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Abstract: Terrain classification allows a mobile robot to create an annotated map of its 
local environment from the three-dimensional (3D) and two-dimensional (2D) datasets 
collected by its array of sensors, including a GPS receiver, gyroscope, video camera, and 
range sensor. However, parts of objects that are outside the measurement range of the 
range sensor will not be detected. To overcome this problem, this paper describes an edge 
estimation method for complete scene recovery and complete terrain reconstruction. Here, 
the Gibbs-Markov random field is used to segment the ground from 2D videos and 3D 
point clouds. Further, a masking method is proposed to classify buildings and trees in a 
terrain mesh. 

Keywords: mobile robot; terrain reconstruction; multisensor integration; Gibbs-MRF; 
classification 

 

  

OPEN ACCESS



Sensors 2012, 12 11222 
 

 

1. Introduction 

Object segmentation and classification are widely researched topics in surveying, mapping, and 
autonomous navigation by mobile robots [1,2]. These techniques allow a robot to navigate through and 
interact with its environment by providing quickly accessible and accurate information regarding the 
surrounding terrain [3].  

The multiple sensors mounted on such robots collect terrain information only in the form of  
three-dimensional (3D) point clouds and two-dimensional (2D) images [4]. Then object classification 
methods are applied to these datasets to classify salient features [5,6].  

When mobile robots, especially ground-based autonomous robots, detect surrounding terrain 
information, some parts of objects are outside the measurement of range sensors. Therefore the 
classification will be incomplete and inaccurate. This incompleteness can be addressed with video 
cameras, which can provide terrain scenes with complete scenes in the far field. However, it is difficult 
to estimate objects’ surfaces using only video cameras. Thus, datasets from a multiple sensors [7] must 
be integrated for a terrain classification system that allows accurate and reliable map annotation.  

Here we propose a method of terrain classification, consisting of ground segmentation and building 
and tree classification, using complete scene recovery. We use 3D point clouds and 2D images for fast 
ground segmentation method using the Gibbs-Markov random field (MRF) method with a flood-fill 
algorithm. To recover complete scenes, we propose the Gibbs-MRF method that detects the boundary 
pixels between objects and background in order to recover the missing tops of objects.  

Considering that trees have a porous surface and buildings have a uniform distribution, we classify 
buildings and trees based on the horizon spatial distribution using a masking method. Finally, the 
terrain classification results are used to create a 3D textured terrain mesh, which is compatible with 
global information database collection, semantic map generation, and augmented reality applications. 

The present paper is organized as follows: in Section 2, we discuss related work on multisensor 
integration, interpolation, ground segmentation, and object classification in real-world applications. In 
Section 3, we describe our proposed framework for terrain reconstruction and object classification. In 
Section 4, we analyze the results of the proposed ground segmentation, height estimation, and object 
classification methods. In Section 5, we present our conclusions. 

2. Related Work 

Real-world reconstruction involves several sub-processes, including terrain mesh generation, 
interpolation, traversable region assessment, and object classification. 

2.1. Multisensor Integration 

To represent a robot’s surrounding terrain in a virtual environment, it is necessary to reconstruct a 
terrain model using an integrated dataset obtained from multiple sensors [8–12]. Rovira-Más [13] 
proposed a density grid for 3D reconstruction from information obtained from stereo cameras, a 
localization sensor, and an inertial measurement unit. Sukumar [3] provided a convenient visualization 
method by integrating sensed datasets into a textured terrain mesh. However, it is difficult for these 
systems to process the large datasets obtained in outdoor environments and achieve on-line rendering.  
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Other researchers have enhanced the performance of terrain reconstruction to provide on-line  
photo-realistic visualization. Kelly [9] describes real-world representation methods using video-ranging 
modules. In the near field, 3D textured voxel grids are used to describe the surrounding terrain, 
whereas a billboard texture in front of the robot is used to show scenes in the far field. However, a range 
sensor cannot sense all terrain information, often leaving empty spaces in the terrain model in practice.  

2.2. Interpolation in Empty Regions 

Recovery of these “unsensed” regions plays a major role in obstacle avoidance. Some researchers 
apply interpolation algorithms to fill empty holes and smooth terrain [14–17]. For example, to estimate 
such unobserved data, Douillard [18] interpolates grids in empty regions in elevation maps in order to 
propagate label estimates. However, it is difficult to use these methods to recover missing information 
that is beyond the measurement range of the sensors. 

Wellington [19] applies a hidden semi-Markov model to classify terrain vertical structure into 
ground, trees, and free space classes for each cell of a voxel-based terrain model. Then an MRF 
algorithm is used to estimate ground and tree height. However, this height estimation process simply 
averages across cells using neighbor data and cannot estimate actual height values. 

In hardware design research, Früh [7] utilizes a vertical 2D laser scanner to measure large buildings 
and represent streetscapes in urban environments. When an object is located between the sensors and a 
building, some regions of the building cannot be sensed by the laser scanner as they are blocked by the 
object. These missing regions can be easily filled by planar or horizontal interpolation algorithm. 

2.3. Traversable Region Segmentation 

Ground segmentation is a widely studied topic necessary to determine the traversable regions in a 
terrain. Pandian [2] classifies terrain features into rocky, sandy, and smooth classes solely from 2D 
images. The segmented results take the form of a rectangular grid, instead of polygon shape. 
Therefore, this method lacks precision.  

The MRF algorithm is effective in object segmentation from 2D images and 3D point clouds [20–26]. 
However, it is difficult to specify the probability density functions (PDF) in MRF. To solve this 
problem, the Hammersley-Clifford theorem proves an equivalence relationship between MRF and the 
Gibbs distribution [25]. However, computation of the Gibbs-MRF is too complicated for real-time 
ground segmentation.  

2.4. Object Segmentation and Classification 

Object segmentation is necessary to extract features, implement classification, and generate a 
semantic map. Weiss [27] utilizes a RANSAC algorithm to detect the ground and organize a point 
cloud into several clusters by segmenting plants and measuring plant positions. Segmented plants are 
estimated with high accuracy. However, this method can only be used for small plants, because it 
cannot be applied to objects outside the sensor’s measurement range. 

Golovinskiy [28] proposed a graph-based object segmentation method. The 3D points sensed by the 
range sensor are grouped into nodes of a graph using the k-nearest neighbor algorithm. The min-cut 
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algorithm is then applied to segment the nodes into several objects. Lalonde [29] segments 3D points 
into scatter-ness, linear-ness, and surface-ness saliency features. In this method, an object model with a 
special saliency feature distribution is trained off-line by fitting a Gaussian mixture model (GMM) 
using the expectation-maximization (EM) algorithm. New data can be classified on-line into the model 
with a Bayesian classifier.  

Huber [30] proposed a semantic representation method for building components. The floor and 
ceiling components are identified by finding the bottom-most and top-most local maxima in the height 
histogram. After low-density cells in the ground plane histogram are removed, the wall lines are 
detected using the Hough transform.  

Nüchter [8] described a feature-based object detection method for 3D point cloud classification. 
First, the plans are extracted from the 3D point cloud using the RANSAC algorithm. Then, the wall, 
floor, ceiling, and other objects are labeled according to the defined scene interpretation. Finally, the 
objects are detected from a 2D image taken from the 3D rendering result.  

In this paper, we discuss a multisensor integration method. For ground segmentation, we use the 
Gibbs-MRF and a flood-fill algorithm. Further, in contrast to interpolation methods, we propose a 
height estimation algorithm to recover unsensed regions, especially for objects at a height and outside 
the sensor’s range of measurement. 

3. Terrain Reconstruction and Object Classification 

We describe a framework for outdoor terrain reconstruction and object classification, as shown in 
Figure 1. The integrated sensors provide a dataset of 2D images, 3D point clouds, and mobile robot 
navigation information. We integrate these dataset into a grid-based textured terrain mesh. Then, we 
describe a ground segmentation method that identifies the features such as the ground, obstacles, and 
the background. 

Figure 1. Framework for outdoor terrain reconstruction and object classification. 
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The probability of a site’s configuration is calculated using the Gibbs distribution [22]: 
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We define a clique as a neighboring set, and a clique set C as a collection of single-site and pair-site 
cliques. A potential function Vc(f) is defined to evaluate the effect of neighbor sites in clique c. 

According to the Bayes’ rule, the solution of Equation (1) is as follows: 
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The energy function of U(d|f) + U(f) is defined to evaluate the effect of the neighbor sites in single-site 
and pair-site potential cliques, as follows: 
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The evaluations of the clique potential functions V1(fs) and V1(ds|fs) depend on the local 
configuration and observations of clique C1. The clique potential functions V2(fs, fs’) and V2(ds, ds’|fs, fs’) 
are evaluations of the pair-site consistency of clique C2. 

When we apply the Gibbs-MRF to ground segmentation in a 2D image, we first determine a set of 
pixels whose configurations are in the ground class with high confidence. We initially segment the 3D 
points as ground data using the robot vehicle’s height h1 as the standard. We assume that if the y 
coordinate of a 3D point is ranging from −h1 − ∆ to −h1 + ∆, then this point is ground data, as shown in 
Figure 3. This step is a rough ground segmentation process, which produces a dataset G1.  

Figure 3. Rough segmentation of 3D ground data. 

 

Then we find the projected pixels in the 2D image from the points in G1, using the projection matrix 
as follows: 

TCamIKRt ]|[ −=  (7) 

where the homogeneous coordinates of image pixel t are projected from the homogeneous coordinates 
of the 3D point T. Cam is defined as the vector of the camera’s position, the matrix R is defined as the 
mobile rotation matrix, and I is an identity matrix. The camera calibration matrix K is defined as follows: 
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where l is the focal length of the camera, and the 2D coordinate (px, py) is the center position of the 
captured image. As shown in Figure 4, the 2D pixel dataset '

1G  is mapped from the dataset 1G . We 
determine the configuration of site '

1Gs ∈  as ground. 

Figure 4. Projection results as green pixels in an image. 

 

We apply the Gibbs-MRF algorithm to classify the configurations of other pixels into the ground or 
non-ground classes. We consider that: 

(a) If the configuration of site s is same as its observation, the probability of this configuration is high.  
(b) If the configuration of site s is same as the configuration of its neighboring site s’, the 

probability of this configuration is high.  
(c) If the configuration of site s is same as the configuration of its neighboring site s’, and the 

difference between these observations sd  and 'sd  is low, the probability of this configuration is high.  

The clique potential functions are formulated as follows: 
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Here, the constants α, β, and γ are positive numerical values. The configuration fs depends on 
whether the pixel s belongs to the ground dataset '

1G . The formula ||ds – ds’|| is defined as the color 
difference between observations ds and ds’.  
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We derive Equation (5) using the potential functions defined in Equations (9–12), and label the 
configuration of each pixel.  

To reduce the computation load of Gibbs-MRF, we apply a flood-fill algorithm to compute the 
configurations of pixels inside the boundary between ground and non-ground. The pseudocode for 
ground segmentation using the flood-fill algorithm is as follows:  

for each site s in '
1G  

   configuration f(s) = ground;  
   enqueue neighbour sites of s into a queue Q;  
   while (Q is not empty) 
    dequeue a site s' from the Q;  
    if ( )'(* sf = =ground) 
             enqueue neighbor sites of s' into Q; 
    endif; 

endwhile; 
endfor; 

Starting with the pixel set '
1G , we estimate the configurations of the neighboring pixels. We apply the 

Gibbs-MRF algorithm to classify the configurations of other pixels into the ground or non-ground classes. 
The pixels with a ground configuration are grouped into dataset '

2G , which is shown as the blue 
region. The other regions contain objects and background textures. We classify the ground vertices in 
the 3D terrain mesh, which are mapped to the pixels in the dataset '

2G , as shown in Figure 11(b).  

3.3. Complete Scene Recovery 

When mobile robots detect surrounding terrain information, some parts of objects are outside the 
measurement of range sensors. We see that the top of the building is missing in the terrain 
reconstruction result, shown as Figure 5.  

Figure 5. Terrain reconstruction results. 

 

We propose a height estimation method to solve the problem of missing regions by estimating the y 
coordinate of an object’s top boundary. 

Using the ground data segmentation result, we assume that the non-ground vertices in the terrain 
mesh belong to objects, because background data, such as the sky, cannot be sensed by the range 
sensor. Next, we project these vertices onto pixels in a 2D image, whose configuration is determined as 
being part of an object. We apply the Gibbs-MRF method to classify the non-ground pixels into 
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3.4. Building and Tree Classification 

We consider tree objects, including both grass and trees, to have a porous surface that allows rays 
from the range finder to pierce through to the inside. This is in contrast to buildings, for which the 3D 
range finder only detects points on the outer surface. Therefore, the horizon shape of a building has a 
uniform distribution, whereas that for a tree has a normal distribution. As shown in Figure 9, we can 
see that the horizon structure of the buildings consists of the line-like components. We classify 
buildings by detecting these lines using the masks described in Figure 10.  

Figure 9. Spatial distributions of buildings and trees. 

 

Figure 10. Line detector masks. 

 

The convolution function for the masking method is: 

∑∑
−= −=
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where h(i, j) is the elevation value of a vertex in the terrain mesh, f(m, n) is the value in a mask cell, 
and s is the size of the mask. If U(i, j) is larger than a threshold, we determine the vertex (i, j) belongs to a 
building. If not, we determine the vertex belongs to a tree. After classifying buildings in the terrain mesh, 
we map the building vertices onto the 2D images in order to identify the sensed buildings in the 2D images. 

4. Experiments 

Experiments were carried out using a mobile robot with integrated sensors, including a GPS 
receiver, gyroscope, video camera, and range sensor. We utilized HDL-32E Velodyne sensor to scan 
3D points in an unknown environment. It provides approximately 694,292 laser shots per second. The 
Valid Data Range is approximately 70 m. The proposed algorithms were implemented by the laptop 
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with an 2.82 GHz Intel(R) Core(TM)2 Quad CPU, a GeForce GTX 275 graphics card and 4 GB RAM. 
We drove the robot around an outdoor area of 104 square meters, including buildings and trees. The 
upper parts of these objects were outside the range of sensor, but were captured in the 2D images. 

The final terrain classification result, as shown in Figure 11, is obtained in five steps: first, we 
reconstruct a textured terrain mesh in a virtual environment by integrating the packages. Then, we 
segment the ground vertices in the terrain mesh and map them onto 2D pixels. Next, we segment all 
the ground pixels using the Gibbs-MRF model with the flood-fill algorithm. Then, we estimate object 
boundaries in the 2D images using the object vertices in the terrain mesh and evaluate the height of 
each object cell in the terrain mesh. Finally, we classify buildings and trees in the terrain mesh based 
on the proposed masking method. Because we classify building objects in x-z plane, some pixels of 
trees exist above the buildings in Figure 11(d). 

Figure 11. Segmentation and classification results. (a) Complete scene recovery.  
(b) Ground segmentation in the terrain mesh. (c) Tree classification in the terrain mesh.  
(d) Building classification in the terrain mesh. 

(a) (b) 

(c) (d) 

We discuss the ground segmentation results by using a confusion matrix, which is shown in Table 1. 
The ground  and groundnon −  rows represent the actual ground and non-ground classes respectively. The 
ground  and groundnon −  columns represent the inferred ground and non-ground classes respectively.  

We segment the ground data in a 2D image with 512 × 256 pixels. The confusion matrix is 
computed by a supervised method. We group the pixels into ground and non-ground classes manually. 
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If an actual ground pixel is grouped under the ground class, the inferred class ground increases by one. 
If not, groundnon −  increases by one.  

Table 1 indicates that 97.68% of the ground region has been segmented on average. The ratio of the 
inferred errors to the actual classes, including ground and non-ground, is 3.19% on average.  

Table 1. Ground segmentation performance. 

Truth/Inferred ground groundnon −
ground  67977 1611 

groundnon −  2580 58904 

We implement the ground segmentation in 2D image every second. Figure 12 shows the ground 
classification accuracy samples during the robot navigated in an unknown environment. The accuracy 
value is calculated as the ratio between the inferred ground pixels and the actual ground pixels.  

Figure 12. Ground classification accuracy. 

 

We define two types of classification errors in this project. One of them results from undetected 
ground pixels. If ground pixels are inferred as non-ground pixels, we define them as inferred errors. 
Figure 13 shows samples of undetected ground pixel ratio and inferred error ratio. 

We then detect the edge of objects by using the non-ground classification result. We investigate the 
performance of the proposed height estimation method by comparing the obtained values with the 
actual heights (2.90 m on average). Since the range sensor scans objects only up to a height of 1.8 m, 
the upper parts of buildings cannot be sensed. However, as shown in Figure 14, we recover the missing 
parts from the incomplete terrain mesh, and the average estimated height value is 2.92 ± 0.11 m. In 
Figure 14, the x-axis represents the distance between the estimated vertices with the first estimated vertex. 

The previously proposed interpolation algorithms average the empty region using the surrounding 
3D points. These methods do not recover the actual shape of the unsensed region. However, using our 
proposed height estimation method, we successfully recover the actual shape of the missing parts. 
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Figure 13. Errors in ground classification. 

 

Figure 14. Height estimation result. 

 

We render the textured terrain mesh and represent the texture of the ground, trees, and buildings at 
an average of 11.43 frames per second (FPS) using the Gibbs-MRF model along with the flood-fill 
algorithm. This is faster than the case where only the Gibbs-MRF model is used (8.37 FPS). After 
recovering complete scenes in the terrain mesh, we classify objects into tree and building classes. The tree 
classification results are indicated in blue color in the 2D images in Figure 15. In the 50th and 100th 
frames, the objects are located far from the robot, so that noise exists in the sensed objects, especially 
at the corners. When the robot moves closer to the building in the 200th frame, the corner shape is 
detected accurately. The corner pixels are grouped in the building class. When the robot is located near 
the trees in the 800th frame, the accuracy of the range sensor is higher than that when the robot is  
far from the trees. Finally, the noise in the spaces between the trees is removed in the reconstructed  
terrain mesh. 
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Figure 15. Tree classification results: (a) frame 50; (b) frame 100; (c) frame 200; and  
(d) frame 800. 

(a) (b) 

(c) (d) 

We use a manual supervised method to classify the pixels in the 2D images of Figure 15(a–d) into 
tree and building objects. By using the inferred results and through manual classification, the 
confusion matrices in Tables 2–5 are obtained. When the robot moves closer to the objects, the spatial 
distribution of the objects is detected with low noise; in this case, object classification is performed 
correctly and the error ratio is low. 

Table 2. Tree classification result for Figure 15(a). 

Truth/Inferred tree  building
tree  9918 3026 

building  2828 10235 

Table 3. Tree classification result for Figure 15(b). 

Truth/Inferred tree  building
tree  11983 3106 

building  1749 9847 

Table 4. Tree classification result for Figure 15(c). 

Truth/Inferred tree  building
tree  11536 905 

building  1238 14652 
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Table 5. Tree classification result for Figure 15(d). 

Truth/Inferred tree  building
tree  17196 33 

building  340 17771 

5. Conclusions 

This paper described a method of effective segmentation of ground, buildings, and trees for 
automated surveying and mapping by mobile robots. The method was found effective in an outdoor 
environment for a mobile robot with a range sensor, video camera, GPS receiver, and a gyroscope.  

The complete shape of objects that are partly outside sensors’ range of measurement is accurately 
recovered. The accurate height estimation allowed successful classification of buildings and trees on 
the basis of their spatial distribution. However, the height estimation algorithm does not work well for 
recovering the buildings which are not uniform in color or have overhanging roofs. In future, we will 
improve the system to deal with these problems. 
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