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Somatic mutation signatures may represent footprints of genetic and environmental exposures that cause different cancer. Few

studies have comprehensively examined their association with germline variants, and none in an indigenous African population.

SomaticSignatures was employed to extract mutation signatures based on whole-genome or whole-exome sequencing data from

female patients with breast cancer (TCGA, training set, n = 1,011; Nigerian samples, validation set, n = 170), and to estimate

contributions of signatures in each sample. Association between somatic signatures and common single nucleotide polymorphisms

(SNPs) or rare deleterious variants were examined using linear regression. Nine stable signatures were inferred, and four signatures

(APOBEC C>T, APOBEC C>G, aging and homologous recombination deficiency) were highly similar to known COSMIC signatures and

explained the majority (60–85%) of signature contributions. There were significant heritable components associated with APOBEC

C>T signature (h2 = 0.575, p = 0.010) and the combined APOBEC signatures (h2 = 0.432, p = 0.042). In TCGA dataset, seven common

SNPs within or near GNB5 were significantly associated with an increased proportion (beta = 0.33, 95% CI = 0.21–0.45) of APOBEC

signature contribution at genome-wide significance, while rare germline mutations inMTCL1 was also significantly associated with a

higher contribution of this signature (p = 6.1 × 10−6). This is the first study to identify associations between germline variants and

mutational patterns in breast cancer across diverse populations and geography. The findings provide evidence to substantiate causal

links between germline genetic risk variants and carcinogenesis.

What’s new?
Women of African ancestry are more likely to be diagnosed with clinically aggressive breast cancer than women of European or

Asian ancestry. Here, the authors examined associations between germline variants and mutational signatures in breast

cancers across different ethnicities, especially in a unique sample set of indigenous African women. They identified four stable

mutational signatures that explained the majority of tumor mutations, leading to a better understanding of the complex

interplay between germline genetics and somatic mutations across different ethnicities.

Introduction
Somatic mutation signatures act as the physiological readout of
the biological history of a cancer, and provide a new bridge to
connect cancer mutation to both exogenous and endogenous
risk factors.1–3 Many signatures have been reported to be attrib-
utable to specific environmental or lifestyle mutagens.4 However,
somatic mutations could also be influenced by heritable factors,5

and endogenous factors that influence cancer far more than pre-
viously considered.6,7 A few studies have examined the interplay
between germline genetics and somatic mutations in carcino-
genesis with signals identified for germline variants in RAD51B,8

MC1R,9 APOBEC3 regions10–12 and DNA mismatch repair
genes in different types of cancers.13 In addition, a few genes
driven by rare deleterious variants were reported to be signifi-
cant, which include: polymerase epsilon, catalytic subunit
(POLE) gene associated with the Catalog of Somatic Mutation
in Cancer (COSMIC) signature 10 in colorectal and endometrial
carcinomas;1 homologous recombination deficiency (HRD)
genes PALB2 and BRCA1/2 associated with HRD signature in
various cancers;14,15 and nucleotide excision repair (NER) genes
associated with COSMiC signature 5 in urothelial tumors.16 The
existing studies offered some evidences to the largely unexplored
relationships between germline and somatic mutations.10,17–19

The burden and severity of breast cancer vary widely across
populations. Women of African ancestry are more likely to be
diagnosed with clinically aggressive disease and have a higher mor-
tality rate than age-matched women of European or Asian

ancestry.20 Emerging data from The Cancer Genome Atlas
(TCGA) has identified mutation signatures that show differences
across ancestry groups.21,22 These studies suggest modest differ-
ences between African and non-African ancestry groups but these
datasets have relatively small number of women of African ances-
try.23 To examine the association between common genetic vari-
ants, rare deleterious mutations and the contribution of mutational
signatures across diverse populations, we used TCGA as the train-
ing set, and examined the whole-genome sequencing (WGS) and
whole-exome sequencing (WES) from Nigeria as the validation set.
We tested the hypothesis that biologically relevant germline vari-
ants associated with somatic mutation signatures in women of
non-African ancestry would be validated in women of African
ancestry as well.

Methods
Ethics statement
Our study was embedded within the Nigerian Breast Cancer
Study (NBCS) and approved by the Institutional Review Board of
all participating institutions. Informed consent has been obtained
from the participants.

Training dataset
A total of 1,037 breast cancer patients from TCGA were used as
the training set. Demographics of participants, including clinical
characteristics across ethnicity are summarized in Supporting
Information Table S1. Somatic mutation data (single nucleotide
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variants [SNVs]) were generated as previously described.22 We
included 1,035 WES and 84 WGS, and 82 patients owned both
WGS andWES data in this analysis.

Common germline variants from genotyping array. Affymetrix
Genome-Wide Human SNP 6.0 Array data for 2,270 breast can-
cer samples were downloaded from TCGA on November 6, 2015.
A total of 1,134 samples were excluded for different reasons (12:
missing ID; 1,110: solid tumor tissue; 12: male patients). Among
the remaining 1,136 female samples (1,087 unique patients), we
excluded samples for 33 more patients due to genotyping missing
rate ≥5%, and worked with samples for 1,054 patients. Of the
906,600 single nucleotide polymorphisms (SNPs) included in the
microarray data, 1,466 SNPs were excluded for lacking chromo-
some information or mapping to Y chromosome and 47,140
SNPs were removed due to genotyping missing rate ≥5% or being
monomorphic, and 857,994 SNPs remained.

Genetic ancestry of TCGA patients was estimated using
principal component analysis (PCA).21 According to the esti-
mated proportion of ancestry, patients were grouped into
genomic Black (≥50% African ancestry), genomic White
(≥90% European ancestry) and genomic Asian (≥90% Asian
ancestry) as previously described.21

Genotype imputation was done using IMPUTE2 software
with the 1,000 Genomes Project phase 3 integrated variant set
as the reference panel.24 A total of 81,232,799 SNPs within
autosomes were imputed, and 24,570,114 SNPs were kept
after excluding singletons or SNPs with an imputation infor-
mation score <0.7.

Rare deleterious variants from germline exomes. Using the
Platypus (https://www.well.ox.ac.uk/research/research-groups/
lunter-group/softwares/platypus-a-haplotype-based-variant-
caller-for-next-generation-sequence-data) in single-sample
mode, variants within exonic regions were called as described
previously.22 Briefly, variants were considered rare and deleteri-
ous if (i) they had an allele frequency <0.05 in The Exome
Aggregation Consortium (ExAC)25 and across TCGA blood
germline exomes from various cancer types,22 and (ii) they
were predicted by variant effect predictor (VEP) to have “HIGH”
impact, cause protein loss-of-function (stop-gain, frameshift inser-
tion and deletion [indel], etc.), or were missense mutations with a
combined annotation dependent depletion (CADD)26 score >25.
Only blood germline exomes were included. Additionally, variants
were required to fall within consensus coding sequence (CCDS, ver-
sion 17) exonic regions to be carried downstream. In total, 132,186
rare deleterious variants were found within 11,718 genes in
968 samples, of which 2,933 genes had only one mutation and
6,560 genes (56.0%) had less than five counts of rare coding delete-
rious variants among these samples. We therefore only focused on
genes with at least five mutations (n = 5,158) in the downstream
analyses. The Bonferroni corrected alpha levels for significance was
9.69 × 10−6.

Validation dataset
A total of 172 women with breast cancer from Nigeria were evalu-
ated. All Nigerian patients were assumed to be 100% African with
little to no admixture with other populations.27 These
patients were younger and had more aggressive subtypes of
breast cancer with higher proportion of estrogen receptor
negative (ER−), progesterone receptor negative (PR−),
human epidermal growth factor receptor 2 negative (HER2−;
triple-negative) subtypes. Characteristics of the Nigerian
dataset were previously described.22

Common and rare genetic variants. Hundred breast tumor
samples for WGS and 129 breast tumor samples for WES from
172 unique patients were processed for this analysis. Two WGS
samples were excluded as outliers because their mutation counts
were <100. Fifty-seven patients had both WGS and WES. For the
common SNP analysis, 98 WGS samples were involved, while
170 samples (129 WES, 41 WGS) were included for rare variants
analysis. Rare coding deleterious variants were called as described
above. In total, 22,035 rare coding deleterious variants were found
within 5,439 genes in 170 samples, of which 2,196 genes had only
one mutation among these samples and 3,876 genes (71.3%) had
less than five rare coding deleterious counts. A total of 1,563
genes were included in the final analysis.

Mutation signature calling and comparison with reported
signatures
Mutational signature calling. Somatic SNVs were called as
described previously.22 Briefly, in order to be utilized in down-
stream analyses, SNVs needed to be called by both MuTect (https://
software.broadinstitute.org/cancer/cga/mutect) and Strelka (https://
github.com/Illumina/strelka) as well as be absent within a normal
panel of exomes (n = 1,088) and genomes (n = 124) derived from
blood. We employed a nonnegative matrix factorization (NMF)
approach using SomaticSignatures28 to extract somatic mutational
signatures and estimate their contributions to each sample.

The ability to reliably call mutation signatures depends on
having sufficient number of mutations per sample. To this point,
we used all high-quality somatic exome SNVs, regardless of their
position in the coding or noncoding region. A pilot study was
conducted to compare the stability of signatures among different
number of minimum SNVs (24, 48, 72 and 96, data not shown),
and found that a cut point of 24 is sufficient. This is consistent
with recent finding that 20 mutations gave an average classifica-
tion accuracy of 80% across signatures.29 Any sample containing
at least 24 SNVs was included for downstream assessment in
order to enlarge the sample size as much as possible.

In order to obtain more stable signature estimates and ensure
comparability between the training and validation sets, we com-
bined both datasets to call the signatures, including 84 WGS sam-
ples and 1,008 WES samples from TCGA as well as 98 WGS
samples and 129 WES samples from Nigeria. For samples with
bothWGS andWES, both data types were included.
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We first used the nonnegative matrix factorization without
normalization to obtain the mutation matrix as described by
Alexandrov et al.,4 then calculated the percentage contribu-
tions of signatures for each sample by normalizing to the
number of mutations of each sample. For subsequent analyses,
we used the percentage of mutations assigned to each signa-
ture (contribution) rather than the total number of mutations
attributed to a signature.30 The sum of mutation signatures’
contribution is 1. This distinction is important as high
APOBEC contribution, for example, do not necessarily imply
APOBEC hypermutation.

Nine signatures were retained at the end for further down-
stream analyses because nine signatures explained approximately
99% of variance in the current sample. For all nine signatures, we
examined the correlation of contributions between exomes and
genomes using 138 individuals who had bothWES andWGS data
using intraclass correlation coefficient (rho). Each signature’s con-
tribution was simultaneously called for WGS samples and WES
samples for those 138 individuals. Signatures A1 (rho = 0.938), A2
(rho = 0.912) and A9 (rho = 0.866) all exhibited strong correla-
tion). APOBEC C>T (Signature A1) and C>G (Signature A2)
contributions were correlated (r = 0.43). We only focused on sta-
ble signatures betweenWGS andWES in order to reliably leverage
all available WES samples.

Comparison with reported signatures. We compared our
mutation signature matrices with the 30 previously reported sig-
natures operative across a variety of cancer types downloaded
from the COSMIC. Mean Kullback–Leibler Divergence was
applied to evaluate the similarity between our signatures and
those from COSMIC:31

KL P,Qð Þ= 1
2

X96
i = 1

Pi ln
Pi

Qi
+
X96
i = 1

Qi ln
Qi

Pi

 !
:

P and Q are the distributions matrixes for our signatures and
those from COSMIC, respectively. The smaller Kullback–
Leibler Divergence is, the better the similarity. A similarity of
0.00 is an exact match. With this approach, we determined
the best representative known COSMIC signature for each of
the signature we identified, and named with the name from
canonical COSMIC signature they most closely resemble. Two
signatures A5 and A7 did not match any canonical COSMIC
signature.

Statistical analysis
Signature contributions by demographic and clinical
characteristics. We compared contribution of the selected signa-
tures among categorical variables, including ancestry (Black, White,
Nigerian) and hormone receptor (HR)/HER2 status (HER2+, HR+
/HER2− andHR−/HER2−), usingMann–WhitneyU test.

Heritability estimation of mutation signatures using

GCTA. We used GCTA to calculate the pairwise genetic

relationship between individuals and created the genetic rela-
tionship matrix (GRM).32 We used a GRM cut-off value of
0.05,33 which excludes relationships that are approximately
closer than second cousins. This removed around 77 samples
in the TCGA dataset. All the heritability estimation analyses
control for first 10 eigenvectors from PCA. We then estimated
PCA-adjusted heritability of each phenotype (signature contri-
bution) by the restricted maximum likelihood method in
GCTA. Power analysis (http://cnsgenomics.com/shiny/
gctaPower/) indicated a 99% chance of detecting a SNP-based
heritability estimate (h2) of 0.15 in the TCGA cohort.34

The heritability was not calculated for Nigeria samples due
to limited sample size. In the training dataset, among 24,570,114
SNPs, 1,573,566 were removed due to missing genotype data
(missing proportion >5%), 5,301,200 variants were removed due
to minor allele frequency (MAF) <0.001, and 188,864 variants
were removed due to deviation from the Hardy–Weinberg equi-
librium (HWE). The remaining 17,506,484 SNPs were used for
downstream analyses. Among 1,054 samples with SNP chip
data, 178 samples were removed due to missing genotype data
(cut-off point as 1%), 77 were removed when pruning the GRM
(relatedness <0.05) and 66 samples were excluded due to miss-
ing mutation signature. In the end, 733 samples were included
in the model.

Association of common SNPs with signature contribution. For
TCGA, we analyzed 7,177,790 common SNPs with MAF
≥0.05. The single-SNP association tests with signature contri-
bution were conducted using linear regression as implemented
in SNPtest,35 with adjustment for age and the eigenvectors
from PCA. For the validation data, on the other hand, we only
adjusted for age given that we do not anticipate any admixture
with other ethnic. We applied genome-wide association study
(GWAS) threshold (p = 5 × 10−8) as our cut-off point in the
discovery stage. We also filtered the association results of the
GWAS-identified risk SNPs by its location within the autoso-
mal regions to check their role in the signature contributions.
All SNPs included were previously reported to be associated
with breast cancer risk (https://www.ebi.ac.uk/gwas/). In
Nigerians, we only assessed SNPs that were nominally signifi-
cant in the TCGA cohort.

Association of rare deleterious variants with signature
contribution. Gene-based association analyses for mutation
signatures were conducted using the unified optimal sequence
kernel association test (SKAT-O),36 as implemented in
SKAT.37 As a linear combination of the burden and SKAT
tests,38 SKAT-O achieves robust power whether a given gene
has a high proportion of causal variants exerting effects in the
same direction, or instead has many noncausal variants or
variants exerting effects in opposite directions.39 We consid-
ered weighting parameter θ = 1 (burden) and θ = 0 (SKAT)
tests and reported the optimal of the two tests. We included
putatively deleterious variants with MAF ≤5%, and used the
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beta distribution weights proposed by Wu et al.,38 which
upweights rarer variants, for both tests. Gene-based analyses
were adjusted for age and the eigenvectors from PCA for
TCGA data. For validation with Nigerian dataset, we only
adjusted for age. Subgroup analyses by subtype were also eval-
uated for all significant results. We used a Bonferroni adjust-
ment for multiple testing to assess the significance of the
gene-based test results. We also calculate Benjamini–
Hochberg’s false positive rate in the discovery dataset. For
genes with evidences of association in the discovery phase, we
pooled data from TCGA and Nigeria and conducted SKAT-O
analysis after adjusting for age and proportion of African and
Asian ancestry.

Two combined gene sets were examined to test their association
with the contribution of HRD signature. One is a set of known
breast cancer predisposition genes (BROCA gene panel: http://tests.
labmed.washington.edu/BROCA), another one contained all
homologous recombination related genes from Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway database, including
ATM, RAD51C, BARD1, BRCA1, BRCA2, BRIP1, FAM175A,
MRE11A, NBN, PALB2, XRCC2, POLD1, RAD51B, BABAM1,
BLM, BRE, EME1, RAD50, RAD52, RAD54B, RAD54L, RBBP8,

RPA1, SYCP3, TOP3A, TOP3B, TOPBP1, UIMC1 and XRCC3. All
statistical calculations were completed in R or Stata version 15.0
(College Station, TX). All p values are two-sided.

Results
Basic information
A total of 1,011 samples with somatic mutation count ≥24
(1,008 WES, 84 WGS) from TCGA were included as the train-
ing dataset, and 170 samples that satisfied the same criteria
from Nigeria (129 WES, 98 WGS) were involved as the valida-
tion set (Fig. 1). The median (25th quartile and 75th quartile) for
somatic mutation count per WES sample were 73 (50–144) for
TCGA Caucasians, 100 (63–194) for TCGA African Americans
and 131 (64–241) for Nigerians (Supporting Information
Table S1 and Fig. S1). The number of mutation from WES was
highly correlated with that from WGS (p < 0.001, Supporting
Information Fig. S1C).

Nine mutational signatures were extracted (Supporting Infor-
mation Fig. S2). Our signatures closely resembled breast cancer
signatures from COSMiC: signatures A1 (S2: APOBEC C>T), A2
(S13: APOBEC C>G), A3 (S17: Unknown, breast cancer related),
A4 (S10: Altered activity of polymerase POLE), A6 (S1: Aging),

Figure 1. Flow chart of this study. [Color figure can be viewed at wileyonlinelibrary.com]
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A8 (S8: Unknown etiology) and A9 (S9: HRD; Supporting Infor-
mation Fig. S3). The common signatures including S2 (APOBEC
C>T), S13 (APOBEC C>G), S1 (Aging), S8 (Unknown etiology)
and S9 (HRD), explained the vast majority of mutations regardless
of ethnicity or subtype (Supporting Information Figs. S4). The
correlation between exomes and genomes were presented in
Supporting Information Figures S5—there was high correlation
for S2, S13, S1 and S9. Given the robustness of signature calls
between these two data types, we focused on these four signatures
for subsequent analyses.

Heritability of selected signatures’ contribution
The estimates of array-based heritability, h2, ranged from 0.040 to
0.575 in TCGA samples across four selected signatures (Table 1),
with APOBEC C>T signature (h2 = 0.575, p = 0.010) and com-
bined APOBEC signature (h2 = 0.432, p = 0.042) displaying the
strongest heritable components. Of note, the heritability estimates
of mutation signatures are unreliable due to limited sample size,
although we showed that some of them were statistically signifi-
cantly different from zero.

Association of common SNPs with signature contribution
Next, we analyzed the association of common SNPs with mutation
signatures. Nine hundred seventy-four samples from TCGA and
170 samples from Nigeria with mutation signature results were fur-
ther analyzed. No SNPs in TCGA showed significant association
beyond genome-wide significance level contributing to any of the
four selected signatures (Supporting Information Fig. S6). When
contributions from the two APOBEC signatures were combined
together, seven SNPs on or near GNB5 showed evidence of associa-
tion surpassing p < 5 × 10−8 (Fig. 2a, Table 2). rs66866642/
rs578194564 (MAF = 0.169) in the intronic region of the GNB5
gene (Fig. 2b) had the strongest association, and this signal was also
consistently observed for both APOBEC C>T and APOBEC C>G
signatures (Supporting Information Fig. S7). The CT allele of
rs66866642/rs578194564 was significantly associated with a 35.3%
absolute increase in the contribution to APOBEC signature (95%
confidence interval [CI]: 23.1–47.5, p= 1.03 × 10−8; Table 2, Fig. 2c).

The top seven SNPs in TCGA tagged a couple of SNPs having LD
r2 ≥ 0.85, and they are located in the region with several regulatory
elements (Supporting Information Table S2, Fig. 2d). Using the
Nigerian cohort as the validation set, 13 of 30 top SNPs were
detected with nonsignificant p values, but with consistent magni-
tude and direction in beta coefficients to those in TCGA (Table 2).

In addition, we evaluated the association between index SNPs
identified in previous GWAS of breast cancer risk, and signatures
contribution. We found a dozen SNPs associated at nominal sig-
nificance level with either APOBEC signature or HRD signature
(Supporting Information Table S3). The genes tagged by SNPs
associated with APOBEC signature included ANKRD16, ZNF365,
CHST9, ARRDC3, FGFR2 and ESR1.Most of the genes associated
with HRD signature function to decrease homologous recombi-
nation repair frequency, including RNF115, ANXA13, DNAJC1,
DNAH11 and TFAP2A.

Associations between rare deleterious variants and
signature contribution
Manhattan plots for the gene-based association analyses are
shown in Figure 3a and Supporting Information Figure S8 for
selected mutation signatures in TCGA cohort. Five genes showed
evidence of association with contribution of APOBEC C>T signa-
ture or APOBEC C>G signature surpassing defined significance
level (threshold as 9.69 × 10−6, Table 3). MTCL1 is the top signal
for combined APOBEC signature (pooled p = 6.11 × 10−6), and
women with MTCL1 mutations had higher APOBEC signature
contribution. Two additional genes (HIVEP1 and TMEM104) had
marginal nominal significant association with contribution of
combined APOBEC signature in both datasets. As the direction of
the association for HIVEP1 was consistent across the TCGA and
Nigerian datasets (pooled p = 0.0009), while the TMEM104 associ-
ation was positive in the TCGA cohort but negative in the Nige-
rian cohort (pooled p = 0.079) (Supporting Information Fig. S9),
suggesting HIVEP1 is likely a true association but TMEM104may
be false negative. Mutations in three genes, including MTCL1,
ERC1 and HIP1, were associated with higher contribution of
APOBEC C>G signature alone.

Table 1. GWAS estimates of signature heritability for signature contributions in TCGA dataset

Adjusted PCA, 733 samples (excluding relatedness)

V(G) V(E) h2

Signatures Value SE Value SE Value SE p

1 APOBEC of cytidine deaminases (C>T) 0.011 0.006 0.008 0.004 0.575 0.254 0.010

2 APOBEC (C>G) 0.001 0.004 0.010 0.002 0.108 0.307 0.350

1 + 2 APOBEC 0.022 0.016 0.028 0.010 0.432 0.272 0.042

6 Spontaneous deamination of 5-methylcytosine 0.001 0.011 0.034 0.007 0.040 0.313 0.445

9 Failure of DNA double-strand break-repair by
homologous recombination

0.004 0.012 0.026 0.007 0.154 0.358 0.349

Note: In TCGA, among 24,570,114 SNPs, 1,573,566 variants were removed due to missing genotype data (geno = 0.05), 5,301,200 variants were
removed due to minor allele threshold (MAF, 0.001) and 188,864 variants were removed due to Hardy–Weinberg exact test. A total of 17,506,484 SNPs
were kept in the end. Among 1,054 samples with GWAS information, 178 samples were removed due to missing genotype data (mind = 0.01), 77 were
removed when pruning the GRM (relatedness = 0.05) and 66 samples were excluded due to missing of mutation signature. In the end, we have 733 sam-
ples in the model. Bold p values denote statistical significance at the p < 0.05.
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Germline mutations in four genes, BRCA1, BRCA2, COL15A1
and PIGO, were significantly associated with contributions from
the HRD signature (all p ≤ 5.5 × 10−6). The contribution of HRD
signature was consistently increasing along with the number of
rare deleterious variants in both BRCA1 and BRCA2 across differ-
ent tumor subtypes (HER2+, HR+/HER2− and HR−/HER2+)
and different datasets (Figs. 3b and 3c). We combined all muta-
tions in BRCA1 and BRCA2 together. The combined gene set was
significantly associated with the contribution to HRD signature in
both TCGA (p = 5.0 × 10−12) and Nigeria samples (p = 0.0036).
This association was also highly consistent across different tumor
subtypes and datasets (Fig. 3d). Despite genome-wide significance,
mutations in COL15A1 and PIGO are rare and further validation
of their associations is desirable.

In addition, when we combined all mutations occurring in a
set of known breast cancer predisposition genes (BROCA gene
panel; 17 genes), or when we merged all homologous recombina-
tion related genes (29 genes), we found that both compounded
gene sets were significantly associated with the contribution of
HRD signature (p = 2.6 × 10−7 and 2.8 × 10−5, respectively). The
significance level remained in the validation set (p = 0.0007 and

0.014, respectively). However, after excluding BRCA1 and BRCA2,
neither of these gene sets remained significantly associated with
HRD signature contribution. Two of HR related genes, BRIP1 and
RAD50, probably contributed to the association signal since many
Nigerian samples had HRD contributions present yet no germline
mutation in BROCA or homologous recombination genes
(Supporting Information Table S4).

Discussion
Using breast cancer data from 1,011 patients from TCGA (the
training set) and 170 Nigerian women (the validation set), we
extracted four stable mutational signatures including APOBEC
C>T, APOBEC C>G, aging and HRD, which is consistent with
previous studies.1,4,40,41 These signatures alone were able to
explain the majority of the tumor mutations across both cohorts.
Heritability analysis suggests that germline genetic factors could
explain some of the heterogeneity in mutation signatures across
patients with breast cancer. We confirmed the association between
rare deleterious variants in BRCA1/2 and increased HRD signa-
ture activity. We found that common variants proximal to GNB5
as well as rare exonic mutations within MTCL1 were associated

Figure 2. Common SNP rs66866642/rs578194564 in GNB5 is associated with APOBEC signatures. (a) Manhattan plot for associations
between common SNPs and APOBEC signatures. (b) Plot of log-transformed p values from single marker analysis for the GNB5 gene. The
labeled marker, a purple diamond (rs66866642/rs578194564), is the most significant SNP (index SNP). The LD between the index SNP and
other markers in the region was color coded, with red color indicating strong LD (r2 > 0.8) and blue color indicating weak LD (r2 < 0.2). (c)
Genotype of rs66866642/rs578194564 among different ethnic groups. (d) Functional elements at the GNB5 gene region. Data is from
ENCODE through UCSC Genome Browser, including histone modification marks for H3K4Me1 and H3K27Ac, transcription factor binding sites
and DNase hypersensitivity sites of human mammary epithelial cells (HMEC), breast cancer cell (MCF7). [Color figure can be viewed at
wileyonlinelibrary.com]
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with increased APOBEC C>T/G activity, acting as plausible con-
tributors to the observed heritability. Rare variants in HIVEP1
were also marginally associated with the signature although this
did not reach genome-wide significance, probably because of the
small sample size.

APOBEC signatures, the most widespread mutational signa-
tures in human cancers, have been reported in 16 of 30 tumor
types from TCGA, implicating APOBEC enzymes as some of the
most pervasive mutators in human cancers.10 We found seven
common SNPs in/near GNB5 to be significantly associated with
APOBEC signature contribution in TCGA. However, this signal
could not be replicated in Nigerians, possibly due to limited sample
size. Previous studies suggested a potential role forGNB5 in cancer.
First, GNB5 encodes guanine nucleotide-binding protein beta-5,
and this protein is expressed in breast tissue.42 Evidence from the
Human Protein Atlas at the protein and mRNA levels also
suggested the favorable prognostic role of GNB5 in renal cancer
and endometrial cancer. Second, overexpression of GNB5 pro-
moted a migratory phenotype in lung adenocarcinoma cells.43

However, it remains unclear whether GNB5 directly affects the

transcription, translation or activity of APOBEC enzymes. Further
molecular analyses are required to functionally characterize the
observed relationship and its generalizability to other tumor types.

The association between HIVEP1 and APOBEC signature
could be explained by their functional roles in viral defense.44,45

The presence of viral element can stimulate APOBEC expression
through a complex network of innate immunity signaling, includ-
ing components like Toll-like receptors, interferons, interleukins
and even P53.46 It is possible that HIVEP1 proteins play a more
direct role in APOBEC regulation as it binds enhancer elements
containing the GGGACTTTCC motif.47 In the context of disease,
downregulation of another family member, HIVEP2 gene, has
already been shown as one of the genetic events responsible for
breast cancer.48 We did not find prior evidence directly implicat-
ingMTCL1, also known as suppressor of glucose autophagy asso-
ciated 2 (SOGA2), in APOBEC activity. Suggestive association
between MTCL1 and breast cancer risk has been reported in
women of Indonesian ancestry, further indicating the potential
importance of germline variation proximal to this gene.49 To fur-
ther understand the biological basis of our observations, it will be

Figure 3. Associations between rare deleterious variants and HRD signature. (a) Plot of log-transformed p values from gene-based analysis for
rare deleterious variants. (b–d) Comparison of contribution of HRD signature, grouped by breast cancer tissue subgroups, datasets, and the
number of BRCA1 (b), BRCA2 (c) and BRCA1/BRCA2 mutations (d). [Color figure can be viewed at wileyonlinelibrary.com]
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necessary to conduct functional studies to uncover the exact
causal mechanisms that may ultimately inform innovative thera-
peutic approaches.

We found that the combined effects of rare, deleterious
alleles in BRCA1 and BRCA2 were consistently associated with
higher HRD signature contributions in both TCGA and Nige-
rian data. This finding was in accordance with other studies
done with prostate and gastric cancers,1,14,15 and the mecha-
nisms promoting HRD activity have been explored in several
experimental studies.30,41,50–52 However, to the best of our
knowledge, this is the first report of association in an indige-
nous African population in Nigeria, and our findings could
have significant implications for cancer control in underserved
and underrepresented population with higher burden of
aggressive young onset breast cancer.20

In previous work, Zhu and colleagues observed a signifi-
cant inverse association (p = 8.75 × 10−6) between the risk
allele in rs2588809 of the gene RAD51B and total somatic
mutation count across 638 breast cancer patients of European
ancestry from TCGA.8 In our study, rs2588809 was not

associated with the contribution of any signatures, but rare
deleterious variants within RAD51B were found to be nominal
significantly correlated with the contributions of aging and
HRD signatures. It has been shown that loss-of-function
mutations in homologous recombination genes other than
BRCA1/2 can facilitate HRD signature activity.41 It is possible
that RAD51B deficiency increases the mutational burden of
tumors through HRD, potentially making these patients good
candidates for immunotherapy due to their increased likeli-
hood of harboring neoantigens.53 Taken together, these find-
ings suggest that genetic ancestry may play an important role
in mutational development and cancer progression. This high-
lights the need to accumulate more genetic data from diverse
populations in order to better understand the heightened
aggressive breast cancer risk observed in individuals of Afri-
can ancestry.54

There are multiple advantages in our study. First, samples
from Nigeria added a substantial value in terms of validation,
which expanded the findings from a primarily US European
ancestry population to an indigenous African population.55

Table 3. Significant results of gene-based analysis in the training and validation datasets

Signatures Gene

TCGA data Nigeria data Pooled data

Nominal
p value

False discovery
rate Theta1

# of variants
in the test p value

# of variants
in the test p value2

APOBEC C>T ATP13A1 9.04 × 10−6 0.006 1 5 0.580 5 0.0089

ERC1 0.186 1.000 1 9 0.442 1 0.282

HIP1 0.773 1.000 1 13 0.494 2 1.000

QARS 0.0023 1.154 0 6 0.434 1 0.0036

MTCL1 5.21 × 10−5 0.053 0 16 0.538 2 0.0005

HIVEP1 0.149 1.000 1 20 0.0657 9 0.0798

TMEM104 0.0002 0.061 0 15 0.156 7 0.0609

APOBEC C>G ATP13A1 0.356 1.000 1 5 0.737 5 0.580

ERC1 4.45 × 10−7 0.0005 0 9 0.444 1 1.63 × 10−7

HIP1 3.46 × 10−6 0.005 0 13 0.219 2 9.18 × 10−7

QARS 6.46 × 10−7 0.001 0 6 0.740 1 2.86 × 10−5

MTCL1 1.35 × 10−6 0.001 0 16 0.360 2 4.21 × 10−7

HIVEP1 2.23 × 10−5 0.015 0 20 0.119 9 2.57 × 10−5

TMEM104 0.0095 0.417 1 15 0.0238 7 0.0445

APOBEC ATP13A1 0.1274 0.883 1 5 0.611 5 0.507

ERC1 0.0006 0.165 0 9 0.957 1 0.0014

HIP1 0.0154 0.452 0 13 0.808 2 0.0075

QARS 1.50 × 10−5 0.056 0 6 0.520 1 0.0002

MTCL1 1.91 × 10−6 0.012 1 16 0.393 2 6.11 × 10−6

HIVEP1 0.0024 0.253 1 20 0.054 9 0.0009

TMEM104 0.0004 0.189 1 15 0.041 7 0.079

HRD BRCA1 1.03 × 10−8 0.0001 1 25 0.139 6 7.02 × 10−9

BRCA2 1.05 × 10−5 0.008 1 50 0.014 8 7.93 × 10−7

COL15A1 5.15 × 10−6 0.005 0 10 0.391 1 5.50 × 10−6

PIGO 1.80 × 10−5 0.009 0 5 – 0 8.68 × 10−6

Bold p values denote statistical significance at the p < 9.69 × 10−6 (Bonferroni corrected alpha level).
1The weighting parameter theta indicates whether the SKAT test (theta = 0) or burden test (theta = 1) gave the smallest p value.
2p value from optimal sequence kernel association test (SKAT-O).
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Second, we harmonized data from a number of sources using
the same pipeline, which avoided batch effect due to bioinfor-
matics software. Third, we inferred mutations signatures
across all samples using nonnegative matrix factorization and
used the estimated signature contributions directly for analy-
sis. This offered advantages over previous approaches which
used the burden of mutations found in specific trinucleotide
contexts as a proxy for APOBEC signature activity.3,8,56,57

Fourth, we comprehensively explored the association between
common genetic variants, rare deleterious variants and the
contribution of mutational signatures across different ethnici-
ties, and provided insights to the relationship between
germline variants and somatic mutational processes.10 Several
study limitations should also be noted. First, we only focused
on the substitutions, and did not consider other types of
somatic mutation, such as indels and structural variants.3,41

Second, while WES allowed us to acquire a larger number of
data, our analyses were confined to somatic mutations within
protein coding regions. WGS could uncover microscale and
macroscale somatic alterations58 and provide us more stable
estimates of mutation signature contributions. As such, we
only focused on the four signatures with strong concordance
between WGS data and WES data. Although common
practice,1,22 estimating mutation signatures from exome
sequencing could cause potential biases due to sequence motif
representation as compared to whole genome. APOBEC
enzymes have been shown to preferentially target genic
regions, which is likely due to the availability of ssDNA sub-
strates during transcription.59–61 Additional work has demon-
strated that APOBEC mutations are also enriched within
early-replicating regions regardless of transcriptional activ-
ity.60 It is unclear if identical mutagenic processes affect all
early-replicating and transcriptionally active regions. Even
though we observed high mutation signature correlations
between exomes and genomes, we cannot rule out the possi-
bility that different molecular mechanisms generated similar
mutational signatures in coding and noncoding regions. It is
also possible that a single mutational process is responsible
for generating somewhat different signatures in these regions.
As such, it is important to remember that signature contribu-
tion estimates only serve as a phenotypic marker and may not
fully capture the nuances of underlying mechanistic processes.
Third, causal links between germline and somatic mutational
processes are one explanation for the associations presented
here, but other explanations cannot be ruled out.30

Conclusions
In summary, our study identified associations between germline
variants and mutational patterns in breast cancer across differ-
ent ethnicities, especially in African women for the first time.
This finding may advance our understanding of breast cancer
etiology with potential implications for prevention and treat-
ment. However, further replications in larger and diverse
populations are needed to validate our findings. Meanwhile,

future work focused on understanding the biological basis of
cancer susceptibility alleles will be instrumental in better under-
standing the complex interplay between germline genetics and
somatic mutations.
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