis center, the 
data partners share only summary-level data. Unlike Sce-
narios 2 and 3, where moving rightward along the spectrum 
created additional challenges for the feature engineering pro-
cess, moving rightward along the spectrum in this scenario 
creates additional challenges for the model fitting process. 
These challenges arise because although the DDN in theory 
has access to data from multiple data partners, the possible 
analytic options are constrained by the inability of its data 
partners to share individual-level data.

One simple approach for applying ML under these con-
straints is to have each site fit its own ML model. These 
site-specific models can be compared and contrasted, or 
in the case of causal inference activities, the final causal 
parameter estimates can be pooled via a meta-analysis. With 
this approach, the capacity to properly compare and contrast 
findings across sites is greatly facilitated by using stand-
ardized processes and common programs with the CDM. 
These measures allow for the ML analyses to be conducted 
in a timely, consistent, transparent, and reproducible man-
ner across multiple sites. For example, the OHDSI com-
munity has developed a standardized analytics pipeline 
[13] to guide its collaborators in developing and validating 
individual-level prediction models while making efforts to 
follow best practices [104] and limit potential causes of bias 
(e.g., by validating phenotypes, assessing data quality, and 
clearly specifying the target population). The entire analytics 
pipeline, from problem design to reliable model develop-
ment and evaluation, can be implemented using open-source 
tools and packages developed by OHDSI collaborators to 
facilitate its timely and consistent implementation.

As a variation on this approach, DDNs may train a ML 
model in one site and apply the final model in another site. 
In addition to being potentially more efficient (e.g., when 
a manual chart review is required to determine the pheno-
type status), this modified approach may be preferred when 
the sample size at some sites is too small or when one site 
has a substantially larger sample size than the others. This 
approach also allows for the evaluation of a model’s exter-
nal validity and transportability across sites (i.e., generaliz-
ability)—an important task that is greatly facilitated when 
both sites use a CDM and standardized programs [105]. 
For example, in an OHDSI study where ML was used to 
develop a prognostic model for hemorrhagic transformation 
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[106], the final model (developed in one US database) was 
externally validated in ten databases from three different 
continents and found to be fairly transportable (Table 2). 
However, this approach may not be suitable if the model 
outcome or important features in the model are not available 
at the new site [104]. In cases where the model outcome is 
not available at the new site, the ML model may instead be 
used to impute outcomes at the new site, where the valid-
ity of the imputed outcomes can be indirectly assessed by 
comparing the distribution of imputed outcomes with known 
population-level statistics. For example, in another OHDSI 
study using ML to predict cause of death [107], the final 
model was not only externally validated (using one of the 
databases containing cause-of-death information), but also 
used to impute cause of death in three databases where this 
information was not available (Table 2). Finally, as a further 
extension of approaches involving site-specific ML models, 
DDNs may even choose to have multiple sites each develop 
a ML model and then externally validate the site-specific 
models in each of the other sites, a rotating model develop-
ment-validation procedure coined “iterative pairwise exter-
nal validation” [108]. EHDEN collaborators recently used 
this approach to develop and externally validate a collec-
tion of site-specific prognostic models to predict the 1-year 
risk of heart failure in patients starting a second pharmaco-
therapy for the treatment of type 2 diabetes mellitus [108]. 
Across five database-specific models that were developed, 
three models were found to consistently achieve comparable 
performance when externally validated across the remaining 
four databases (Table 2).

The aforementioned approaches, however, still only use 
data from a single site to train a ML model and therefore 
do not harness the full potential of DDNs to use data from 
multiple sites to develop more generalizable and robust 
ML models. In contrast, federated learning is an approach 
that allows multiple sites to collaboratively train a global 
ML model in a decentralized manner, such that sites can 
learn together but without sharing their private individual-
level data [79]. Typically, this decentralized learning process 
occurs iteratively over multiple rounds, where at the start 
of each training round, sites start with the current version 
of the global model and use their local data to perform fur-
ther training, sharing only summary-level characteristics or 
updates (e.g., parameters or gradients) from their locally 
trained models with a central coordinating server or other 
sites in the network [96]. These local updates are then aggre-
gated and used to revise the global model, which is returned 
to sites for further training until the global model reaches 
the pre-specified convergence criteria. In this way, feder-
ated learning brings the model to the data, rather than the 
data to the model, and allows sites to protect their sensi-
tive data while still collaborate to build more accurate and 
robust ML models [96]. Though appealing, this approach 

is challenging to implement in practice for several reasons. 
First, coordinating the logistics of such a distributed learning 
protocol, including the back-and-forth exchange of informa-
tion during training iterations, can be a burdensome task. 
In addition, selecting the strategy with which to aggregate 
the model updates across sites requires careful attention and 
consideration, especially in the presence of heterogeneous 
(i.e., non-independent and non-identically distributed) data 
distributions, where a simple averaging of models across 
sites may not perform well [109, 110]. Finally, although 
sharing model parameters and gradients is more privacy 
protecting than sharing de-identified individual-level data 
(as in a centralized approach), it can still pose privacy risks 
owing to the amount of information that extremely flexible 
ML algorithms, such as deep learning models, can “memo-
rize” about the training data (“information leakage”) [96]. 
Additional measures such as differential privacy or learning 
from encrypted data can be used to further reduce the risk 
of information leakage, but they can also increase commu-
nication costs, training time, and reduce model performance 
[96, 111]. Such countermeasures may be neither desirable 
nor needed in the presence of proper governance and trusted 
collaborative relationships between data partners in a DDN. 
Despite these challenges, recent studies using federated 
learning with different ML architectures have shown that 
it is possible to achieve levels of performance comparable 
to models trained using a centralized approach [112] and 
better than locally trained models. For example, in a multi-
site study [113] using structured EHR data (e.g., labora-
tory data and vital signs) and chest X-ray images to predict 
the future oxygen requirements of symptomatic patients 
with COVID-19, the global federated deep learning model, 
trained using data from 20 clinical sites around the world, 
outperformed all local models that were trained at a single 
site using that site’s data (Table 2). Federated learning is still 
very much an emerging and active area of research that will 
continue to develop in the years to come [96], not only for 
predicting health outcomes, but also for estimating causal 
effects, which to our knowledge has not yet been extensively 
explored for doubly-robust causal estimation frameworks 
such as targeted maximum likelihood estimation [114] that 
are becoming increasingly popular in pharmacoepidemio-
logic research.

5 � Conclusions

Many opportunities exist for DDNs to use ML in pharma-
coepidemiologic and pharmacovigilance studies. From phe-
notyping activities to signal detection, causal inference, and 
forecasting activities, the use of data-adaptive ML methods 
offers the potential to more fully capitalize on the larger 
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amounts of electronic health data made accessible through 
the formation of DDNs.

However, the siloed storage and diverse nature of data-
bases in DDNs also create unique challenges and considera-
tions when applying ML. Many of these challenges stem 
from a DDN’s practical data-related characteristics in terms 
of the modality of source data used, the extent to which sites 
within a DDN standardize their source data, and the level 
of granularity with which sites in a DDN share their data. 
In this paper, we presented several scenarios of DDNs with 
different characteristics (i.e., locations along the spectrum) 
of these data-related factors, and in each case, discussed 
challenges that DDNs may face when during the ML pro-
cess. We also discussed possible approaches for addressing 
these challenges, including issues to consider and efforts that 
real-world DDNs have taken or are currently taking to help 
mitigate these challenges.

Ultimately, how a DDN chooses to implement ML and 
address challenges (e.g., whether and how to consider infor-
mation outside the CDM, whether to fit site-specific models 
or use a federated learning approach) will involve a bal-
ancing act across three constraints: performance, price, and 
privacy. Ideally, DDNs would be able to develop the most 
accurate, robust, and generalizable models (or in the case 
of causal inference activities, obtain the most precise and 
consistent estimates of causal parameters) for a reasonable 
price (in terms of cost, resources, and effort involved) while 
maintaining adequate privacy of the data at all sites. In prac-
tice, however, achieving this ideal is often impossible. Thus, 
choosing amongst different approaches for performing ML 
in DDNs usually involves making a trade-off between these 
constraints. These decisions may also be further influenced 
by additional considerations such as the degree of suspected 
heterogeneity between databases, number of observations at 
each site, and the objectives of the task at hand. For example, 
in phenotyping or forecasting activities where only sum-
mary-level data can be shared and the dataset at each site is 
sufficiently large, use of a federated learning approach may 
not yield significant gains over simpler approaches such as 
fitting site-specific models, and thus the additional cost and 
effort required to implement a federated learning approach 
may not be warranted. However, federated learning may be 
more justifiable when there are many sites, each with only 
a small number of observations that alone cannot support 
the training of more complex ML algorithms, such as deep 
learning models, that often require a large amount of train-
ing data.

The use of ML in DDNs also creates greater opportu-
nities or the impetus to address certain issues that often 
plague the use of ML in single-database settings. For exam-
ple, while ML models developed in single-site settings are 
rarely and slowly (e.g., over years) externally validated, the 
collaboration of multiple data partners using a CDM and 

standardized programs and code in DDNs greatly facilitates 
the ability to easily and quickly (e.g., in months) externally 
validate ML models and identify models with greater gen-
eralizability [105]. Machine learning models developed in 
single-site settings also often suffer from a lack of transpar-
ency in the model development process; in DDNs, however, 
issues of transparency and reproducibility must be directly 
addressed because of the need for multiple data partners to 
work together and process a common set of ML models. 
Finally, as researchers may observe unusual or heterogene-
ous outputs from ML models across data partners in a DDN, 
the impetus to interpret ML models and explain their outputs 
may be encountered more frequently in DDNs than in single-
site settings, as data partners work to recognize and rectify 
potential (unwanted) sources of heterogeneity, such as data 
errors and idiosyncrasies in coding and documentation prac-
tices across sites—a task that undoubtedly becomes more 
challenging with the use of more complex ML approaches. 
Taken together, by facilitating the development of more 
robust, generalizable, reproducible, and interpretable ML 
models, the use of ML in DDNs may increase the likelihood 
that the resulting models, and their outputs, can effectively 
enable or enhance decision making by clinicians, healthcare 
institutions, and regulatory bodies.

In conclusion, there is great potential, and great desire, to 
use ML in DDNs to enhance their activities in pharmacoepi-
demiology and pharmacovigilance. Indeed, the time is ripe 
for this emerging area of interest among DDNs because of 
not only the recent methodologic advancements in the field, 
but also the valuable groundwork that many DDNs have 
already laid through investments in harmonizing datasets to 
a CDM, developing standardized processes, tools, and ana-
lytics, and building collaborative relationships between data 
partners and with various stakeholders. The future holds 
much promise for the use of ML in DDNs, and we expect 
that the utility of these data-adaptive methods for enhancing 
pharmacoepidemiologic and pharmacovigilance studies will 
likely continue to increase in the years to come.
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