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Vitamin D has been proposed as a therapeutic strategy in pancreatic cancer, yet 
evidence for an effect of dietary vitamin D on pancreatic cancer is ambiguous, with 
conflicting data from human epidemiological and intervention studies. Here, we tested 
the role of dietary vitamin D in the in vivo context of the well-characterized Ela1-TAg 
transgenic mouse model of pancreatic acinar cell carcinoma. Through longitudinal 
magnetic resonance imaging of mice under conditions of either dietary vitamin D defi-
ciency (<5 IU/kg vitamin D) or excess (76,500 IU/kg vitamin D), compared to control 
diet (1,500  IU/kg vitamin D), we measured the effect of variation of dietary vitamin D 
on tumor kinetics. No measurable impact of dietary vitamin D was found on pancreatic 
acinar cell carcinoma development, growth or mortality, casting further doubt on the 
already equivocal data supporting potential therapeutic use in humans. The lack of any 
detectable effect of vitamin D, within the physiological range of dietary deficiency or 
supplementation, in this model further erodes confidence in vitamin D as an effective 
antitumor therapeutic in pancreatic acinar cell carcinoma.
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inTrODUcTiOn

Vitamin D has been proposed as a potential therapeutic for pancreatic cancer, a disease for which 
efficacious treatments are currently lacking; however, the evidence for an impact of vitamin D  
on pancreatic cancer is ambiguous. The most consistent evidence for vitamin D as an antitumor 
drug comes from cell line work. Vitamin D has been shown to be effective at inhibiting the prolifera-
tion of pancreatic cancer cell lines in vitro, including the active form 1α,25-dihydroxyvitamin D3  
(1, 2), the prohormone 25-hydroxyvitamin D(3) (3), and the analogs calcipotriol (4, 5), 
22-oxa-1,25-dihydroxyvitamin D3 (5), EB 1089 (2, 6, 7), MART-10 (8), 1,25-dihydroxyvitamin 
D(3)-3-bromoacetate (9), 19-nor-1 alpha,25-dihydroxyvitamin D2 (paricalcitol) (10), and 
22- oxa-1,25-dihydroxyvitamin D3 (maxacalcitol) (11). The antiproliferative effect has even been 
observed in vivo, when pancreatic cancer cell lines have been transplanted into immunodeficiency 
mice (2, 5, 7, 8, 10, 11). It should, however, be noted that this effect is not universal, as when mul-
tiple cell lines have been tested, it is only a minority that respond to vitamin D in vitro (5, 10, 11).  
In addition, the complex relationship between tumor, stroma, and the immune system in lost 
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under these testing conditions, so the results in cell lines may 
not reflect the physiological impact on patients.

Epidemiological studies on the interaction between vitamin D  
and pancreatic cancer have proven inconsistent. A clear cor-
relation of pancreatic cancer risk has been associated with 
increasing latitude and lower ultraviolet B (UVB) radiation, 
known to induce vitamin D production. A protective effect 
of UVB dose is observed across countries (12, 13) and within 
individual countries (14–17), and a similar correlation shows 
reduced risk in individuals with fair skin color (15). A simple 
explanation of this phenomenon would be that vitamin D 
production protects against pancreatic cancer, yet the evidence 
for this is underwhelming. The best surrogate for vitamin D 
levels is circulating 25-hydroxyvitamin D. Cohort analysis 
for pancreatic cancer risk have variously identified either low  
(18, 19) or high (20, 21) plasma 25-hydroxyvitamin D as a risk 
factor for developing pancreatic cancer, with a meta-analysis 
indicating no significant association (22). Following pancreatic 
cancer development, analysis of a prospective cohort found 
reduced survival in patients who had insufficient levels of plasma 
25-hydroxyvitamin D (23), yet a retrospective analysis of other 
cohorts found no link with survival (24, 25). Likewise studies 
have found either no link (26) or only a weak protective link (27) 
between plasma levels of vitamin D-binding protein, the primary 
carrier of 25-hydroxyvitamin D, and pancreatic cancer risk.  
A link between vitamin D receptor (VDR) polymorphisms and 
pancreatic cancer risk has been observed in the Chinese popula-
tion (28), but other large studies have found no link with any 
of the genes in the vitamin D pathway (23, 29). Together, these 
studies place doubt over the link between endogenous vitamin D 
and pancreatic cancer risk, without excluding a potential benefit 
for exogenous administration.

In contrast to the large number of epidemiological studies 
investigating the link between pancreatic cancer and vitamin D,  
relatively few interventional trials have been performed.  
A phase II trial of EB 1089 found no antitumor effect (30), while 
a phase II trial of docetaxel gave a modest effect in three patients 
(31). Larger studies have been performed with dietary vitamin D  
supplementations, with two studies indicating an increased 
risk of pancreatic cancer after supplementation (32, 33), but 
a meta-analysis of nine studies finding overall no significant 
association of dietary vitamin D with pancreatic cancer (22). 
Overall, despite the positive results from pancreatic cancer cell 
lines, the limited epidemiological and intervention studies per-
formed leave the status of vitamin D as a potential therapeutic 
for pancreatic cancer in doubt. Here, we have sought to formally 
test the role of dietary vitamin D in the in vivo context through 
utilization of a well-characterized animal model of pancreatic 
acinar cell carcinoma, the Ela1-TAg transgenic mouse. Through 
longitudinal magnetic resonance imaging (MRI) assessment of 
Ela1-TAg transgenic mice under conditions of either vitamin D 
deficiency or dietary excess, we measured the effect of vitamin D  
on spontaneous tumor development, growth rates, and mortal-
ity. The lack of any detectable effect of vitamin D deficiency 
or dietary supplementation in this model further erodes con-
fidence in vitamin D as an effective antitumor therapeutic in 
pancreatic acinar cell carcinoma.

MaTerials anD MeThODs

Mice
Ela1-TAg mice, expressing the SV40 large T Antigen under the 
control of the Elastase-1 acinar cell promoter, were purchased 
from Jackson on the C57BL/6 background (34). Mice were bred 
under specific pathogen-free conditions and from the time of 
breeder setup were exclusively fed on either ssniff® EF R/M Control 
chow (1,500  IU/kg vitamin D, 0.9% Calcium; “control diet”),  
ssniff® EF R/M Vitamin D3-deficient chow (<5 IU/kg vitamin D;  
“Vitamin D deficient diet,” 0.9% Calcium), or ssniff® EF R/M  
Vitamin D3 excess chow (76,500 IU/kg vitamin D, 1.59% Cal-
cium; “Vitamin D excess diet”). Mice were moved to conven-
tional conditions at 7 weeks of age (maintaining special diets) 
for longitudinal MRI. All experimental protocols were approved 
by the University of Leuven Animal Ethics Committee, and all 
experiments were performed in accordance with the guidelines 
and regulations from the University of Leuven Animal Ethics 
Committee. Mouse weight and blood glucose were monitored 
throughout.

imaging
Mice were scanned under isoflurane anesthesia using a Bruker 
Biospin 9.4  T Biospec small animal MR scanner (Bruker 
Biospin, Ettlingen, Germany). The scanner was equipped with an 
actively shielded gradient set of 600  mT/m using a respiration 
triggered spin echo sequence (RARE) with 50 continuous slices 
of 0.5  mm thickness in interlaced mode (acquisition param-
eters: repetition time = 6,000 ms, echo time = 15.9 ms, field of 
view = 4.0 cm × 6.0 cm, a matrix of 200 × 400, two dummy scans, 
and two averages). For radio-frequency irradiation and detec-
tion, a 7.2-cm quadrature resonator was used.

Data and statistical analysis
Magnetic resonance imaging scans were analyzed with ImageJ 
(National Institute of Health, Bethesda, MD, USA) and the 
mean area at maximum radius was used to infer volume using 
the formula: 4/3*area*√(area/π). Statistical analysis was perfor-
med in R (https://www.r-project.org/ version 3.1.2). Cumulative 
incidence curves were generated using the R package “survplot” 
with the fun  =  function (x) {1  −  x} argument (35). Survival 
curves were generated using the Kaplan–Meier method imple-
mented in the R “survplot” package, and statistical analysis was 
performed using log-rank test implemented in the R “survdiff ” 
package (36).

resUlTs

In order to systematically test the role of dietary vitamin D in pan-
creatic acinar cell carcinoma development, growth, and mortality, 
we utilized the well-characterized Ela1-TAg transgenic mouse 
model, where expression of the SV40 large T Antigen results in 
the spontaneous formation of pancreatic tumors from acinar cells 
(34). To maximize the differences in vitamin D exposure, breeder 
cages were setup on either control diet (1,500 IU/kg vitamin D3), 
vitamin D-deficient diet (<5  IU/kg vitamin D3), or vitamin D 
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FigUre 1 | Longitudinal monitoring of tumor growth following modification of dietary vitamin D in mice. TAg+ mice were placed on either control, vitamin D deficient, 
or vitamin D excess diets in utero and aged on the same diets to 21 weeks of age. From 7 weeks onward, mice were assessed through Magnetic Resonance 
Imaging for tumor size. Individual total predicted tumor volume curves for (a) female mice on control diet (n = 7), (B) female mice on vitamin D-deficient diet (n = 6), 
(c) female mice on vitamin D excess diet (n = 4), (D) male mice on control diet (n = 5), (e) male mice on vitamin D-deficient diet (n = 6), and (F) male mice on 
vitamin D excess diet (n = 9).
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excess diet (76,500 IU/kg vitamin D3). This study design allows 
alteration of dietary vitamin D levels from the in utero condition 
onward, with mice being weaned onto the corresponding diet. 
From 7 weeks of age, each mouse underwent MRI scanning for 
tumor detection and volume estimation, revealing exponential 
growth of tumors after first detection (Figure 1).

To determine the effect of dietary vitamin D on initial tumor 
development, the age of first tumor detection was assessed. 
Reliable tumor detection was achieved for tumors >3 mm in size 
(data not shown). For female mice, no significant difference was 
observed in the cumulative incidence of pancreatic acinar cell 
carcinoma (Figure 2A). For male mice, marginal significance was 
observed for mice fed a vitamin D-deficient diet having earlier 
tumor onset (Figure 2B); however, this result was not significant 
when age of first tumor detection was directly tested (Figure 2C). 
It is also notable that the data from female mice did not even 
follow the same trend, indicating that there is no consistent effect 
of dietary vitamin D, either in deficiency or in supplementation, 
on tumor onset.

We next assessed the growth rate of the established tumor 
burden. Due to the variable onset and exponential growth 
rates (Figure 1), total tumor volume estimates from MRI were 
square root transformed and plotted from time of first detection 
(Figures 3A–F). Linear plots on the transformed graphs indicate 
that once established the tumors exhibited a consistent growth 

rate until experimental end-point. This analysis allows tumor 
growth to be calculated as the percentage increase in total tumor 
volume every 14 days (i.e., time between MRI assessment), aver-
aged over the entire period of monitoring. Using this criteria, no 
difference was observed in tumor growth rates in either males or 
females, under conditions of either vitamin D dietary deficiency 
or supplementation (Figure 3G).

Finally, we assessed the impact that changes to dietary vitamin D  
had on tumor-induced mortality (Figure 4). On the control diet, 
50% of mice had reached end-point (condition deteriorating to 
end-point guidelines) by 20 weeks in female mice (Figure 4A) 
and 18 weeks in male mice (Figure 4B). No significant altera-
tion was observed in female mice by changing the vitamin D 
content of the diet (Figure  4A). In male mice, an increase in 
mortality was observed in mice fed a vitamin D-deficient diet 
(Figure 4B); however, the significance was marginal compared 
to control diet and there was no difference between vitamin D 
deficiency and vitamin D excess. Overall, these results do not 
indicate a convincing impact of vitamin D on mortality in this 
murine model of pancreatic acinar cell carcinoma.

DiscUssiOn

Direct comparisons between the dietary doses used here and  
the recommended dietary intakes in humans are complicated  
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FigUre 3 | No effect of dietary vitamin D on tumor growth in a pancreatic cancer model. TAg+ mice were placed on either control, vitamin D-deficient or vitamin D 
excess diets in utero and aged on the same diets to 21 weeks of age. From 7 weeks onward, mice were assessed through Magnetic Resonance Imaging for tumor 
size. Total predicted tumor volumes were square root transformed and normalized to age of first detection for (a) female mice on control diet (n = 7), (B) female 
mice on vitamin D-deficient diet (n = 6), (c) female mice on vitamin D excess diet (n = 4), (D) male mice on control diet (n = 5), (e) male mice on vitamin D-deficient 
diet (n = 6), and (F) male mice on vitamin D excess diet (n = 9). (g) Violin plots showing the mean, SD, and kernel probability density of the percentage of tumor 
volume increase every 2 weeks. The P values were calculated using two-tailed unpaired t test.

FigUre 2 | No consistent effect of dietary vitamin D on tumor onset in a pancreatic cancer model. TAg+ mice were placed on either control, vitamin D-deficient,  
or vitamin D excess diets in utero and aged on the same diets to 21 weeks of age. Cumulative incidence of pancreatic cancer was recorded as a function of age at 
tumor detection, in (a) female (n = 7, 6, 4) and (B) male (n = 5, 6, 9) mice. The P values were calculated using the log-rank test. (c) Violin plots showing the mean, 
SD, and kernel probability density of the age at tumor onset under each condition. The P values were calculated using two-tailed unpaired t test.
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by species differences. The European Food Safety Authority  
recommends 200 IU/day intake for adults, with an upper  
intake of 4,000 IU/day. The diets used here result in consump-
tion of 0.02 IU/day (Vitamin D deficient), 5 IU/day (control), and 
250 IU/day (Vitamin D excess). These values, however, do not 
take into account the body weight difference between mice and  
humans; normalized to average human body weight, 

the daily intakes range from far below recommended 
intake (30  IU/day/70  kg for Vitamin D-deficient diet) 
to far above the upper intake limit (9,000  IU/day/70  kg 
for control diet and 460,000  IU/day/70  kg). The most 
relevant comparison, however, is probably the resulting 
circulating serum 1α,25-dihydroxyvitamin D3 level. In adult  
humans, the desirable level of 1α,25-dihydroxyvitamin D3 
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FigUre 4 | No consistent impact of dietary vitamin D on survival in a transgenic pancreatic cancer model. TAg+ mice were placed on either control, vitamin 
D-deficient or vitamin D excess diets in utero and aged on the same diets to 21 weeks of age. Kaplan–Meier plots showing the overall pancreatic cancer survival  
in (a) female (n = 7, 6, 4) and (B) male (n = 5, 6, 9) mice on control, vitamin D-deficient and vitamin D excess diets. The P values were calculated using the  
log-rank test.

5

Dooley et al. Pancreatic Cancer: Independent of Vitamin D

Frontiers in Oncology | www.frontiersin.org June 2017 | Volume 7 | Article 133

is 20  ng/ml, while ostemolacia or rickets develops at levels  
lower than 10 ng/ml, adverse effects are reported at levels above 
80  ng/ml and toxicity at 150  ng/ml and greater (37–39). In  
mice, diets with vitamin D levels below 125  IU/kg result in  
serum  levels of 1α,25-dihydroxyvitamin D3 in the sub-20 
ng/ml range, diets 1,000–5,000  IU/kg result in serum 1α,25-
dihydroxyvitamin D3 in the 20–40 ng/ml range, 125,000 IU/
kg causes 150–200 ng/ml serum 1α,25-dihydroxyvitamin D3, 
250,000–500,000  IU/kg causes >600  ng/ml serum 1α,25-
dihydroxyvitamin D3 and hypercalcemia, while >1,000,000 
IU/kg results in toxicity (40–42). An approximate cross-
species comparison would, therefore, have the “Vitamin D 
deficient” diet paralleling Vitamin D deficiency in humans, 
the “control” diet resulting in serum 1α,25-dihydroxyvitamin 
D3 in the recommended range for humans, and the “Vitamin 
D excess” diet resulting in the serum 1α,25-dihydroxyvitamin 
D3 above the recommended range for humans and approach-
ing the threshold for adverse effects.

The lack of any measurable impact of vitamin D on pancreatic 
acinar cell carcinoma development, growth, or mortality in the 
TAg mouse model casts further doubt on the already equivocal 
data supporting potential therapeutic use in humans. There are, 
however, several pertinent caveats to be made, including the use 
of a single mouse model [as the low-throughput nature of mouse 
models prohibits parallel screening (43)], potential differences 
between acinar cell carcinomas and other pancreatic tumors, 
and the species barrier. Nevertheless, while there are distinct 
limitations to mouse models for pancreatic cancer, they also have 
distinct advantages over analysis of cell lines. The generation of 
pancreatic cancer cell lines necessitates a selection for independ-
ence from micro-environmental cues and stromal interactions. 
In effect, any molecule which inhibits proliferation will exhibit 
antitumor impacts in these systems, regardless of additional more 
complex pro-tumor effects which may negate the antitumor prop-
erties. Vitamin D and its analogs are thought to directly inhibit 
proliferation by increasing p21 and p27 (11, 44) and inhibiting 
FOXM1 (2) and the Wnt/β-catenin signaling pathway (4). In vivo, 

other, opposing, cues may come into consideration, such as the 
effect of vitamin D in countering retinoic acid-induced apoptosis 
(45) and the tolerogenic impact vitamin D has on the immune 
system (46). This latter effect may have profound pro-tumor 
consequences, and yet the interaction will be absent not only in 
in vitro models but also in the xenograft transplantations, due to 
the use of immunocompromised mice. The most parsimonious 
reconciliation of the cell line and mouse model work is that the 
antiproliferative impact of vitamin D is negated in vivo by these 
additional pro-tumor effects.

How then to account for the inconsistent associations found 
between serum vitamin D and pancreatic cancer? One plausible 
explanation lies in the known risks factors of pancreatic cancer, 
which include smoking, lack of physical activity, obesity, type 2 dia-
betes, and chronic pancreatitis (47). In several studies, smoking has 
been demonstrated to reduce serum 1α,25-dihydroxyvitamin D3  
levels (48–50). Likewise, increased body mass index (BMI), 
an (imperfect) measure of obesity, is consistently associated 
with reduced serum 1α,25-dihydroxyvitamin D3 (51). Lower 
1α,25-dihydroxyvitamin D3 is also found in patients with either 
type 2 diabetes (52) or pancreatitis from various sources (53). 
Increased 1α,25-dihydroxyvitamin D3 is also associated with 
increased exercise, although the effect is difficult to entangle  
from increased exposure to UVB and reduced BMI (54). In any 
case, lower vitamin D levels are directly associated with many of 
the major risk factors for pancreatic cancer. Thus, it is possible 
that the inconsistent association of vitamin D with pancreatic 
cancer is actually a reflection of these indirect (and non-causative) 
associations.

The lack of support for an anti-oncogenic role of vitamin D in 
pancreatic cancer stands in contrast to that observed in several 
other solid tumors. In colorectal cancer, for example, vitamin D  
(55, 56) and various vitamin D analogs (57, 58) have proven 
efficacious as antitumorigenic agents in multiple mouse  
models. Supporting this function, genetic ablation of VDR in 
mice increases development of colorectal cancers (59, 60). Beyond 
pancreatic cancer the evidence from humans is also stronger. 
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Epidemiological data from human studies support a protective 
role for vitamin D in colorectal cancer and bladder cancer, with 
elevated circulating 1α,25-dihydroxyvitamin D3 levels reducing 
cancer risk (61). For other cancer types, the epidemiological 
data remains equivocal, or, in the case of prostate cancer, even 
identifies a negative association (61), although there are sugges-
tive protective associations with several. The effect of vitamin D  
on cancer may also be broader than risk of development;  
in breast cancer, for example, circulating 1α,25-dihydroxyvitamin D3  
is only weakly associated with risk, but is strongly associated 
with survival (62). At a genetic level, polymorphisms in VDR 
are associated with total risk of developing cancer (63), with 
the strongest effects being on skin cancer and gynecological 
cancers (63, 64), while several other cancers show no consistent  
association (although stratification by ethnicity and sex can 
identify specific risk groups). Our negative results in pancreatic 
cancer should not, therefore, be taken as evidence against the 
protec tive nature of vitamin D in other cancers, although it does 
cau tion against excessively broad characterization of vitamin D as 
a generic panacea for cancer.

Finally, we would note that even direct extrapolation of our 
study to the human context, which would not be advisable 
without the study of additional models, would not completely 
preclude therapeutic potential of vitamin D. First, our study was 
performed on acinar cell carcinoma, and it is plausible that other, 
more common, forms of pancreatic cancer may respond differ-
ently to vitamin D. Second, we used dietary modification with 
classical vitamin D, while therapeutic approaches in patients 
may include the use of alternative delivery systems and modified 

vitamin D analogs capable of more potent biological effects. 
Third, VDR was recently identified as a gemcitabine sensitizer in 
pancreatic cancer cells in an in vitro screen (65), and in a study of 
transplanted murine tumor cells into immuno-competent mice 
the vitamin D analog calcipotriol enhanced the antitumor effect 
of gemcitabine (66). Thus even in the absence of a monothera-
peutic in vivo antitumor effect, there is potential for vitamin D  
to exhibit utility as a component of a combination therapy.
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