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Gene expression profile predictive of response to chemotherapy 
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ABSTRACT
Fluoropyrimidine-based chemotherapy (CT) has been the mainstay of care of 

metastatic colorectal cancer (mCRC) for years. Response rates are only observed, 
however, in about half of treated patients, and there are no reliable tools to 
prospectively identify patients more likely to benefit from therapy. The purpose of 
our study was to identify a gene expression profile predictive of CT response in mCRC. 
Whole genome expression analyses (Affymetrix GeneChip® HG-U133 Plus 2.0) were 
performed in fresh frozen tumor samples of 37 mCRC patients (training cohort). 
Differential gene expression profiles among the two study conditions (responders 
versus non-responders) were assessed using supervised class prediction algorithms. 
A set of 161 differentially expressed genes in responders (23 patients; 62%) versus 
non-responders (14 patients; 38%) was selected for further assessment and validation 
by RT-qPCR (TaqMan®Low Density Arrays (TLDA) 7900 HT Micro Fluidic Cards) in an 
independent multi-institutional cohort (53 mCRC patients). Seven of these genes 
were confirmed as significant predictors of response. Patients with a favorable 
predictive signature had significantly greater response rate (58% vs 13%, p = 0.024), 
progression-free survival (61% vs 13% at 1 year, HR = 0.32, p = 0.009) and overall 
survival (32 vs 16 months, HR = 0.21, p = 0.003) than patients with an unfavorable 
gene signature. This is the first study to validate a gene-expression profile predictive 
of response to CT in mCRC patients. Larger and prospective confirmatory studies are 
required, however, in order to successfully provide oncologists with adequate tools 
to optimize treatment selection in routine clinical practice.

INTRODUCTION

Colorectal cancer (CRC) is the third most common 
tumor in the world and is responsible for 8% of cancer 
related deaths [1]. Although prognosis has greatly 
improved over the past decades due to significant surgical 
and medical advances, once the tumor has progressed 
beyond surgical resectability the disease is essentially 

incurable. Several combination regimens including 
fluoropyrimidines and oxaliplatin and/or irinotecan, with 
or without monoclonal antibodies targeting VEGF or 
EGFR, remain the mainstay of care in metastatic CRC 
(mCRC). Response rates, however, are observed in only 
40–60% of the patients and median survival does not 
generally exceed 24 months [2, 3, 4]. As treatment options 
expand, the development of reliable tools to discriminate 
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patients likely to benefit from specific therapies remains 
a major clinical challenge. Indeed, with the exception 
of RAS mutations as predictors of resistance to EGFR-
targeted therapy, no validated biomarker to date has 
been able to assist clinicians in the selection of the most 
appropriate treatment regimen for a specific patient [5, 6].

Gene expression profiling has demonstrated great 
potential in cancer research, improving diagnostic, 
prognostic and predictive precision in several tumor 
types [7], including CRC [8]. Over the last two decades, 
different studies have proved that gene expression 
profiles are able to discriminate normal colonic tissue 
from benign adenomas and adenocarcinomas in different 
stages of tumor progression [9], or to stratify the risk of 
developing CRC of normal colonic tissue [10]. More 
recently, different gene signatures developed in early-stage 
CRC have shown to predict the risk of relapse in these 
patients [11–14], and some of them have demonstrated 
improved prognosis accuracy over conventional clinical 
and pathological features [15]. By contrast, however, the 
value of this technology to predict response to therapy 
has not been deeply investigated. Although a number of 
studies have successfully identified gene signatures able 
to predict sensitivity to different agents in CRC cell lines 
[16, 17], studies assessing the potential predictive role 
of gene profiling in patients with advanced disease are 
scarce [18–20]. Therefore, larger and validation studies 
are needed to generate reliable data capable to make the 
desirable transition to the clinic.

Our aim in this project was to generate a gene profile 
predictor of response to chemotherapy in patients with 
mCRC treated with fluoropyrimidine-based regimens. 
Whole genome expression analyses were performed 
in tumor samples of mCRC patients and differentially 
expressed genes were then validated by RT-qPCR in an 
independent cohort of mCRC patients.

RESULTS

Gene expression profile development (training 
cohort)

Whole human genome expression profiles were 
assessed in tumor samples of patients in the training cohort 
(N = 37) using Affymetrix U133 Plus 2.0 chips. All of the 
samples provided adequate RNA for microarray analysis. 
Supervised analysis identified 595 differentially expressed 
genes ( p < 0.05) in responders (23 patients; 62%) versus 
non-responders (14 patients; 38%) (Figure 1A). In 
addition, when supervised analyses were performed with 
PFS as a surrogate marker for response (Figure 1B), 
318 genes were identified to be differentially expressed 
in patients with long (> median PFS) versus short 
(≤ median PFS) PFS values. Among the top 250 genes 
with greater statistical significance (lower P values) in 
cluster analyses using objective response to chemotherapy 

as the primary outcome measure, a set of 161 genes were 
selected for further validation by RT-qPCR based on the 
greater magnitude of their fold-change values, the degree 
of concordance for both outcome measures (objective 
response and PFS), and their biological relevance in CRC. 
A detailed list of the 161 selected genes is depicted in 
supplementary Table S3.

Validation of the gene signature predictive of 
response to chemotherapy in mCRC patients

Selected genes were assessed by Taqman-based 
RT-qPCR in tumor samples of the validation multi-
institutional cohort of mCRC patients. As depicted in 
Table 1, 7 of these genes were validated to be differentially 
expressed among patients that achieved an objective 
response to chemotherapy (R: CR + PR) versus those that 
did not (NR: SD + PD) using the Statminer® software v.4.2 
(adjusted p values < 0.05): DCK, DNAJC3, NAV1, NIPBL, 
PALM2, VSNL1 and WSHC1L1.

Risk score according to the 7-gene signature

Following independent validation of the 7 genes, a 
risk score was developed to classify each patient as high 
score or favorable predictive signature, if they had favorable 
gene expression levels in at least 4 of the 7 genes in the 
signature, or low score or unfavorable predictive signature, 
if they had favorable gene expression levels in ≤ 3 of the 7 
genes in the signature. Patients with a favorable predictive 
signature had a significantly greater response rate (58% vs 
13%, p = 0.024) and PFS (61% vs 13% at 1 year, HR = 
0.32, p = 0.009) than patients with an unfavorable predictive 
signature. Overall survival was also significantly longer for 
patients with high versus low score signatures (32 vs 16 
months, HR = 0.21, p = 0.003). Figure 2 illustrates PFS and 
OS of patients according to the 7-gene score.

Biological and molecular function of validated 
predictive genes

According to the GeneOntology [21] classification, 
these genes are involved in the following biological functions 
or molecular pathways: control of cell shape or adhesion 
(PALM2), transcription regulation (WSHC1L1), stem cell 
maintenance (NIPBL), chaperone binding (DNAJC3), 
nucleotide and folic acid metabolism (DCK), microtubule 
bindle formation (NAV1), and ion transport and binding 
(VSNL1). Detailed description of genes and the functional 
classes to which they belong is outlined in Table 2.

DISCUSSION

In this study we developed a gene expression profile 
able to predict treatment response in mCRC patients treated 
with fluoropyrimidine-based standard chemotherapy 
regimens. Seven genes were independently validated to 
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Figure 1: (A) Supervised hierarchical cluster analysis showing differentially expressed genes in patients achieving an 
objective response to chemotherapy (Yes: CR or PR; blue) versus patients non-responding to chemotherapy (No: SD 
or PD; red). Genes in red indicate overexpression; those in green indicate underexpression. (B) Supervised hierarchical cluster analysis 
showing differentially expressed genes in patients achieving a progression free survival (PFS) higher than the median of PFS (Yes; blue) 
versus patients with a PFS lower than the median (No; red). Genes in red indicate overexpression; those in green indicate underexpression.
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be significantly overexpressed in patients achieving an 
objective response to chemotherapy. A risk score was 
developed with these 7 genes that was able to prospectively 
discriminate those patients most likely to benefit from 
therapy. Indeed, patients with a favorable predictive 
signature (favorable gene expression levels in at least 4 
of the 7 genes in the signature) had a significantly greater 
response rate (58% vs 13%, p = 0.024), PFS (61% vs 13% 
at 1 year, HR = 0.32, p = 0.009) and OS (32 vs 16 months, 

HR = 0.21, p = 0.003) than patients with an unfavorable 
predictive signature. This is to our knowledge the first 
study to validate a gene-expression profile predictive of 
response to chemotherapy in advanced colorectal patients.

Many attempts have been made over the past decades 
to identify molecular markers predictive of response 
to chemotherapy in the context of CRC. Altered gene 
or protein expression of a number of genes have been 
associated with drug cytotoxicity, including thymidylate 

Table 1: Differentially expressed genes by chemotherapy response in patients with metastatic 
colorectal carcinoma according to real-time PCR analysis
Gene Gen ID R vs NR(-ΔΔCt) Adjusted P-values* Fold-change

DCK 1633 1.300 0.035 2.46

DNAJC3 5611 1.621 0.008 3.08

NAV1 89796 1.231 0.035 2.35

NIPBL 25836 1.310 0.035 2.48

PALM2 445815 1.237 0.040 2.36

VSNL1 7447 1.552 0.009 2.93

WHSC1L1 54904 1.249 0.358 2.38

Patients treated with chemotherapy were stratified into one of two groups: 1) chemotherapy responders (R), including 
patients with complete response or partial response or 2) chemotherapy non-responders (NR), including patients with stable 
disease or progressive disease, according to RECIST 1.1 criteria.
*The resulting p-values were adjusted for multiple testing by Benjamini-Hochberg adjustment.
Gene ID: Genbank accession number.

Figure 2: Progression free survival (PFS) and overall survival (OS) of patients according to the 7-gene score predictive 
of response to chemotherapy. The solid black line represents patients with high score or favorable predictive signature: those with 
favorable gene expression levels (above the median) in ≥ 4 genes of the signature. The dashed black-line represents patients with low score 
or unfavorable predictive signature: those with favorable gene expression levels in ≤ 3 genes of the signature.



Oncotarget6155www.impactjournals.com/oncotarget

synthase, dihydropyrimidine dehydrogenase or thymidine 
phosphorylase for 5FU, topoisomerase I for irinotecan, 
or excision repair cross-complementing 1 (ERCC1) for 
oxaliplatin. However, none of these putative markers have 
been implemented in clinical practice due to their poor 
prediction accuracy and also to the lack of reproducibility 
across different studies and patient populations. These 
discrepancies are not unexpected, as sensitivity to treatment 
is a complex issue dependent on many individual and tumor 
factors, that ultimately determine, among other critical 
issues, drug disposition and pharmacodynamic effects on 
normal and malignant cells, as well as cell response to 
drug damage. The common use of multiple-drug regimens 
further complicates this scenario. In this context, multiple-
gene signatures are likely to improve prediction accuracy 
over single marker genes [8, 15, 16]. However, and in spite 
of the undeniable success of several microarray-based 
prognostic gene signatures, currently being validated in 
prospective clinical trials [22–26] (i.e. Mammaprint and 
Oncotype DX in breast cancer, or Coloprint in CRC), 
predictive genomics remain a challenge.

Our study validated several predictive genes 
implicated in key cellular pathways and also some genes 
with molecular functions potentially related to chemotherapy 
response. Deoxycytidine kinase (DCK) is required for the 
phosphorylation of several deoxyribonucleosides and their 

nucleoside analogs, which are widely used as antiviral and 
anticancer agents (i.e. cytarabine, gemcitabine). Increased 
DCK activity is associated with increased activation of these 
compounds to cytotoxic nucleoside triphosphate derivatives, 
and DCK deficiency correlated with resistance to these 
agents in a panel of hematologic and solid cell lines in vitro, 
and also in some human tumors [27]. VSNL1 is a member 
of the visinin/recoverin subfamily of neuronal calcium 
sensor proteins, mainly expressed in the central nervous 
system, that modulate intracellular signaling pathways 
by regulating the activity of adenyl cyclase. Upregulation 
of VSNL1 potentiated the anoikis-resistant ability of 
neuroblastoma tumor cells and enhanced neuroblastoma 
cell invasiveness and metastasis [28]. Some authors have 
also suggested VSNL1 may play an important role in 
the invasive phenotype of CRC, and may also influence 
sensitivity to cytotoxic agents active in this disease, such 
as campthotecins [29]. Indeed, VSNL1 overexpression 
was associated with a higher risk of lymphatic invasion 
and a poorer prognosis in a series of patients with early 
stage CRC [30], and downregulation of this gene was 
observed in camptothecin-resistant gastric cancer cell lines 
[29]. Finally, PALM2 has been reported to be upregulated 
in responder CRC tumors to MS-275, a selective histone 
deacetylase inhibitor that disturbs cell adhesion, response 
to extracellular stimuli and transcription cellular processes 

Table 2: Gene profile that predicts response to chemotherapy in mCRC patients
Probe Set
Identification

Gene 
Symbol

Official Name Gene ID GO Biological Processes (BP)
and Molecular Function (MF) Description

203302_at DCK deoxycytidine kinase 1633 BP: Nucleotide metabolism
MF: Deoxycytidine kinase activity, ATP binding

208499_s_at DNAJC3 DnaJ (Hsp40) homolog, 
subfamily C, member 3 

5611 BP: Defense response to virus, catabolic process
MF: chaperone binding, misfolded protein binding, 
protein kinase inhibitor

224771_at NAV1 neuron navigator 1 89796 BP: neuron migration, microtubule bindle formation
MF: nucleotide binding

242352_at NIPBL Nipped-B homolog 25836 BP: embryonal development, stem cell maintenance, 
response to DNA damage stimulus, negative 
regulation of transcription DNA dependent, positive 
regulation of hystone deacetylation
MF: chromatin binding, hystone deacetylase 
binding, mediator complex binding, protein binding 
(C-terminus and N-terminus)

202760_s_at PALM2 PALM2-AKAP2 
readthrough

445815 BP: regulation of cell shape

203798_s_at VSNL1 visinin-like 1 7447 MF: calcium ion binding

222544_s_at WHSC1L1 Wolf-Hirschhorn 
syndrome candidate 

1-like 1

54904 BP: cell differentiation and growth, histone lysine 
methylation, regulation of transcription DNA 
dependent
MF: histone-lysine N-methyltransferase activity, 
zinc ion binding
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[31]. However, the function of the putative protein product 
of PALM2-AKAP2, a naturally occurring cotranscribed 
mRNA, remains to be elucidated.

While gene expression profiling has been widely 
applied to CRC for diagnosis, classification and prognosis, 
studies evaluating its potential role to predict response to 
medical therapy are still scarce. Indeed, most available 
data to date derive from preclinical studies. Mariadason 
and colleagues demonstrated the ability of gene profiling 
to predict 5FU- and irinotecan-induced apoptosis in a panel 
of 30 CRC cell lines [16], and, importantly, they showed 
how this approach predicted response more accurately than 
4 previously established determinants of 5FU response: 
thymidylate synthase, thymidine phosphorylase, mismatch 
repair status and p53 mutation [16]. Other investigators 
have also reported gene signatures predictive of 5FU or 
oxaliplatin sensitivity in vitro [17]. However, very few 
studies have assessed the predictive role of gene profiling 
in the clinical setting (i.e. patients with advanced CRC) 
[18, 19]. Del Rio et al identified 14 genes predictive of 
response to FOLFIRI (5-FU, leucovorin and irinotecan) in 
a series of 21 patients with mCRC [18], whereas Watanabe 
et al reported a 27-gene prediction model of response 
to FOLFOX (5-FU, leucovorin and oxaliplatin) in 40 
mCRC patients [19]. Of note, none of these small studies 
attempted to validate the observed results by alternative 
techniques or in independent patient cohorts. In our study, 
by contrast, genes identified by whole genome expression 
analyses to predict response to chemotherapy were further 
assessed by RT-qPCR in an independent multi-institutional 
validation cohort. Although direct comparison of genes 
from predictive signatures reported by Del Rio, Watanabe 
and our group shows no overlap, common signaling 
networks were identified to play a relevant role in this 
context according to the Gene Ontology classification, 
including cell growth and proliferation, angiogenesis, 
cell adhesion, immune response and ion/protein transport 
and binding. A number of reasons may partially explain 
the lack of consistent results across studies, including 
heterogeneity in patient characteristics and treatment 
regimens, study design (prospective versus retrospective), 
source of predictive tissue, tissue collection procedures, 
platform used, and statistical and analytical methods. The 
lack of a control population and of independent validation 
in a larger cohort of patients is also a major pending issue 
before this promising tool may be used by oncologists to 
tailor patient treatment. Our group is currently undergoing 
a prospective study to validate these findings in paraffin-
embedded tissue.

In conclusion, our study identified a 7-gene profile 
predictive of response to fluoropyrimidine-based chemo-
therapy in mCRC. This is to our knowledge the first 
validated predictive profile in advanced colorectal cancer 
patients. Functional classification of these genes revealed 
their implication in key pathways of CRC biology, as 
well as in molecular processes potentially linked to drug 

sensitivity. As treatment options in CRC continue to expand, 
the development of predictive signatures shall become 
invaluable tools to assist clinicians to appropriately select the 
most effective therapy in each patient and also in providing 
new clues regarding key molecular pathways involved in 
drug response. Larger and prospective confirmatory studies 
are required, however, in order to successfully implement 
predictive gene-signatures in clinical practice.

METHODS

Patients and tumor samples

From 2008 to 2010, patients that met the following 
inclusion criteria were selected for the present study: 
1) histologically confirmed diagnosis of primary CRC; 
2) TNM stage IV [32]; 3) treatment with at least one 
fluoropyrimidine-based chemotherapy regimen for 
advanced disease; 4) evaluable for response according 
to RECIST criteria [33]; 5) adequate tissue specimen 
available for molecular assays (snap-frozen at –80°C 
with a proportion of tumor cells > 50%). Follow-up was 
performed in all centers as per ESMO guidelines [34], 
including a CT scan for response assessment every 8 to 
12 weeks in the absence of clinical deterioration or any 
other clinical suspicion of disease progression. The study 
protocol was approved by the institutional review boards 
of participating centers and written consent was provided 
by all included patients.

Whole genome expression analysis was performed 
in a training cohort of CRC samples (N = 37) collected at 
the Hospital Marqués de Valdecilla, Santander, Spain. The 
gene profile was validated by RT-qPCR in an independent 
multi-institutional cohort that included 53 tumor samples 
collected at three Spanish hospitals (Hospital Virgen del 
Rocio (Seville), Hospital Virgen de la Victoria (Malaga) 
and Hospital de la Merced (Osuna)). Main characteristics 
of the study population are summarized in supplementary 
Tables S1 and S2, and are representative of a standard 
metastatic CRC population. Distribution of clinical and 
pathological features in the training and validation cohorts 
did not differ significantly.

RNA isolation and processing

All tissue samples were preserved at –80°C until 
RNA extraction and processing. Sample homogenization 
was achieved using QIAshredder homogenizers and total 
RNA was extracted using RNeasy Mini kit (both kits from 
Qiagen Inc; Valencia, CA, USA).

Microarray gene expression assays

Microarray gene expression assays were performed 
for each of the 37 samples using Human Whole Genome 
U133 Plus 2.0 array (Affymetrix Inc, Santa Clara, 
CA) based on manufacturer’s instructions. Following 
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hybridization, arrays were scanned using a GC3000 laser 
confocal scanner (Affymetrix), and microarray image 
data were analyzed by GeneChip Operating Software 
(GCOS 1.4 Affymetrix). Microarray raw data tables have 
been deposited at the National Center for Biotechnology 
Information Gene Expression Omnibus (accession number 
GSE52735).

Validation of differentially expressed genes by 
RT-qPCR

Custom-designed TaqMan® Low Density Arrays 
(TLDA) 7900 HT Micro Fluidic Cards including the 161 
genes selected for validation were run and analyzed by the 
ABI PRISM® 7900HT Sequence Detection System (SDS 
2.2, Applied Biosystems) according to manufacturer’s 
protocol.

Statistical analysis

Clinical variables

Descriptive statistics were used to characterize 
the most relevant clinical parameters. The association of 
categorical variables was explored by the chi-squared test 
or Fisher’s exact test. To assess distribution of continuous 
variables among study groups, parametric (t-test) or 
non-parametric tests (Kruskal-Wallis or Mann-Whitney 
tests) were used when appropriate. Tumor response was 
evaluated according to the standard RECIST 1.0 criteria 
[33] to categorize patients as responders ([R]: complete 
response [CR] + partial response [PR]) or non-responders 
([NR]: stable disease [SD] + progression disease [PD]). 
Progression Free Survival (PFS) was defined as the time 
elapsed from the date of initiation of first-line chemotherapy 
to the date of the first documented evidence of disease 
progression. Overall survival (OS) was calculated from the 
start of therapy for advanced disease to the date of death 
from any cause. Survival curves were estimated by the 
Kaplan-Meier method, and survival differences among 
groups were assessed by the log-rank test. p < 0.05 was 
considered significant. All analyses were performed using 
the Statistical Package for the Social Sciences software 
(SPSS 18.0 for Windows; SPSS Inc, Chicago, IL).

Microarrays

Partek Genomics Suite v7.3.1 (Partek Inc.; St. 
Louis, MO, USA) was used for statistical analysis. 
Array quality was assessed using the parameters P call 
%, Array outlier and Normalized Unscaled Standard 
Error (NUSE). Subsequently, data were pre-processed by 
the RMA (Robust Multichip Average) method. A linear 
regression model using PCA (principal components 
analysis) and clustering techniques was done to identify 
differential gene expression profiles among the two study 
conditions (responders versus non-responders to  first-line 

chemotherapy for mCRC). As a surrogate marker of 
chemotherapy response, supervised analysis were also 
performed to assess differential expression among patients 
with long versus short progression-free survival (above 
versus below the median, respectively).

qRT-PCR analysis

Cycle threshold (Ct) values were calculated using the 
SDS software v.2.3 (Applied Biosystems) using automatic 
baseline settings and a threshold of 0.2. GAPDH was used 
as endogenous control. Data are presented as target gene 
expression = 2-ΔCt, with ΔCt = (target gene Ct-GAPDH Ct). 
Gene expression was computed by real-time Statminer® 
software v.4.2 (Intergromics, Inc), using the Benjamini-
Hochberg algorithm [35] with the FDR set at a value of 
5%. Gene expression had to be detected in at least 50% of 
samples in each study group in order to be considered for 
analysis. PCR GEO accession number GSE52513.
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