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Abstract

Objective—Accurate and reliable detection of tremor onset in Parkinson’s disease (PD) is critical 

to the success of adaptive deep brain stimulation (aDBS) therapy. Here, we investigated the 

potential use of feature engineering and machine learning methods for more accurate detection of 

rest tremor in PD.

Methods—We analyzed the local field potential (LFP) recordings from the subthalamic nucleus 

region in 12 patients with PD (16 recordings). To explore the optimal biomarkers and the best 

performing classifier, the performance of state-of-the-art machine learning (ML) algorithms and 

various features of the subthalamic LFPs were compared. We further used a Kalman filtering 

technique in feature domain to reduce the false positive rate.

Results—The Hjorth complexity showed a higher correlation with tremor, compared to other 

features in our study. In addition, by optimal selection of a maximum of five features with a 

sequential feature selection method and using the gradient boosted decision trees as the classifier, 

the system could achieve an average F1 score of up to 88.7% and a detection lead of 0.52 s. The 

use of Kalman filtering in feature space significantly improved the specificity by 17.0% (p = 

0.002), thereby potentially reducing the unnecessary power dissipation of the conventional DBS 

system.

Conclusion—The use of relevant features combined with Kalman filtering and machine learning 

improves the accuracy of tremor detection during rest.

Significance—The proposed method offers a potential solution for efficient on-demand 

stimulation for PD tremor.
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1 Introduction

Deep brain stimulation (DBS) is a widely utilized treatment option to reduce the motor 

symptoms of advanced PD such as resting tremor, akinesia, and rigidity. Conventional DBS 

delivers constant and high-frequency (~130 Hz) stimulation pulses which may cause side 

effects such as psychiatric symptoms and speech impairment (Meidahl et al., 2017, Yao et 

al., 2018). Moreover, open-loop charge delivery increases the power consumption of the 

DBS system, potentially requiring a surgical battery replacement every three to five years. 

To address these challenges, the so-called adaptive DBS (aDBS) approach offers a 

promising alternative, by replacing conventional stimulation with a closed-loop and adaptive 

one (Burgess et al., 2010; Santaniello et al., 2011; Little et al., 2013; Priori et al., 2013; 

Meidahl et al., 2017; Arlotti et al., 2018; Yao et al., 2018). In this approach, the 

neuromodulation is dynamically controlled by motor symptoms such as tremor or 

bradykinesia, either in a continuous way (Rosa et al., 2015), or with an on-off strategy 

(Yamamoto et al., 2013; Little et al., 2013). By providing feedback from relevant 

biomarkers, such as the beta band power of LFPs in the subthalamic nucleus (STN) (Brown, 

2003), adaptive DBS can titrate stimulation, hence reducing the total stimulation delivered, 

improving both the efficacy of treatment and side effects, and increasing the battery life. 

Proof-of-concept studies of adaptive DBS in humans (Little et al., 2013) have reported 

promising advantages over conventional DBS, including a 27% improvement of the Unified 

PD Rating Scale (UPDRS), 56% reduction of stimulation time and energy dissipation, and 

improved speech intelligibility (Little et al., 2016a, 2016b, 2013). The adaptive DBS method 

tested used feedback based on the beta amplitude of LFPs recorded by the stimulation 

electrodes.

In order to characterize motor symptoms in PD, biomarkers in the LFP of STN and GPi have 

been studied (Beudel and Brown, 2016; Weinberger et al., 2009; Hirschmann et al., 2016, 

2013; Qasim et al., 2016). For instance, neuronal oscillations within the motor network and 

over the tremor frequency range (~3–7 Hz) have been shown to correlate with resting tremor, 

measured as increased cortico-muscular coherence during tremor (Hirschmann et al., 2013). 

The beta band (13–30 Hz) power in the cortex and STN has been shown to reduce during PD 

rest tremor (Hirschmann et al., 2013; Qasim et al., 2016), while the cortical beta phase-

amplitude coupling with broadband gamma oscillations (50–200 Hz) decreases during rest 

tremor (Qasim et al., 2016). The ratio of high-frequency oscillations (HFOs) between the 

slow band (200–300 Hz) and the fast band (300–400 Hz) has also been shown to increase 

during rest tremor (Hirschmann et al., 2016). Moreover, the low gamma (33–55 Hz) power 

in the STN LFP is increased during rest tremor in Parkinson patients (Weinberger et al., 

2009). While such features can potentially be used for real-time detection of resting tremor, 

the majority of current adaptive DBS experiments have been overly simplistic and based on 

a single feature such as beta band power, with a simple thresholding mechanism to control 
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DBS. However, the exclusive usage of beta-band power in the STN may not be optimal for 

tremor detection in PD, given that it is not correlated with tremor (Beudel and Brown, 2016). 

Therefore, other relevant biomarkers of pathological neural activity and powerful 

classification algorithms need to be investigated to more accurately characterize and predict 

the tremor state (Yao et al., 2018).

To improve resting tremor detection from the LFP, a multi-feature classification approach 

based on features of the LFP such as variance, zero crossing rate, autocorrelation, band 

powers, and wavelet transform has been used to identify tremor related characteristics in PD 

patients (Bakstein et al., 2012), and shows that LFPs from STN or GPi provide sufficient 

information for rest tremor detection. In another study, using beta, gamma, and tremor band 

powers, the ratio of slow and fast high frequency oscillations (HFOs), and a Hidden Markov 

Model (HMM), the Parkinsonian rest tremor was also accurately detected from STN LFPs 

(Hirschmann et al., 2017). Both frequency and time domain features such as multiple band 

powers and the Hjorth parameters from subthalamic LFPs, combined with a logistic 

regression classifier have also been used to detect Parkinsonian rest tremor (Shah et al., 

2018). However, despite promising results, the latency of tremor detection was not reported 

in these studies, and is an important parameter for implementation of closed-loop DBS 

where stimulation should best anticipate symptomatic disturbance. Furthermore, it is still 

unclear whether the use of more domain-specific features and advanced machine learning 

techniques could further improve the tremor detection accuracy. In various other 

neurological applications such as seizure detection for medication-resistant epilepsy 

(Shoaran et al., 2018) and movement intention decoding in brain-machine interface systems 

(Glaser et al., 2017), the use of machine learning and domain-specific features has made a 

significant impact by achieving remarkable accuracies. Particularly, gradient boosting-based 

algorithms such as XGBoost (Chen and He, 2015) have been very successful in classifying 

time-series neurophysiological data with limited training sets and have been included in our 

analysis. Such decision tree-based classifiers have been recently integrated on microchips 

with ultra-low power consumption and small area utilization (Shoaran et al., 2018) and could 

potentially be used for hardware implementation of aDBS. Moreover, the evaluation of 

tremor detection algorithms in a greater number of patients with different tremor 

characteristics is another crucial step for the reliability assessment of aDBS and its 

translation to a clinical setting.

In this work, we study the predictive accuracy of various biomarkers in the LFP recorded in 

the region of STN, such as band power in relevant frequency bands, beta-HFO phase-

amplitude coupling (PAC) (van Wijk et al., 2016), the Hjorth parameters that have been 

primarily used for EEG characterization (Hjorth, 1970), and wavelet entropy (Rosso et al., 

2001). We evaluate these neurophysiological biomarkers for quantifying Parkinsonian rest 

tremor in a group of 12 PD patients with different tremor intensities, and employ advanced 

ML models to detect rest tremor periods. Moreover, to further enhance the tremor detection 

performance, a Kalman filtering approach in the feature domain is explored (Yao et al., 

2018).
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2 Materials and methods

The overview of our proposed framework for tremor detection is depicted in Fig. 1. The goal 

is to accurately detect the occurrence of resting tremor by directly measuring the neural 

activity in STN. We opted to detect tremor from the LFP rather than from peripheral inertial 

signals as then stimulation could potentially anticipate the physical symptom. In addition, 

wireless communication between peripheral sensors and an internalized system introduces 

potential vulnerability to hacking, and additional energy demands. We used a supervised 

learning approach to classify the continuous LFP signal, while simultaneous measurements 

from an accelerometer sensor were used to label the data, as ‘ground truth’. The 

neurophysiological biomarkers were extracted from multi-channel LFP signals and a 

Kalman filter was used to process the extracted features. We subsequently trained different 

classifiers on a labeled feature set and evaluated the trained models on the test set to detect 

the tremor and non-tremor states.

2.1 Patients and surgical procedure

We studied 12 PD patients recruited from the University of Oxford. All subjects gave 

informed consent to participate, and the local research ethics committee approved the study. 

Patients were aged between 46 and 73 years old (mean 62 years old, 10 males), and had a 

disease duration ranging from 4 to 17 years (mean 10 years). Bilateral DBS electrodes were 

implanted into the STN, preceding the therapeutic stimulation for advanced idiopathic PD 

with motor fluctuations or dyskinesias. All the studied patients also had resting tremor. 

Detailed techniques for targeting and implanting electrodes in the STN have been previously 

reported (Foltynie and Hariz, 2010). Microelectrode recording was not performed during 

surgery. The model 3389 quadripolar macroelectrode with four platinum-iridium cylindrical 

contacts was used (Medtronic Neurologic Division, Minneapolis, USA). The contacts of this 

electrode range from 0 to 3, with contact 0 indicating the most caudal contact. Electrodes 

were localized intra-operatively through the effect of direct stimulation, and immediately 

post-operation by stereotactic imaging. Nevertheless, considering that not all contacts lie in 

the STN per se, we termed the area sampled by the electrode contact as the STN region 

(STNr). The extension cables for DBS electrodes were externalized through the scalp, 

enabling recordings prior to connection to a subcutaneous pacemaker, which was implanted 

in a second operation a week later. A TMSi porti (TMS international, Netherlands) and 

associated acquisition software were used to record monopolar LFPs at a sampling rate of 

2048 Hz. These were then common average referenced and bandpass filtered between (0.5–

500 Hz). Bipolar LFPs were extracted offline, by subtracting the monopolar signals 

measured by neighboring contacts on each electrode (Bakstein et al., 2012). We included 

three bipolar channels in our analysis (0–1, 1–2, 2–3). In a separate study, we included the 

bipolar channels between 0–2 and 1–3 contacts, which is a preferred strategy to reject the 

stimulation artifact on the middle electrode during adaptive DBS (Arlotti et al., 2016b; Little 

et al., 2016a). We also compared the performance of our classifier using a bipolar versus 

monopolar electrode contact configuration.

Overall, the dataset included 16 LFP recordings (7 from right side), as patients with bilateral 

tremor were recorded from both hemispheres. The LFPs were recorded from the STNr with 
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both medication withdrawn overnight and DBS off, while the acceleration of the 

contralateral limb was simultaneously recorded. Patients were at rest throughout the 

recordings. The LFP recordings varied from 1.5 to 10 (mean 6.2) minutes in duration among 

patients. Tremor prevalence ranged from 41 to 97 (mean 73) % of time.

2.2 Data annotation

In order to label the data, the tremor frequency fT of the accelerometer recording was 

calculated as the frequency associated with the highest amplitude (over 1–10 Hz). Then, a 

Butter-worth filter of second-order over the frequency range of (fT − 1, fT + 1 Hz) was used 

to filter the acceleration signal from the limb, and a Hilbert transform was subsequently 

applied to extract the envelope, as shown in Fig. 2. We then identified the resting non-tremor 

period as baseline, through visual inspection. For instance, the interval between the two 

vertical lines in Fig. 2 (a) is considered as non-tremor. The mean value + five times the 

standard deviation of baseline was empirically set as threshold, and the envelope was labeled 

as tremor if its amplitude surpassed the threshold level. While this method was effective in 

most patients, in some cases (i.e., 5 recordings) we had to slightly adjust the threshold to 

avoid the unnecessary annotation of very small and short-duration motions as tremor, and 

avoid rapid label switching within longer tremor episodes (Hirschmann et al., 2017).

2.3 Feature extraction

In order to compute the LFP biomarkers of tremor, we used a 1-second window with half 

overlapping to continuously segment the LFP recordings. Fifteen features were extracted 

from the three bipolar channels as described in Table 1, forming a 45-dimensional feature 

vector. In addition to beta power, which is the most commonly used feature in aDBS studies, 

we explored other potentially relevant biomarkers based on prior research on Parkinson’s 

disease and other neurological diseases, with the goal of improving tremor detection 

performance. The selected feature set included band power in several frequency bands, 

phase-amplitude coupling, and time-domain features such as the Hjorth parameters, as 

outlined below.

2.3.1 Low and high HFO power—The presence of HFO in STN (~300 Hz) was 

reported in patients with PD under dopaminergic treatment (Foffani et al., 2003). It has been 

further shown that the lower frequency HFO power (200–300 Hz) decreases after levodopa 

intake, while the higher frequency HFO power (300–400 Hz) increases (López-Azcárate et 

al., 2010). Furthermore, the ratio between the low and high HFO powers is shown to be a 

marker of Parkinsonian resting tremor. This ratio has been shown to increase when tremor 

occurs (Hirschmann et al., 2016).

2.3.2 Phase-amplitude coupling (PAC)—The coupling between the beta-band phase 

and HFO (150–400 Hz) amplitude in STN LFPs has been shown to have a positive 

correlation with severity of motor impairment, while it decreases after the intake of 

dopaminergic medication (van Wijk et al., 2016).

2.3.3 Tremor power and maximum peak power—An increased cortico-muscular 

coherence during tremor has been observed within (3–7 Hz) frequency range in the motor 
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network (Hirschmann et al., 2013). In our study, we extracted both the total power and the 

maximum peak power in (3–7 Hz) to index the tremor state.

2.3.4 Hjorth parameters—The Hjorth parameters of a signal describe its statistical 

characteristics in the time domain and are commonly used in EEG studies (Hjorth, 1970). 

These parameters include the activity, mobility, and complexity. While the Hjorth activity 

indicates the signal variance, mobility is a measure of the average frequency. Furthermore, 

the variations in frequency within a given time period are presented by the Hjorth 

complexity.

2.3.5 Gamma power—Multi-site LFP recordings from STN have shown an increased 

low gamma oscillation (31–45 Hz) during strong tremor periods (Weinberger et al., 2009), 

suggesting that low gamma might be a pertinent feature for tremor detection. We further 

included the gamma power in a higher frequency band (60–90 Hz) previously reported in 

STN LFPs (Trottenberg et al., 2006), and the high gamma (100–200 Hz) power that has been 

reported in macaque local field potentials (Ray et al., 2008).

2.3.6 Wavelet entropy—The wavelet entropy can be used to analyze the transient 

features of a non-stationary signal, while estimating the degree of order or disorder of the 

signal (Rosso et al., 2001). It has been a useful tool to analyze EEG signals, and given the 

difference of power spectrum within tremor and non-tremor states, we hypothesized that the 

associated wavelet entropy might be a useful feature for tremor detection.

2.3.7 Low and high beta power—The beta (13–30 Hz) power measured in the cortex 

and STN is reduced during resting tremor (Hirschmann et al., 2013; Qasim et al., 2016). 

Furthermore, the low beta (13–20 Hz) power significantly decreases in the on-state 

following the administration of apomorphine and levodopa (Priori et al., 2004). We included 

both low and high beta features in our study.

2.4 Correlation analysis

We used a biserial correlation coefficient (Müller et al., 2004) to quantify the correlation of 

each feature with the labeled tremor. This coefficient measures the ratio between the 

absolute difference of the group means (tremor and non-tremor) and the pooled standard 

deviation of the two classes. The maximum correlation coefficient of the three bipolar 

channels was used to represent the correlation of each feature with tremor.

2.5 Kalman filtering

The Kalman filter has been extensively used to track the state of a system based on the 

model of its dynamics and noisy measurements over time. This approach minimizes the 

variance of the estimation error, thus effectively reducing the undesired fluctuations of the 

measured data (Zhang and Parhi, 2016; Chisci et al., 2010). In tremor detection for PD, the 

noisy fluctuations of the measured local field potentials and the associated features may 

degrade the tremor detection performance. As illustrated in Fig. 3, we applied a Kalman 

filter of second-order to reduce the noise in feature time series and obtain a smoothed feature 

following Kalman filter. We expected that this approach would lower the rate of false 
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positive detections and improve the overall decoding performance. A brief summary of the 

filtering process (Chisci et al., 2010) is provided below.

Assuming that dkḋk
T represents the state vector vk, where ḋk denotes the derivative of dk, 

the feature vector fk is described by the following state-space model:

vk + 1 =
1 T p

0 1
× vk + wk

f k = 1 0 × vk + uk

(1)

where Tp shows the time interval of the prediction and wk represents the process 

disturbance, assumed to be a white noise of zero mean and covariance of:

Q =
σw

2 T p
3

3 σw
2 T p

2

2

σw
2 T p

2

2 σw
2 T p

(2)

The Kalman filter is applied to the model in (1) to recursively provide an estimate dk of dk. 

Next, the obtained smoothed variable dk is utilized in place of fk as input to our machine 

learning model. The standard deviations σw of wk and σu of uk are the required parameters 

for Kalman filtering, while the Kalman gain depends on σ = σw/σu, which is set to 5 × 10−5 

in this design (Chisci et al., 2010; Zhang and Parhi, 2016).

2.6 Classification and performance assessment

In order to detect the tremor episodes from extracted features, we evaluated the performance 

of different machine learning models and performed a hyperparameter tuning of classifiers 

in a patient-specific manner to determine the optimal settings. These models include the 

commonly used classification algorithms such as logistic regression (LR), support vector 

machines based on linear or RBF kernels (SVM-L, SVM-R), linear discriminant analysis 

(LDA), multilayer perceptron (MLP), K-nearest neighbors (KNN), and more recent models 

such as extreme gradient-boosted trees (XGB) and random forest (RF). The decision tree 

ensembles (e.g., gradient boosting (Friedman, 2001) and random forest) have been among 

the winning classifiers in ML challenges in recent years, performing remarkably well on 

small training datasets (Shoaran et al., 2018; Zhu et al., 2019). We further examined the 

performance of ML algorithms that do not rely on handcrafted features or domain 

knowledge, such as convolutional neural network (CNN) (Zhu et al., 2019). We used a 

compact CNN previously employed for EEG classification (Lawhern et al., 2018). The CNN 

model was implemented using the AlexNet architecture of TensorFlow, with three 

convolutional layers, three average pooling layers, and a softmax output layer. During model 

training, a 32-samples input batch was fed to the CNN in each iteration and the weights were 

updated by backpropagation. Multiple iterations were conducted until a stable cross-

validation score was obtained.
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Here, all the features described in Table 1 were used for classification. We used a block-wise 

approach to partition the LFP recordings into training and test sets and to minimize the risk 

of data leakage. Each recording was first divided into twenty blocks of equal size. A five-

fold cross-validation (CV) was subsequently applied, i.e., in each round, 80% of the LFP 

blocks were used to train the model and the rest to validate the performance. The results of 

five rounds were then averaged to assess the overall predictive performance. Given the 

unbalanced distribution of tremor/non-tremor episodes in our dataset, we measured the 

performance of classifiers by F1 score, sensitivity, and specificity, rather than accuracy. The 

F1 score is defined as 2 ⋅ Sensitivity×Precision
Sensitivity+Precision , indicating the harmonic mean of the sensitivity 

and precision. It ranges from 0 to 1 with higher values representing better performance 

(precision is the fraction of true positive detections to the total positive detections returned 

by the classifier).

2.7 Feature importance

Following model selection, we evaluated the predictive performance of features for the top 

performing classifier (XGB, as later shown in Section 3.2) to assess the relative feature 

importance and potentially reduce the feature computation overhead. Here, a sequential 

feature selection (SFS) method was utilized (Jain and Zongker, 1997; Zhu et al., 2019). The 

algorithm first evaluates all single-feature subsets to find the most predictive biomarker. In 

each subsequent iteration, the performance of the previous subset combined with a new 

element from the remaining feature set is investigated to find the next “best feature”, using 

F1 score measured by 5-fold CV (Zhu et al., 2019). The algorithm continues to successively 

add new features and update the subset until all features are analyzed.

2.8 Detection latency

In addition to detection rate, the timing of stimulation in adaptive DBS is also critical for 

modulation to be effective, and to be used as a reliable alternative for conventional DBS. In 

this work, the latency in tremor detection is measured with reference to the labeled tremor 

onset, showing how early ahead (or late) a detection is raised by the model. To measure the 

latency of classifiers, we define tr as the onset of tremor based on the labeled acceleration 

with the following conditions: (1) the state changes from non-tremor to tremor at tr; (2) the 

next consecutive state starting at tr + w/2 is also labeled as tremor, where w represents the 

window size and w/2is the overlap. Similarly, we define tp as the predicted onset of tremor 

based on the output of classifier, with the following two criteria: (1) the predicted state 

changes from non-tremor to tremor at tp; (2) the subsequent state starting at tp + w/2 is 

predicted as tremor. Then, the latency is calculated by tp − tr based on the nearest prediction 

within a range of 4 s around tr, as shown in Fig. 4.

In the current dataset, some patients exhibit continuous tremor-like activity, lacking a clear 

transition from the non-tremor to tremor state. For latency analysis, we chose those patients 

who had at least one clear tremor onset (tr) and one correctly detected tremor onset (tp) as 

described above. With this condition, 7 patients (9 recordings) were included in our latency 

analysis. The average detection latency of individual patients is used to quantify the overall 

latency.
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2.9 Statistical analysis

We used a one-way repeated measures ANOVA to compare the correlation coefficient 

among biomarkers (15 levels corresponding to the features in Table. 1), to compare the F1 

score for different channel configurations (3 levels: monopolar, bipolar between adjacent 

channels [0–1,1–2,2–3], and bipolar [0–2,1–3]), and to compare the F1 score for different 

window sizes and overlapping (6 levels: 2 s without overlap, 2 s with half overlap, 1 s 

without overlap, 1 s with half overlap, 0.5 s without overlap, and 0.5 s with half overlap). In 

addition, a two-way ANOVA with repeated measures was applied to study the impact of 

Kalman filtering (2 levels: with and without Kalman filter) and classifiers (8 levels: LDA, 

LR, KNN, SVM-L, SVM-R, MLP, RF, and XGB) on the classification performance. We 

used the IBM SPSS Statistics Version 22 for the statistical analyses presented here. 

Mauchly’s test for sphericity was performed for repeated measures and in cases where the 

sphericity assumption was violated, the results were Greenhouse-Geisser corrected. Multiple 

comparisons with Bonferroni correction were used for post-hoc comparison when the main 

effect was significant (p < 0.05).

3 Results

3.1 STNr LFP biomarkers for quantifying resting tremor

Fig. 5 depicts the correlation coefficient of each feature with tremor. The one-way ANOVA 

with repeated measures showed a significant difference in the examined electrophysiological 

biomarkers (Greenhouse-Geisser corrected F (5.0,75.0) = 6.4, p < 0.0001), and the Hjorth 

complexity exhibited a higher correlation with tremor compared to other features. No 

significant difference was observed between low beta vs. high beta (p = 0.72), neither 

between low and high HFO (p = 0.84), in our dataset.

3.2 Kalman filtering to enhance the specificity

Fig. 6 compares the classification performance of different ML models using the feature set 

in Table 1, and the effect of Kalman filtering. For F1 score, a two-way repeated measures 

ANOVA showed a marginal effect of Kalman filter (F (1,15) = 4.19, p = 0.058) and a 

significant effect of classifiers (Greenhouse-Geisser corrected F (1.3,18.8) = 5.37, p = 0.026) 

with no interaction. For the sensitivity measure, the classifiers showed a significant main 

effect (Greenhouse-Geisser corrected F (1.4,20.4) = 5.02, p = 0.027), while all classifiers 

except KNN showed comparable performance. For the specificity measure, the two-way 

repeated measures ANOVA showed a significant main effect of Kalman filter (F (1,15) = 

14.62, p = 0.002) and of ML models (Greenhouse-Geisser corrected F (2.7,40.8) = 3.83, p = 

0.019) with no interaction. Moreover, the Kalman filtering resulted in a 17.0% higher 

specificity compared to the cases without Kalman filtering. The XGB classifier obtained the 

highest F1 score (84.0% ± 10.8%) and sensitivity (89.2% ± 12.0%), while KNN achieved 

the highest specificity (59.6% ± 23.1%) on this dataset. The tremor detection performance 

for each recording based on the XGB model is shown in Table 2. The CNN classifier 

obtained an F1 score of 77.1% ± 18.3%, sensitivity of 81.7% ± 20.1%, and specificity of 

37.8% ± 30.1%. Fig. 7 depicts the performance of CNN while increasing the number of 

training epochs to the network. On average, the performance reached its maximum value 

after 10 training epochs.
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Using Kalman filter and XGB, the simulated classification results for three representative 

LFP recordings are illustrated in Fig. 8, showing a reasonable detection of tremor state. 

Specifically, for patients with prolonged episodes of weak or strong tremor (Fig. 8(a)), the 

proposed method can reliably detect the presence of tremor in the majority of cases. Our 

approach was also effective on recordings with a single prolonged tremor (Fig. 8(b)) while 

raising a number of false positives for small motions during the non-tremor state. Finally, for 

recordings with a high tremor prevalence (Fig. 8(c)), the algorithm could reliably detect the 

tremor episode.

3.3 Other design parameters

In addition to the type of classifier and features, the other parameters that may affect the 

classification performance include the window size, sampling rate, and channel 

configuration, which are discussed in the following. We further investigated the optimal 

number of features that led to the highest classification performance. For the following 

analysis, we use XGB combined with Kalman filter, as it showed a superior performance in 

tremor detection.

3.3.1 Window size and overlapping—The classification performance and latency for 

different window lengths and overlaps are depicted in Fig. 9(a)-(d). Here, we observed a 

nearly similar performance in terms of F1 score (Greenhouse-Geisser corrected F (2.7,39.7) 

= 0.43, p = 0.71). As expected, shorter windows and the use of overlapping improved the 

detection latency. Overall, the 1-second window with half overlapping achieved a reasonable 

trade-off between detection performance and latency.

3.3.2 Bipolar and monopolar channel configurations—The performance and 

detection latency for the monopolar and two bipolar configurations using a 1-second 

window and half overlapping are shown in Fig. 9(e). The one-way ANOVA with repeated 

measures showed no significant difference in terms of F1 score (Greenhouse-Geisser 

corrected F (1.5,22.3) = 1.74, p = 0.20) among the three configurations. Moreover, by only 

using the 0–2 or 1–3 bipolar channel for classification, no significant deterioration in 

performance was observed. The monopolar configuration led to a lower detection latency, 

but it was not significant. Considering that in practice, a bipolar configuration would limit 

the impact of stimulation artifact by canceling it as a common-mode input, we opted to use 

the bipolar method in this work.

3.3.3 Sampling rate—Although we used a high sampling rate (2048 Hz) to capture the 

high-frequency content in LFPs, this may increase the hardware complexity and power 

dissipation of the processing circuitry. To study the effect of sampling rate, we reduced the 

date rate to 512 Hz and excluded the HFO-based features (low HFO, high HFO, HFO ratio, 

PAC) from our analysis. We observed that the performance slightly degraded at lower 

sampling rates (F1 score of 84.0% ± 11.2%, sensitivity of 88.6% ± 13.3%, and specificity of 

49.5% ± 35.0%).

3.3.4 Optimal number of biomarkers—In order to reduce the feature count and 

assess the importance of different biomarkers in the overall classification performance, the 
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number of input features to the XGB model was successively increased based on the SFS 

method, as depicted in Fig. 10. We observed that performance can be further improved by 

optimally selecting as low as only five features or less, from each patient. For equal number 

of features, the F1 score with Kalman filtering was generally higher than the case without 

Kalman filter. This figure shows that the average F1 score for the XGB model can reach 

88.7% ± 8.5%, which is 8.3% higher compared to using all 45 features. The detection 

latency for this optimal setting was −0.52 ± 1.14 s (i.e., detection lead of 0.52 ± 1.14 s). The 

most discriminative features using the SFS method and XGB classifier are outlined in Table 

3 for each LFP recording. The stopping criterion is when adding a new feature improves the 

F1 score by less than 1%, with a maximum of 5 features selected in each case. With this 

process, the distribution of selected features for the patients in our dataset is shown in Fig. 

11, in which the high beta, low HFO, high HFO, and Hjorth parameters are among the most 

commonly selected features. While the correlation analysis did not show any significant 

difference between the low and high beta features, the latter is more frequently selected as 

an important feature for tremor detection in this study.

4 Discussion

In this work, we systematically analyzed the neurophysiological biomarkers in the STNr 

LFP in a machine learning framework, with the goal of accurately detecting resting tremor 

in PD. To the best of our knowledge, this is the first use of Kalman filtering as a post feature 

processing approach to enhance tremor detection performance. The Kalman filtering had a 

significant impact on specificity for all the studied classifiers. The enhancement of 

specificity is critical to limit the number of false positive detections and thereby to minimize 

DBS power consumption and side effects.

4.1 The choice of feedback signal

To detect the onset of tremor from local field potentials, we need to properly identify and 

label tremor episodes for model training. Here, we placed a peripheral accelerometer sensor 

on patients’ hands to measure their tremor intensity. Then, we adopted a thresholding 

method to separate the tremor and non-tremor periods, similar to the methods used 

elsewhere (Bakstein et al., 2012; Houston et al., 2015; Hirschmann et al., 2017). As an 

alternative feedback signal, the tremor severity measured by peripheral sensors or surface 

EMG could be used to control DBS. For example, the peripheral measurements of the 

tremulous limb have been utilized to guide the stimulation and suppress tremor 

(Malekmohammadi et al., 2016; Cagnan et al., 2016). However, this approach may impose 

an additional requirement on patient compliance (Arlotti et al., 2016a; Hirschmann et al., 

2017), as well as security concerns for wireless telemetry between the implant and the 

wearable sensor. To implement adaptive DBS, the combination of informative biomarkers 

based on neuronal activity (e.g., STN LFPs or ECoG in motor cortex (Swann et al., 2018)) 

may be preferred as they directly reflect brain activities that may underlie symptoms 

(Meidahl et al., 2017; Arlotti et al., 2016a). For example, the cortical narrow gamma (60–90 

Hz) oscillations pertaining to dyskinesia have been used to control DBS (Swann et al., 

2018), while reducing energy consumption by 38% to 45% and maintaining therapeutic 

efficacy. Ideally, a combination of both depth and cortical biomarkers may provide a more 
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precise and/or reliable approach for the closed-loop control of DBS and enable the targeting 

of multiple PD symptoms (Arlotti et al., 2016a). For instance, cortical biomarkers could be 

used in place of the low-amplitude STN HFOs that are difficult to detect in the presence of 

stimulation artifact (Meidahl et al., 2017), while these sensitive STN biomarkers could 

accurately detect the onset of tremor (as shown in this work) and activate DBS in the first 

place. The advantage of our proposed framework is that a handful of most relevant 

biomarkers can be selected in a patient-specific manner and combined with powerful 

classification algorithms, without the need to prioritize and threshold a single depth or 

cortical biomarker that could, in turn, sacrifice the efficacy or energy efficiency of the 

adaptive DBS.

In addition to detection performance, the physical and practical constraints of the system 

should be carefully considered when choosing the feedback signal for aDBS, such as the 

need for additional implants, any required changes in the surgical procedure, and patient 

comfort and compliance (Arlotti et al., 2016a). Our current study is based on LFPs in STNr, 

with the advantage that no additional implant is needed and no change in the standard 

surgical procedure for DBS. Moreover, the multiple biomarkers extracted from the LFP may 

allow for the better personalization and adaptability of therapy to account for inter-subject 

variability.

4.2 Features, classifiers, and Kalman filter

Multiple LFP biomarkers and a feedforward neural network were previously used for resting 

tremor detection (Bakstein et al., 2012), achieving a classification accuracy of over 86% in 4 

out of 8 patients. However, due to the unbalanced duration of tremor/non-tremor episodes in 

most patients, the classification accuracy may not be appropriate for quantifying the 

performance. In the current study, we further demonstrated the possibility of successful 

tremor detection on 12 patients with diverse tremor characteristics and durations, using 

relevant biomarkers in the STNr LFP, state-of-the-art ML models, and Kalman filtering. If 

we instead apply a median threshold to beta power only, similar to most prior studies, the F1 

score, sensitivity and specificity dropped to 49.6% ± 9.9%, 44.7% ± 9.0% and 47.3% 

± 24.04%, respectively. Moreover, using the HMM model (Hirschmann et al., 2017) on our 

feature set, we obtained an F1 score of 56.3% ± 15.5%, sensitivity of 48.2% ± 16.4% and 

specificity of 55.5% ± 23.6%, while Kalman filter is not effective in this case. The CNN 

model with embedded feature learning led to an F1 score of 77.1% ± 18.3%, sensitivity of 

81.7% ± 20.1%, and specificity of 37.8% ± 30.1%. Therefore, our feature-engineered 

approach showed a superior performance in the current dataset. In general, while deep 

learning models obtain an outstanding performance on large and unstructured datasets such 

as provided by imaging, they may not be optimal for problems with limited training data 

(Zhu et al., 2019).

In this work, we used the Hjorth parameters for tremor analysis in PD (Shah et al., 2018). 

Interestingly, the Hjorth complexity, which is a measure of the change in frequency, showed 

a higher correlation with tremor compared to other features. The underlying 

neurophysiological mechanism that contributes to the correlation of Hjorth complexity with 

tremor may be worth further study. The use of Kalman filter in feature space was motivated 
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by prior studies on epileptic seizure detection (Zhang and Parhi, 2016) and emotion 

classification from EEG (Zheng et al., 2017). In this work, the Kalman filter improved the 

tremor detection performance of different classifiers, by reducing the noisy fluctuations of 

the features. Due to the inherent noise in the neural system and the corresponding LFP 

recordings, a second-order Kalman filter provided a suitable way to model this noisy 

activity, thereby successfully tracking the tremor state. The Kalman filter offers the potential 

benefit of enhancing the detection specificity without degrading the sensitivity of the 

classifier, thus improving the energy efficiency in aDBS. Furthermore, we tested the 

potential use of Kalman filter after classification, which proved to be less effective compared 

to filtering in feature space for tremor detection.

The classification results in Fig. 8 show that our algorithm performs well on typical patients 

that have sustained tremor periods. For patients with shorter tremor episodes, our algorithm 

raises a number of false positives. In this work, we used Kalman filtering to lower the 

number of false positives and achieved 17% improvement in specificity on average. The 

other potential approach to limit the false positive rate is to increase the number of 

successive detections required to define tremor, e.g., by defining tremor onset after three 

positive detections. Although we have largely improved specificity by the use of Kalman 

filtering, this is still a remaining challenge for adaptive DBS and needs to be addressed in 

future work.

4.3 Channel configuration

Considering that in a closed-loop approach, the DBS electrodes would be used for both 

sensing the neural activity and stimulation, this would unavoidably cause a strong 

stimulation artifact at the recording site. The bipolar configuration provides a way to reduce 

this effect, by partially canceling the common-mode artifact component. In this work, we 

compared the classification performance of monopolar and two bipolar configurations, and 

no significant difference was found in the absence of stimulation. Our analysis showed that a 

single bipolar combination (0–2 or 1–3) leads to a comparable performance, which could 

further reduce hardware complexity. To minimize the potential impact of stimulation artifact 

on the classifier performance, we also tested our algorithm by excluding the high-gamma 

feature (100–200 Hz), and the results showed no significant decline in performance. More 

advanced circuit techniques will be explored to suppress the artifact both at the input of 

amplifiers and digitally in the back-end, in order to enable a robust implementation of 

adaptive DBS in future.

4.4 Limitations and future work

In the current approach for labeling the data, we visually identified a low-activity time 

period as baseline. Then, a threshold was empirically set by calculating the average and 

standard deviation for the baseline. However, we had to slightly adjust the threshold in some 

patients to avoid the abrupt transitions in labels due to noise or artifact in the acceleration 

signal. Alternatively, the accelerometer could be combined with other methods such as video 

recording and EMG sensing in order to more reliably define and label the tremor episodes 

for model training.
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It has been previously shown that amplitude-responsive aDBS decreases the total energy 

delivered to the tissue by ~130 mW per side, while the energy dissipated by a single-channel 

power classifier is of the order of 10 mW (Little et al., 2013). Through system-on-chip 

integration in modern CMOS technologies, power dissipation in the range of sub-microwatt 

per channel has recently been reported for epileptic seizure detection (Shoaran et al., 2016), 

and a very low energy of 41.2nJ/class for computing 12 features with an XGB classifier 

(Shoaran et al., 2018). Moreover, while a high voltage compliance is required for 

stimulation, recording can be reliably done at a lower supply voltage. Considering that 

sensing, feature computation, and classification could be performed with low energy, aDBS 

could potentially save total battery usage, in addition to the saving in energy delivered to the 

tissue through stimulation (and thereby the reduction in side-effects). The actual 

computational overhead and energy consumption for the proposed algorithm needs to be 

investigated and compared with the potential saving in stimulation energy. An optimal 

sampling rate that enables a good trade-off between detection accuracy and energy should be 

further explored. Moreover, the performance in this study was evaluated offline, while an 

online evaluation of the proposed approach should be performed to further validate its 

efficacy in real-time and during closed-loop operation. The effect of stimulation artifact on 

the tremor detection circuitry should be studied in order to efficiently integrate this method 

into the DBS system.

Efficient integration of multiple biomarkers and advanced control algorithms could 

potentially improve the therapeutic efficacy of aDBS (Arlotti et al., 2016a; Beudel and 

Brown, 2016). Although aDBS has mostly been realized using external devices this is not 

exclusively the case. Medtronic’s implantable research system, the Activa PC + S, has been 

used for neural recording and stimulation in essential tremor and PD, and for acute trials of 

aDBS in Parkinson’s (Velisar et al., 2019). The investigational Summit RC + S (Medtronic) 

embeds basic spectral analysis algorithms and an LDA classifier. The design of a low-power 

and miniaturized ASIC with integration of sensing, optimal biomarker extraction, advanced 

classification, and stimulation could enable high quality, low-noise recording and more 

effective intervention, and remains a future goal. Also, while the use of multiple biomarkers 

may account for inter-subject variability, more research is required to translate this approach 

into an effective personalized therapy.

Here, as a proof-of-concept, we demonstrated our approach in the form of a binary classifier 

that could activate an on-demand stimulator. However, it is also possible to use this 

framework in a truly adaptive manner, by predicting the tremor strength using a regressor or 

a multi-class machine learning method to adaptively control the stimulation amplitude. 

Finally, we limited our analyses to Parkinsonian rest tremor, and the confounding effects, if 

any, of voluntary movement remain to be investigated, as does the detection of Parkinsonian 

action or postural tremor.

5 Conclusion

In this work, we evaluated a number of neurophysiological biomarkers in the LFP signal 

from the STNr, and various classification algorithms to detect resting tremor episodes in 

Parkinson’s disease. By combining a powerful machine learning model with relevant 
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patient-specific features in the LFP, and using Kalman filtering, we achieved an average F1 

score of 88.7% and detection lead of 0.52 s. This work demonstrates the potential use of a 

more accurate ML-based approach for resting tremor detection and adaptive DBS control in 

Parkinson’s disease.
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Highlights

• Multiple features of local field potentials in subthalamic nucleus were 

investigated to detect resting tremor in Parkinson’s disease.

• The use of relevant features, machine learning, and Kalman filter improves 

the tremor detection performance.

• The Kalman filter in feature space significantly improves the specificity of 

detection by 17%.
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Fig. 1. 
Overview of the proposed framework for tremor detection. The output of machine learning-

based classifier can be used to activate DBS in an envisioned closed-loop system.
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Fig. 2. 
(a) Tremor labeling based on acceleration signal, (b) the corresponding LFP. The red curve 

shows the envelope of the filtered acceleration around the tremor frequency, while the two 

vertical lines define the non-tremor period as baseline for threshold setting. The horizontal 

black line represents the threshold to separate the tremor and non-tremor periods; (c) Time-

frequency decomposition of the acceleration signal, (d) and corresponding LFP (the y-axis is 

displayed in log scale). The color bars on the right indicate the log of the absolute power.
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Fig. 3. 
Kalman filtering in feature space. The blue curve represents the original feature (low HFO 

power), while the red curve shows the corresponding feature following Kalman filtering.
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Fig. 4. 
Latency calculation in an example patient. The time difference between the onset of 

classifier output (tp) and the onset of labeled tremor (tr) is defined as detection latency.
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Fig. 5. 
Correlation coefficients of features with tremor. For each feature, the channel with the 

maximum correlation coefficient has been used. The error bars indicate the standard error.

Yao et al. Page 23

Clin Neurophysiol. Author manuscript; available in PMC 2020 January 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 6. 
Performance of different classifiers in tremor detection, with and without Kalman filtering. 

The performance is measured by F1 score, sensitivity, and specificity. The error bar indicates 

the standard error.
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Fig. 7. 
Performance of compact CNN on the training and validation sets across consecutive training 

epochs. The gray area indicates the standard error across patients.
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Fig. 8. 
Examples of tremor detection on three sample LFP recordings. The bipolar LFP, measured 

acceleration, labeled tremor, and classifier output are shown. The binary output of XGB 

classifier that is built upon LFP features successfully tracks the episodes of tremor.
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Fig. 9. 
Performance for different window sizes and overlaps; (a) F1 score, (b) sensitivity, (c) 

specificity, and (d) latency; (e) Performance for monopolar and bipolar configurations with a 

1-s window and half overlap, and the boxplot of the corresponding latency on the right axis.
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Fig. 10. 
The grand-averaged classification performance with respect to number of features using the 

sequential feature selection method. The arrow shows the setting that leads to the highest 

performance on average, using the same XGB model for all patients. The gray area indicates 

the standard error across patients.
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Fig. 11. 
Distribution of the number of times a feature is selected across patients. A subject-specific 

number of features is used for each patient (min 1, max 5). Features selected from more than 

one channel in a patient are counted as one.
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Table 1
Neurophysiological biomarkers for resting tremor detection.

Biomarker Description

1. Low Beta Spectral power in (13–20 Hz) (Priori et al., 2004; Qasim et al., 2016)

2. High Beta Spectral power in (20–30 Hz) (Priori et al., 2004)

3. Low Gamma Spectral power in (31–45 Hz) (Weinberger et al., 2009)

4. Gamma Spectral power in (60–90 Hz) (Trottenberg et al., 2006)

5. High Gamma Spectral power in (100–200 Hz) (Ray et al., 2008)

6. Low HFO Spectral power in (200–300 Hz) (López-Azcárate et al., 2010)

7. High HFO Spectral power in (300–400 Hz) (López-Azcárate et al., 2010)

8. HFO Ratio Power ratio of HFO in (200–300 Hz) and (300–400 Hz) (Hirschmann et al., 2016)

9. PAC Phase-amplitude coupling between the phase of beta (13–30 Hz) and the amplitude of HFO (150–400 Hz) (van Wijk et al., 
2016)

10. Tremor Power Spectral power in (3–7 Hz)

11. Max Power The peak power in (3–7 Hz)

12. Wavelet Ent Wavelet entropy (Rosso et al., 2001)

13. Hjo Act Hjorth activity (Hjorth, 1970)

14. Hjo Mob Hjorth mobility (Hjorth, 1970)

15. Hjo Com Hjorth complexity (Hjorth, 1970)
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Table 2
Tremor detection performance for each recording using the XGB classifier. Here, K and N 
denote the performance with and without Kalman filtering.

Recording index F1 Score (%) Sensitivity (%) Specificity (%)

N K N K N K

1 88.7 84.9 98.5 88.6 5.6 28.5

2 68.9 78.1 70.0 80.8 69.4 74.9

3 39.6 69.0 43.7 70.9 72.1 82.3

4 96.3 98.6 99.6 100.0 32.5 82.5

5 36.8 63.0 33.7 63.7 70.4 79.7

6 81.6 84.0 94.8 93.0 9.5 34.6

7 70.8 76.2 73.3 80.4 75.4 76.2

8 92.5 92.4 100.0 99.9 0.0 0.5

9 90.9 98.0 98.8 98.8 4.0 66.9

10 70.4 71.4 76.7 77.5 52.3 65.3

11 81.5 91.0 88.0 96.0 30.3 69.7

12 65.4 75.8 73.4 80.6 64.4 77.1

13 95.1 95.1 100.0 100.0 0.0 0.0

14 92.3 92.3 100.0 100.0 0.0 0.0

15 73.4 84.0 96.5 100.0 11.4 43.6

16 89.1 89.7 95.7 97.2 26.5 24.5

Mean 77.1 ± 18.3 84.0 ± 10.8 83.9 ± 20.8 89.2 ± 12.0 32.7 ± 29.8 50.4 ± 31.4
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Table 3
The top performing features with XGB model.

Recording index Most discriminative features

1 High Beta

2 High Gamma, Low Beta, Hjo Com

3 High Beta, Gamma, Hjo Act, Low Beta

4 High Gamma

5 Tremor Power, High Beta, HFO Ratio, Max Power, Wavelet Ent

6 Hjo Com, HFO Ratio, High HFO

7 HFO Ratio, Wavelet Ent, Low Gamma, Hjo Com, High HFO

8 Hjo Mob

9 Low Beta

10 Gamma, High HFO, HFO Ratio

11 High Gamma, HFO Ratio, Hjo Com

12 High HFO, PAC, Low HFO, Tremor Power

13 Hjo Act

14 High Gamma, Gamma

15 Gamma, Low Beta, High HFO

16 Gamma

Hjo = Hjorth, Act = Activity, Mob = Mobility, Com = Complexity.
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