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This study aimed to develop an automated computer-based algorithm to estimate axial
length and subfoveal choroidal thickness (SFCT) based on color fundus photographs.
In the population-based Beijing Eye Study 2011, we took fundus photographs and
measured SFCT by optical coherence tomography (OCT) and axial length by optical low-
coherence reflectometry. Using 6394 color fundus images taken from 3468 participants,
we trained and evaluated a deep-learning-based algorithm for estimation of axial length
and SFCT. The algorithm had a mean absolute error (MAE) for estimating axial length
and SFCT of 0.56 mm [95% confidence interval (CI): 0.53,0.61] and 49.20 µm (95% CI:
45.83,52.54), respectively. Estimated values and measured data showed coefficients
of determination of r2 = 0.59 (95% CI: 0.50,0.65) for axial length and r2 = 0.62
(95% CI: 0.57,0.67) for SFCT. Bland–Altman plots revealed a mean difference in axial
length and SFCT of −0.16 mm (95% CI: −1.60,1.27 mm) and of −4.40 µm (95% CI,
−131.8,122.9 µm), respectively. For the estimation of axial length, heat map analysis
showed that signals predominantly from overall of the macular region, the foveal region,
and the extrafoveal region were used in the eyes with an axial length of < 22 mm,
22–26 mm, and > 26 mm, respectively. For the estimation of SFCT, the convolutional
neural network (CNN) used mostly the central part of the macular region, the fovea
or perifovea, independently of the SFCT. Our study shows that deep-learning-based
algorithms may be helpful in estimating axial length and SFCT based on conventional
color fundus images. They may be a further step in the semiautomatic assessment of
the eye.

Keywords: deep learning, convolution neural network, axial length, subfoveal choroidal thickness, fundus
photography, fundus image
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INTRODUCTION

Axial length and subfoveal choroidal thickness (SFCT) belong
to the most important biometric parameters of the eye and
are directly or indirectly associated with axial ametropias
and maculopathies such as myopic macular degeneration and
pachychoroid-associated macular diseases, to name only a few
(Fujiwara et al., 2009; Spaide, 2009; Saka et al., 2010; Cheung
et al., 2013; Shao et al., 2014; Ohno-Matsui et al., 2015; Tideman
et al., 2016; Yan et al., 2018a,b; Lim et al., 2020; Peng et al.,
2020). Although both parameters can relatively easily and non-
invasively be determined with relative high precision, their
measurements necessitate costly ophthalmological devices and
equipment, which are not readily available and the use of which
are personal dependent and time consuming. Incentives have,
therefore, started to assess axial length and SFCT by other
means than the conventional measurement devices. Since fundus
photographs can be taken with easily available devices including
smartphones (Bastawrous et al., 2016; Toy et al., 2016; Muiesan
et al., 2017; Mamtora et al., 2018), we conducted this study to
assess whether readily taken photographs of the ocular fundus
could serve for an estimation of both biometric parameters with
the application of deep-learning-based algorithms. In previous
studies, artificial intelligence has already been shown to be helpful
in the assessment of medical images and diagnosis of diseases
(Ting et al., 2017; Biousse et al., 2020; Milea et al., 2020).
Deep learning, known as a subset of artificial intelligence, allows
computational systems to learn representations directly from a
large number of images without designing explicit hand-crafted
features (LeCun et al., 2015). The applications of deep-learning
techniques trained on color fundus images have produced
systems with competitive or close-to-expert performance for an
automatic detection of ophthalmic diseases, including diabetic
retinopathy (Cao et al., 2020; Gargeya and Leng, 2017; Ting
et al., 2017), age-related macular degeneration (Burlina et al.,
2017; Grassmann et al., 2018; González-Gonzalo et al., 2020),
retinopathy of prematurity (Wang et al., 2018; Mao et al., 2020),
glaucoma (Hemelings et al., 2020), and other disorders (Shah
et al., 2020); assessment of ocular and systemic risk factors such
as age, gender, body mass index, and blood pressure; estimation
of the refractive error (Poplin et al., 2018; Varadarajan et al., 2018;
Chun et al., 2020).

MATERIALS AND METHODS

The Beijing Eye Study 2011 was a population-based, cross-
sectional study conducted in Northern China (Wei et al.,
2013; Yan et al., 2015). The Medical Ethics Committee of the
Beijing Tongren Hospital approved the study protocol, and all
participants gave an informed consent. The study was carried out
in five communities in the urban area of Haidian district and
three communities in the village area of Daxing District. The only
eligibility criterion for inclusion in the study was an age group
of ≥ 50 years. In total, 3468 individuals (1963 female, 56.6%)
participated in the eye examination. Optical low-coherence
reflectometry (Lensstar 900 Optical Biometer, Haag-Streit, 3098

Koeniz, Switzerland) was used for biometry of the right eyes
for the measurement of axial length. After medical mydriasis,
photographs of the macula and optic disk were taken using a
45◦ fundus camera (Type CR6-45NM, Canon Inc, Lake Success,
NY, United States). The SFCT was measured using spectral-
domain optical coherence tomography (SD-OCT) (Spectralis,
wavelength of 870 nm; Heidelberg Engineering Co, Heidelberg,
Germany) applying the enhanced depth imaging (EDI) modality.
Seven OCT sections, each comprising 100 averaged scans, were
obtained in a rectangle measuring 5◦

× 30◦, centered onto the
fovea. The horizontal section running through the center of the
fovea was selected for further analysis. SFCT was defined as the
vertical distance between the hyperreflective line of the Bruch’s
membrane to the hyperreflective line of the inner surface of the
sclera. The measurements were performed using the Heidelberg
Eye Explorer software (v. 5.3.3.0; Heidelberg Engineering Co,
Heidelberg, Germany) (Figure 1). Only the right eye of each
study participant was assessed. The interobserver agreement
between two ophthalmologists in measuring the SFCT had been
assessed in a previous study and had shown correlation coefficient
of r2 = 0.98 (Shao et al., 2013).

We split the dataset into a development dataset and a
validation dataset. The division was performed randomly with
a ratio of 9:1 for the development/validation dataset. The
development dataset consisted of a training set and a tuning set
with the proportion of 8:1 (Table 1).

FIGURE 1 | Optical coherence tomographic image (enhanced depth imaging
mode) showing the retina and the choroid. Red line: subfoveal choroidal
thickness.

TABLE 1 | Baseline characteristics (mean ± standard deviation) of participants in
the development group and validation group.

Development set Validation set P value

Axial length (mm) 23.24 ± 1.15 23.29 ± 1.17 0.49

Number of participants 2,811 313 –

Number of images 5,688 616 –

< 22 mm 506 (8.9%) 55 (8.9%) –

≥ 22 mm and < 26 mm 5004 (88.0) 546 (88.6%) –

≥26 mm 178 (3.1%) 15 (2.4%) –

SFCT (µm) 258.13 ± 106.46 247.65 ± 105.55 0.16

Number of participants 2,672 300 –

Number of images 5,436 592 –

< 150 µm 887 (16.3%) 119 (20.1%) –

≥ 150 µm and < 350 µm 3498 (64.3%) 364 (61.5%) –

≥350 µm 1051 (19.3%) 109 (18.4%) –

SFCT, subfoveal choroidal thickness.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 2 April 2021 | Volume 9 | Article 653692

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-653692 April 2, 2021 Time: 17:21 # 3

Dong et al. AI to Estimate Axial Length

FIGURE 2 | Overview of a deep convolutional neural network (CNN)-based model training pipeline to automatically estimate axial length and subfoveal choroidal
thickness from color fundus images.

For the development of the algorithm, we used a convolutional
neural network (CNN), a specialized deep-learning model
(Krizhevsky et al., 2012), to analyze the digitized fundus
images. The models employed the same configurations and
CNN architecture as Inception-Resnet-v2 (Szegedy et al., 2016).
Based on this architecture, a modified 164-layer CNN was
employed to estimate axial length and SFCT. We initialized
the parameters of the neural network with the ImageNet
classification pretrained model.

Before the analysis, we preprocessed the images to improve
the CNN-based analysis. We removed the dark background by
detecting a circular mask of the photographs, and the images
were resized to the size of 500 × 500 pixels. A quality control
module was implemented after the mask removal to assess the
image quality and to filter out unqualified images (Figure 2).
The standard for excluding poor quality images followed the
procedures used in previous investigations (Zago et al., 2018)
and utilized parameters such as the readable region ratio,
illumination, blurriness, and image contents. The pixel values of
the selected images applied to a linear mapping with a pixel value
ranging from (0, 255) to (0, 1). In the training stage, a batch of
images, called the training batch, was generated and fed back to
the network. The Huber loss was calculated based on this batch
(Huber, 2004). The corresponding gradients of the loss were
back-propagated to update the network parameters. We set the
batch size (also known as mini-batch size) as 14. The stochastic
gradient descent was used for the mini-batch optimization with
the learning rate of 0.0001.

To implement and deploy the network, an open-source
software library (Keras, V2.2.21) was used for training and
evaluation. The model was trained on a dual-GPU of NVIDIA
Titan-X with CUDA version 9.0 and cuDNN 7.0. The Inception-
ResNet-V2 network architecture used in this work was publicly
available in the Keras-Application package.

Since axial length and SFCT are continuous values, the metrics
used for the assessment of the model performance were the
mean absolute error and the coefficient of determination (r2).
We calculated the mean absolute error and r2 with their 95%

1https://github.com/fchollet/keras

confidence intervals (CIs) with an evaluation of 2000 times.
Bland–Altman plotting was used to visualize the agreement
between the estimated values and the measured values.

To illustrate the fundus region predominantly used by the
CNN to generate and apply the algorithm, we implanted another
convolutional visualization layer into our network architecture
(Zhou et al., 2016). The layer takes image features learned by
the preceding layers and gives each feature a weight indicating
its importance. It is shown in heat maps.

RESULTS

Out of the 3468 participants of the Beijing Eye Study, fundus
images of 3124 (90.1%) individuals were eventually included into
the present study, after the images of 344 (9.9%) individuals
had been excluded due to the exclusion criteria detailed above.
Among the included photographs, 3239 images were centered on
the macula, and 3065 images were centered on the optic nerve
head. For the estimation of axial length, the development group
used 5688 retinal fundus images from 2811 participants, and the
validation group consisted of 616 images from 313 participants.
Since some participants had not undergone OCT imaging, the
development group for the estimation of SFCT used 5436 fundus
images of the macula from 2672 participants and validated the
model using 592 images from 300 participants (Table 1). The
mean axial length was 23.24 mm (median, 23.12 mm; range,
18.96–30.88 mm), and the mean SFCT was 257 µm (median,
252 µm; range, 12–854 µm). An axial length between 22 mm
and 26 mm was measured for 5550 (88.0%) images, and a SFCT
between 150 µm and 350 µm was determined for 3862 (64.1%)
images. The development group and the validation group did
not differ significantly in axial length (P = 0.488) and SFCT
(P = 0.163).

The mean absolute error (MAE) of the algorithm for the
estimation of axial length and SFCT was 0.56 mm (95% CI, 0.53–
0.61) and 49.20 µm (95% CI, 45.83–52.54), respectively, with
coefficients of determination values of r2 of 0.59 (95% CI, 0.50–
0.65) for axial length and r2 of 0.62 (95% CI, 0.57–0.67) for SFCT
(Table 2). The estimated values and the measured values showed
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TABLE 2 | Algorithm performance in the validation set.

Parameters Performance (95% CI)

Axial length (n = 616)

MAE (95% CI), mm 0.56 (0.53, 0.61)

r2 (95% CI) 0.59 (0.50, 0.65)

SFCT (n = 592)

MAE (95% CI), µm 49.20 (45.83, 52.54)

r2 (95% CI) 0.62 (0.57, 0.67)

MAE, mean absolute error; CI, confidence interval; SFCT, subfoveal
choroidal thickness.

a relatively linear relationship for both parameters (Figure 3).
In Bland–Altman plots, the mean difference of axial length
was −0.16 mm (95% CI, −1.60–1.27 mm), with 3.7% (23/616)
measurement points located outside the 95% limits of agreement
(Figure 4). The mean difference of SFCT was −4.40 µm (95%
CI, −131.8–122.9 µm), and 4.9% (29/592) of the measurement
points were located outside the 95% limits of agreement in the
Bland–Altman plots. Subgroup analysis showed the MAE of the
algorithm for the estimation of axial length ranged from 22 to
26 mm was 0.50 mm (95% CI, 0.47–0.53), and the MAE for the
estimation of SFCT was 42.47 µm (95% CI, 38.80–46.32).

For the estimation of axial length, the heat map analysis
showed that signals from overall of the macular region were
used by the CNN in the eyes with an axial length of < 22 mm,
while in the eyes with an axial length ranging between 22 mm
and < 26 mm, the CNN used signals mostly from the foveal
region, and in the eyes with an axial length of > 26 mm,
the CNN used signals from the extrafoveal region within the
macular (Figures 5A–F). For the estimation of SFCT, the CNN
used mostly the central part of the macular region, the fovea or
perifovea, independently of the SFCT (Figures 5G–L).

DISCUSSION

In our population-based study, the CNN-based algorithm had
a mean absolute error for estimating axial length and SFCT of
0.56 mm and 49.20 µm, respectively, and the Bland–Altman plots
revealed a mean difference in axial length and SFCT of −0.16 mm
and −4.40 µm, respectively.

These results of our study with respect to the estimation of
axial length cannot directly be compared with the results of
other investigations, since axial length has not been included
in a study on deep learning yet. Komuku et al. (2020) used an
adaptive binarization method to analyze choroidal vessels on
color fundus photographs and a deep-learning-based method to
estimate the SFCT based on the binarization-generated choroidal
vessel images. The correlations between choroidal vasculature
appearance index and choroidal thickness were −0.60 for
normal eyes (P < 0.01) and −0.46 for eyes with central serous
chorioretinopathy (CSC) (P < 0.01), respectively. For the deep-
learning system, the correlation coefficients between the value
estimated from the color images and the true choroidal thickness
were 0.68 for normal eyes (P < 0.01) and 0.48 for the eyes with
CSC (P < 0.01), respectively. These values are comparable with
the value of r2 = 0.62 found in our study with a larger study
population and a population-based recruitment.

The difference between the estimated values and measured
values of the axial length measurements was lower than that
between axial length measurements by optical low-coherence
reflectometry and sonographic axial length determinations
[mean difference, −0.72 mm (95% CI, −0.75, −0.69 mm)]
(Gursoy et al., 2011). In that context, it has to be taken into
account that it is not the mean difference but the scattering
of the difference between two methods that markedly influence
the clinical reliability and validity of a technique. The algorithm
in our study overestimated axial length for the eyes with a

FIGURE 3 | Model performance of estimating (A) axial length and (B) subfoveal choroidal thickness.
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FIGURE 4 | Bland–Altman plots comparing the (A) actual and estimated axial length and (B) subfoveal choroidal thickness (SFCT). X-axis: mean of axial length or
SFCT. Y-axis: measured values minus the estimated values. The mean differences and the 95% confidence limits of the difference are shown by the three dotted
lines.

FIGURE 5 | Examples of heat maps generated in eyes of different axial length and subfoveal choroidal thickness. White arrow: fundus tessellation.

small axial length, and the model underestimated the SFCT
in the eyes with a thick SFCT. The findings may be related
to an underrepresentation of eyes with a small axial length
and eyes with a thick SFCT in the study population. Most
eyes included into the study had an axial length ranging
between 22 and 26 mm and a SFCT ranging between 150

µm and 350 µm. The advantage of our study population
being recruited in a population-based level was combined
with the disadvantage of a relative lack of eyes in the
extreme range of measurements of axial length and SFCT.
Future studies may include preferably such eyes to further
improve the algorithm.
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The observations made in our study agree with the findings
made in other investigations and with clinical experience that
axially elongated eyes differ in the appearance of their posterior
fundus from the eyes with a short axial length. In a parallel
manner, it holds true for the SFCT, since it is strongly correlated
with axial length (Fujiwara et al., 2009; Wei et al., 2013). A main
feature of an axially elongated eye is an increased degree of fundus
tessellation, which is also strongly correlated with a decreasing
thickness of the SFCT (Yan et al., 2015). Other features of an
increasing axial elongation in non-highly myopic eyes include
a shift of the Bruch’s membrane (BM) opening, usually into
the temporal direction, leading to an overhanging of BM into
the intrapapillary compartment at the nasal optic disk and,
correspondingly, an absence of BM at the temporal disk border
in the form of a parapapillary gamma zone; an ovalization
of the ophthalmoscopically detectable optic disk shape and a
decrease in the ophthalmoscopical horizontal disk diameter due
to the temporal BM shift; and an increase in the disk–fovea
distance due to the development of parapapillary gamma zone
and, correspondingly, a decrease in the angle kappa between the
two temporal vascular arcades (Jonas et al., 2015, 2017, 2019; Guo
et al., 2018). In view of this long list of axial elongation-associated
morphological changes in the posterior fundus, it might have
been expected that besides ophthalmologists, also deep-learning-
based algorithms can estimate axial length. Interestingly, the heat
map analysis revealed that signals predominantly from overall of
the macular region, the foveal region, and the extrafoveal region
were used in eyes with an axial length of < 22 mm, 22–26 mm,
and > 26 mm, respectively. For the estimation of SFCT, the CNN
used mostly the central part of the macular region, the fovea or
perifovea, independently of the SFCT. It agrees with the finding
of a previous study that the degree of fundus tessellation assessed
in the macular region or in parapapillary region can be used to
estimate SFCT and that a high degree of fundus tessellation is a
surrogate for a leptochoroid (Yan et al., 2015).

The practical importance of an algorithm estimating the axial
length may be in a combination of portable and cheap fundus
cameras with such an algorithm (Bastawrous et al., 2016; Toy
et al., 2016; Muiesan et al., 2017; Mamtora et al., 2018). Based on
the data available so far, it may be unlikely that a deep-learning
algorithm based only on fundus photographs will be better than
biometry for the measurement of axial length. The same may hold
true for the assessment of SFCT.

When the results of our study are discussed, its limitations
should be taken into account. First, the study population included
only subjects aged ≥ 50 years, so the results of our study
cannot directly be transferred to younger individuals. Second,
by the same token, the study population consisted only of
Chinese so that future studies may address study population of
different ethnicity. Third, the use of both optic-disk-centered
fundus images and macula-centered fundus photographs, for
the training and validation of the algorithm, might have led to
some scattering in estimations. However, it should be noticed
that the fovea was visible also on the optic nerve head images,
and vice versa, the optic disk was visible on the macula-
centered photographs. It indicates that the fovea, as the most
important part for the estimation of the SFCT and axial length,

was assessable in both types of photographs. In addition, the
optic nerve head shows characteristic of axial-length-related
particularities, so that the inclusion of its full image in the optic-
disk-centered images might only have supported finding a best
fitting algorithm. It also holds true for the estimation of the
SFCT since the SFCT is strongly correlated with axial length
(Liu et al., 2018). Adding the optic nerve head photographs
to the study, furthermore, increased the sample size for the
training of the model. Fourth, the attention maps did not rule
out that other features in the images were also used, and we did
not perform a quantitative validation of the heat maps. Fifth,
although the study population as a real-world group also included
eyes with disorders of the macula and optic nerve, we did not
analyze whether the inclusion of eye with disorders influenced
the performance of the algorithm. Sixth, we did not include a
second data set of a completely different study population so that
the validation of the algorithm can still be further refined. Further
research may include data sets from populations of different age
ranges and ethnicities and may use different fundus cameras. In
addition, to boost the performance of the model, one may use
more data for the development of the algorithm and improve the
training schemes, such as using data augmentation.

In conclusion, deep-learning-based algorithms may be helpful
for estimating axial length and SFCT based on conventional color
fundus images. They may be a further step in the semiautomatic
assessment of the eye.
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