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This study aims to decode the hemodynamic responses (HRs) evoked by multiple sound-
categories using functional near-infrared spectroscopy (fNIRS). The six different sounds
were given as stimuli (English, non-English, annoying, nature, music, and gunshot). The
oxy-hemoglobin (HbO) concentration changes are measured in both hemispheres of the
auditory cortex while 18 healthy subjects listen to 10-s blocks of six sound-categories.
Long short-term memory (LSTM) networks were used as a classifier. The classification
accuracy was 20.38 ± 4.63% with six class classification. Though LSTM networks’
performance was a little higher than chance levels, it is noteworthy that we could classify
the data subject-wise without feature selections.

Keywords: functional near-infrared spectroscopy (fNIRS), long short-term memories (LSTMs), auditory cortex,
decoding, deep learning

INTRODUCTION

Recognizing sound is one of the important senses in everyday life. People are always exposed to a
variety of sounds, and they can know what sound it is without being conscious. This ability allows
people to avoid various dangers and facilitates communication with others. The auditory stimulus
that enters through the outer ear is transmitted to the auditory cortex through the auditory nerve.
It is clear that the temporal cortex is activated differently by different sounds. Neural responses
in the auditory cortices have been studied using diverse modalities like electroencephalography
(EEG; Wong et al., 2007; Hill and Scholkopf, 2012; Liu et al., 2015), magnetoencephalography
(MEG; Hyvarinen et al., 2015), eletrocorticogram (ECoG; Pasley et al., 2012; Herff et al., 2015),
functional magnetic resonance imaging (fMRI; Wong et al., 2008; Gao et al., 2015; Zhang et al.,
2016), functional near-infrared spectroscopy (fNIRS; Plichta et al., 2011; Kovelman et al., 2012;
Dewey and Hartley, 2015), and multimodal imaging (i.e., concurrent fNIRS, fMRI, and/or MEG;
Kovelman et al., 2015; Corsi et al., 2019) to identify this process. In these studies, the complexities
of brain responses evoked by the perception of sounds have been investigated to improve the quality
of life.
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Griffiths and Warren (2004) argued that analyzing auditory
objects in the two-dimensional space (frequency and time)
rather than one-dimensional space (frequency or time) is
more meaningful, and thus acoustic experiences that produce
two-dimensional images need to be investigated. But, they did
not provide specific sound categories in their work. Theunissen
and Elie (2014) showed that natural sounds facilitate the
characterizations of the stimulus-response functions for neurons
than white noise or simple synthetic sounds. Salvari et al.
(2019) demonstrated significant activation and interconnection
differences between natural sounds and human-made object
sounds (music and artificial sounds) in the prefrontal areas using
MEG. However, there were no significant differences between
music and artificial sounds. Liu et al. (2019) demonstrated
that predictions of tuning properties of putative feature-
selective neurons match data from the marmoset’s primary
auditory cortex. Also, they showed that the exact algorithm of
marmoset’s call classification could successfully be applied in call
classification in other species.

Identifying the sound that a person hears using a brain-
computer interface (BCI) enables us to know what the
person is hearing. The more diverse sounds a BCI device
can discern, the more variant conditions are identified. For
those who have lost vision, sound may be an alternative
tool to communicate with other people in a non-contact
way. If it is possible to classify more sounds, we can
increase the control commands for an external device. Zhang
et al. (2015) have researched decoding brain activation from
multiple sound categories in the human temporal cortex. Seven
different sound categories (English, non-English, vocal, Animal,
mechanical, music, and nature) were used for classification
in their fMRI work. They reported sound-category-selective
brain maps showing distributed patterns of brain activity
in the superior temporal gyrus and the middle temporal
gyrus. However, analyses of such responses were hampered
by the machine noise produced during fMRI experiments
(Scarff et al., 2004; Fuchino et al., 2006).

fNIRS is a non-invasive brain imaging method that uses
near-infrared light (700–900 nm) to penetrate the head and
records oxygenation changes in the cerebral blood flow. fNIRS is
a promising method for analyzing sound and speech processing.
Compared to fMRI, fNIRS measurement is not noisy, and
such measurements can be made in an environment more
conducive to infant studies. Owing to these advantages, fNIRS
shows significant potential for real-time brain monitoring
while the subject is moving. According to fNIRS analyses,
newborns consistently exhibit a strong hemodynamic response
to universally preferred syllables, which suggests that the
early acquisition and perception of language can be detected
using categorical linguistic sounds (Gomez et al., 2014). The
applications of this technology have the potential to provide
feedback for speech therapy or in the tuning of hearing
aid devices (e.g., cochlear implants) at an early stage of
development based on brain recordings (Mushtaq et al., 2020).
Several groups have demonstrated fNIRS use for measuring
brain responses in deaf children with cochlear implants
(Sevy et al., 2010; Pollonini et al., 2014).

In fNIRS applications, classification has been used in lie
detection (Bhutta et al., 2015), drowsiness detection (Khan and
Hong, 2015), mental workload detection (Herff et al., 2014),
brain disease (Yoo et al., 2020), and the fNIRS-EEG-based hybrid
BCI (Yuan et al., 2019; Lin et al., 2020). In fMRI applications,
classification has also been used to decode the brain responses
evoked by sight (Kohler et al., 2013; Smith, 2013) and sound
(Staeren et al., 2009; Zhang et al., 2015). Lotte et al. (2007) and
Pereira et al. (2009) reviewed the classification algorithms for
EEG and fMRI data, respectively.

Recently, numerous studies have focused on improving
classification accuracy by applying deep learning technology
to brain signal classification, in addition to artificial neural
networks (ANNs; Badai et al., 2020; Flynn et al., 2020).
Convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) are representative forms of ANNs. The CNN
is robust in processing large image data sets (Lee et al., 2020).
It has been widely implemented in brain signal processing,
including fMRI (Erturk et al., 2020), deep brain stimulation
(Kakusa et al., 2020), and EEG (Lun et al., 2020). Besides, CNNs
have been used to diagnose brain diseases in the fNIRS domain
(Xu et al., 2019a; Yang et al., 2019, 2020). RNNs are capable
of predicting and classifying sequential data. They have been
widely applied in robotics for various purposes and systems such
as obstacle avoidance control (Xu et al., 2019b; Zheng et al.,
2019; Zhao et al., 2020), self-organizing robot control (Smith
et al., 2020), collision-free compliance control (Zhou et al., 2019),
dynamic neural robots (Tekulve et al., 2019), and self-driving
system (Chen et al., 2019). Recently, RNNs have achieved
impressive results in detecting seizures (Sirpal et al., 2019), brain
injuries (Ieong et al., 2019), and pain (Hu et al., 2019b), as
well as in discriminating attention-deficit hyperactivity disorder
(Dubreuil-Vall et al., 2020).

Long short-term memory (LSTM) is a type of RNN
incorporating a progressive model (Hochreiter and
Schmidhuber, 1997). Compared to RNN, LSTM networks
possess a ‘‘gate’’ to reduce the vanishing gradient problem and
allow the algorithm to more precisely control the information
that needs to be retained in memory and the information that
must be removed. LSTM is also considered superior to RNNs
when handling large sequences of data. Additionally, compared
to CNN, it exhibits better performance in classifying highly
dynamic nonlinear time-series data such as EEG data (Tsiouris
et al., 2018; Li et al., 2020).

This study aims to develop a communication method for
the completely paralyzed with no vision. We identify the sound
that a person hears by measuring task-evoked hemodynamic
responses from the auditory cortex: In our early work (Hong
and Santosa, 2016), four sound categories were classified. When
remotely communicating with people without vision, visual or
motor cortex-based BCIs may not be applicable. Sound will
be a vital tool to communicate. In this article, we increased
the number of sound categories from four to six. The more
diverse sounds are classified, the more variant conditions are
identified. Eventually, we can diversify the control commands to
operate an external device. Sound-based BCI using audio stimuli
is promising because we can use such audio signals in our daily
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lives (i.e., a passive BCI is possible). In this article, auditory-
evoked HRs are measured using fNIRS, and subsequently, LSTM
is applied to analyze fNIRS’ ability to distinguish individual
sounds out of six classes.

MATERIALS AND METHODS

Subjects
A total of 18 subjects participated in the experiment (age:
26.89 ± 3.49 years; seven females, two left-handed). All subjects
had normal hearing and no history of any neurological disorder.
All subjects were informed about the nature and purpose
of the respective experiments before obtaining their written
consent. For the experiment, each subject lay down on a bed.
All subjects were asked to remain relaxed, close their eyes,
and avoid significant body movements during the experiment.
The subjects were asked to listen attentively to various audio
stimuli and guess the category of each stimulus. After the
experiment, all participants were asked to explain verbally
whether they could precisely distinguish what they heard. The
fNIRS experimentation was done on healthy subjects and the
entire experimental procedure was carried out in accordance
with the Declaration of Helsinki and guidelines approved by the
Ethics Committee of the Institutional Review Board of Pusan
National University.

Audio Stimuli
The audio stimuli consisted of six different sound categories
selected from a popular website (http://www.youtube.com). As
shown in Table 1, the first and second categories entailed speech
in English and other languages (non-English). The subjects were
Indonesian, Korean, Chinese, Vietnamese, and Pakistani. Each
participant had a common recognition of English but failed to
recognize the other languages. The third and fourth categories
were annoying sounds and nature sounds. The fifth category
was a segment of classical music (Canon in D by Pachelbel).
The sixth category was gunshot sounds at a frequency of 1 Hz.
Each category consisted of six different sounds (except the
gunshots, which had the same repeated sound). Each subject
was exposed to 36 trials (i.e., six sound categories × six trials).
The audio stimuli were presented in a pseudo-randomized order.
Each stimulus consisted of 10 s of the sound followed by 20 s
of silence.

Additionally, pre- and post-trials of classical music were
added (to avoid sudden hearing), neither of which was included

in the data processing. Accordingly, the entire fNIRS recording
lasted for approximately 19 min. All audio stimuli were
digitally mixed using the Adobe Audition software (MP3-
format file: 16-bit quantification, 44.1 kHz sampling, stereo
channel) and normalized to the same intensity level. Active
noise-cancellation earbuds (Sony MDR-NC100D) were utilized
for acoustic stimulation of all subjects with the same sound-
level setting. After each fNIRS recording session, all subjects
reported that they could accurately distinguish the sound among
the sound categories for all trials.

fNIRS Measurements
Figure 1 shows the continuous-wave fNIRS system’s optode
configuration (DYNOT: DYnamic Near-infrared Optical
Tomography; NIRx Medical Technologies, Brooklyn, NY,
USA) for bilateral imaging of the auditory cortex in both
hemispheres. The emitter–detector distance was 23 mm, while
the sampling rate was set to 1.81 Hz at two wavelengths
(760 and 830 nm). The optode configuration consisted
of 3 × 5 arrays (eight emitters and seven detectors) with
22 channels for each hemisphere. The two 22-channel sets were
placed on the scalp, covering the left (Chs. 1–22) and right
(Chs. 23–44) temporal lobes. According to the International
10-20 System, Chs. 16 and 38 were placed at T2 and T4,
respectively (Santosa et al., 2014). In the left hemisphere,
both Broca’s area and Wernicke’s area were covered by this
configuration. Finally, the lights in the room were switched off
to minimize signal contamination from ambient light sources
during the experiments.

Preprocessing
The optical data of two wavelengths were converted into
relative oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR)
concentration changes using the modified Beer-Lambert law
(Hiraoka et al., 1993) using MATLABTM (2020b, MathWorks,
USA). Owing to the uniform emitter-detector distance, constant
values of differential path-length factors were used for all
channels (i.e., d = 7.15 for λ = 760 nm and d = 5.98 for
λ = 830 nm). In previous studies, HbO data were activated
significantly higher than HbR for given stimuli. Therefore, only
HbO data were processed in this study. The HbO data were
filtered to remove physiological and artificial noises using the
fifth-order Butterworth band-pass filter with cutoff frequencies
of 0.01 Hz and 0.1 Hz. The filtered data was chopped for
each trial.

TABLE 1 | Audio categories (M: male, F: female).

Trial Human vocal hearing Nonvocal hearing

English Non-English Annoying sound Nature sound Music Gunshot

1 M Russian (F) Baby cry River Canon in D 10 times
2 F German (F) Car alarm Forest (day time) Canon in D 10 times
3 M French (F) Police siren Rain Canon in D 10 times
4 MF* Bulgarian (MF*) Horror sound Jungle Canon in D 10 times
5 F Italian (MF) Male scream Ocean waves Canon in D 10 times
6 F Japanese (F) Nuclear alarm siren Waterfall Canon in D 10 times

*MF denotes male–female conversation.
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FIGURE 1 | Optode configuration: the numbers represent the measurement
channels, where Chs. 16 and 38 coincide with T3 and T4 locations in the
International 10–20 system (Hong and Santosa, 2016).

Feature Extraction for Support Vector
Machine
The mean, slope, kurtosis, and skewness values of HbO signals
were used as support vector machine (SVM) features. SVM
classification was performed twice: One for ‘‘within-subject’’ and
the other for ‘‘across-subject.’’ Within-subject classification is a
standard classification method for the fNIRS study. Considering
the total number of trials for one subject was 36, 6-fold cross-
validation was performed for each subject. For the across-
subject classification, we used the entire data set. In this case,
the total number of trials was 648 (i.e., multiplication of the
number of subjects and the number of trials. Ten-fold and leave-
one-out cross-validation were performed for the across-subject
classification. Training and testing sets were divided randomly by
MATLABTM function cvpartition for cross-validation. The same
data partitions were used for SVM and LSTM.

LSTM
A recurrent neural network (RNN) is a type of artificial neural
network wherein hidden nodes are connected with directional
edges as a directed cycle. It is well known as an effective tool to
process sequential data such as voice and handwriting. The RNN
has the following structure (Hochreiter and Schmidhuber, 1997):

yt = Why ht + by, (1)
ht = tanh

(
Whh ht−1 +Wxh xt + bh

)
, (2)

where yt indicates the output of the present state; subscript t is the
discrete time step; Why, Whh, and Wxh are the parameters from
layer to layer; by is the bias of the output y; ht is the hidden state
vector; xt is the input vector; and bh is the bias of the hidden state
vector h.

The LSTM is a special kind of recurrent neural network,
compensating for the vanishing gradient problem. It has a
structure of cell-states in the hidden state of RNN. The basic
formulas for LSTM are as follows.

ft = σ(Wxf xt +Whf ht−1 + bf ), (3)
it = σ(Wxixt +Whiht−1 + bo), (4)
ot = σ(Wxoxt +Whoht−1 + bo), (5)
gt = tanh(Wxgxt +Whght−1 + bg), (6)
ct = ft ◦ ct−1 + it ◦ gt , (7)
ht = ot ◦ tanh(ct), (8)

where ft is the activation vector of forgetting gate to forget past
information; it is the activation vector of input gate to memorize
the current information; ot is the activation vector of output gate;
gt is the activation vector of the cell input; ct is the cell state
vector; Wxf, Whf, Wxi, Whi, Wxo, Who, Wxg, and Whg are the
weight matrices of the input and recurrent connections; bf, bi,
bo, and bg are the parametric bias vectors; and ◦ is the Hadamard
product. In the LSTM networks, cell state and hidden state are
calculated recursively.

In this article, LSTM networks are applied in two ways,
like the two cases (within-subject, across-subject) in the SVM
classification. Figure 2 represents the LSTM networks used in
this article. First, for within-subject classification, a bi-LSTM
layer of eight hidden layers was used with two maximum epochs
and three mini-batch sizes (Kang et al., 2020). Second, the
bi-LSTM layer of 16 hidden layers was used for across-subject
classification with three maximum epochs and three mini-batch
sizes, see Table 2. The number of hidden layers, maximum epoch,
andmini-batch size were selected to avoid overfitting (Sualeh and
Kim, 2019). Additionally, a bi-LSTM layer of 256 hidden layers
was examined for across-subject classification (to compare with
16 hidden layers). Also, 6- and 10-fold and leave-one-out cross-
validations were performed in the same way as SVM.

RESULTS

In the experiment, a total of 18 subjects listened to six repetitions
of each of the six categories of sound stimuli (36 total trials). The
six categories were English (E), non-English (nE), nature sounds
(NS), music (M), annoying sounds (AS), and gunshot (GS). The
within-subject classification accuracies were 21.35 ± 6.71% for
SVM and 19.14± 9.16% for LSTM, respectively; see Figure 3.

When the cross-validations of SVM and LSTM were
performed separately, the accuracies of the 10-fold across-subject
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FIGURE 2 | Simple bi-LSTM model for classification.

TABLE 2 | A single bi-LSTM network.

bi-LSTM structure

Across-subject Within-subject

10-fold Leave-one-out

Input size 44 × 55 44 × 55
Training data set 584 612 30
Testing data set 64 36 6
The number of hidden layers 16 8

classification with 16 hidden layers were 16.83 ± 3.90% for
SVM and 20.38 ± 4.63% for LSTM, respectively. Figure 4 shows
the confusion matrices for training and testing for the 10-fold

across-subject classification. The hypergeometric p-values were
calculated using the confusion matrix in Figure 4B. The p-values
were 0.3745 (E), 0.3123 (nE), 0.0232 (NS), 0.0946 (M), 0.0129
(AS), and 0.3701 (GS). For a fair comparison between SVM and
LSTM, we repeated the 10-fold cross-validation using the same
data partitioning using the same code. In this case, the results
were 15.73 ± 3.00% for SVM and 21.44 ± 4.57% for LSTM.
Henceforth, we could not find a significant difference between
the two cases regarding the data partitioning method.

Using the same data partitioning for SVM and LSTM, we
also performed the leave-one-out across-subject classification.
The results were 16.83 ± 3.90% for SVM and 20.52 ± 6.15% for
LSTM. Figure 5 shows the confusion matrices for training and
testing in the leave-one-out case. The hypergeometric p-values
were calculated using the confusion matrix in Figure 5B. The
p-values were 0.4274 (E), 0.5488 (nE), 0.0129 (NS), 0.0036 (M),
0.1078 (AS), and 0.3769 (GS). The low p-values indicate that the
classifier could successfully classify the sounds.

LSTM showed better accuracies in the across-subject
classification but worse accuracies in the within-subject
classification: This result was somewhat unexpected in
comparison to the four-sound case (Hong and Santosa,
2016). It suggests that, in the six categories case, the subjects
heard too many sound-categories, and they had difficulty in
distinguishing them. Overall, when there are many hidden layers
in the classifier, training becomes better than when there are few,
but overfitting to the training data occurs. It is noted that the
across-subject classification accuracies of LSTM with 256 hidden
layers were 99.9% for training and 23.15% for testing, which is
an overfitting case.

DISCUSSIONS

The previous studies in the literature have shown that various
sound categories were processed differently in the brain. Staeren
et al. (2009) showed that different sound categories evoked
significant BOLD responses in a large expanse of the auditory
cortex, including bilaterally the Heschl’s gyrus, the superior
temporal gyrus, and the upper bank of the superior temporal
sulcus. Zhang et al. (2015) revealed that sound category-selective
brain maps demonstrated distributed brain activity patterns in
the superior temporal gyrus and the middle temporal gyrus.
Plichta et al. (2011) reported that pleasant and unpleasant sounds
increased auditory cortex activation than neutral sounds in their
fNIRS research. Our results showed that nature sounds, music,
and annoying sounds were classified better than other categories.
Nature sounds and music are considered pleasant sounds, and
annoying sounds are unpleasant sounds (Plichta et al., 2011).
Classifying emotionally-neutral sounds (i.e., E, nE, and GS)
‘‘individually’’ from other categories is considered difficult.

Deep learning algorithms have been developed to increase
classification accuracy and stability (Shan et al., 2019; Park
and Jung, 2020; Sung et al., 2020). RNNs have been developed
to improve their performance likewise; memristor-based RNNs
(Yang et al., 2021), chaotic delayed RNNs with unknown
parameters and stochastic noise (Yan et al., 2019), reformed
recurrent Hermite polynomial neural network (Lin and Ting,
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FIGURE 3 | Within-subject classification accuracies (SVM vs. LSTM).

2019). The developed RNNs have been applied in various brain
imaging techniques (Hu et al., 2019a; Plakias and Boutalis,
2019). Wang et al. (2019) achieved 98.50% of classification
accuracy by convolutional RNNs for individual recognition
based on resting-state fMRI data. Qiao et al. (2019) proposed
the application of bi-LSTM to decoding visual stimuli based on
fMRI images from the visual cortex. The classification accuracies
were 60.83 ± 1.17% and 42.50 ± 0.74% for each subject in
five categories. The number of training samples and validation
samples were 1,750 and 120 for each subject. Compared with the
existing research, a limitation of this research is the small size of
the data set.

The conventional classification technique is the process of
distinguishing data from a set of categories based on a training
data set on the category classes of which are known (Klein and
Kranczioch, 2019; Pinti et al., 2019). The individual observations
are analyzed into a set of features selected and executed by
a classifier (Khan et al., 2014). In a more detailed process, a
classifier is a function that takes the values of various features.
For example, the mean, slope, skewness, and kurtosis values
of HbO and HbR signals from individual trials can be used
as the feature set (Tai and Chau, 2009). In our previous
research (Hong and Santosa, 2016), decoding four-class sounds
categories using fNIRS showed the 46.17 ± 6.25% (left) and

40.28 ± 6.00% (right) accuracies using LDA, while showing
38.35 ± 5.39% (left) and 36.99 ± 4.23% (right) using SVM.
In the previous study, the classification was performed with
the following steps: filtering, selecting region of interest, feature
extraction from the region of interest, and classification. In
the current study, to compare with the proposed method,
the conventional classification technique was applied with the
following steps: filtering, feature extraction from all channels,
and classification. For LSTM networks, only filtering has been
applied before classification.

The LSTM network may indirectly extract unstructured
features from the data, and the network’s weighting factors
are optimized during the training session. The network can be
trained only after simple filtering. The results showed that SVM
is better for within-subject classification and LSTM is better for
across-subject classification. It seems that fNIRS data involve
different physiological data per subject, but this physiological
difference is not removed with simple filtering. Also, the sample
sizes of within-subject classification were 30 for training and
six for validation. The sample sizes of across-subject classification
were 584 for training and 64 for validation. Additionally, there
are no significant differences between 10-fold and leave-one-
out validations. The dataset of 10-fold validation might use the
same subject’s data in either training or testing. The size of
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FIGURE 4 | Across-subject classification accuracies (LSTM): (A) confusion matrix for training, (B) confusion matrix for testing (Class 1: English; Class 2:
non-English; Class 3: Nature sound; Class 4: Music; Class 5: Annoying sound; Class 6: Gunshot).

FIGURE 5 | Across-subject classification accuracies (leave-one-out validation of the LSTM with 16 hidden layers): (A) confusion matrix for training, (B) confusion
matrix for testing (Class 1: English; Class 2: non-English; Class 3: Nature sound; Class 4: Music; Class 5: Annoying sound; Class 6: Gunshot).

the training data set was bigger in the leave-one-out validation.
According to this result, if the sample size increases, the LSTM
network would show better performance than the conventional
method (SVM). Also, if we have enough training data, it would
be enough for ignoring the subjects’ physiological differences in
the LSTM network. The LSTM network with 256 hidden layers
showed slightly better performance than others, but the network
overfitted with the training data set rapidly. Simplifying the data
classification time can contribute to the commercialization of

future diagnostics using fNIRS or BCI technology, given that it
can reduce the classification time. Although the results in this
study are not outstanding, it is worthwhile to show the potential
of deep learning-based fNIRS signal classification technology.

CONCLUSION

This article aimed to identify hearing sounds using the
HRs from the auditory cortices. The proposed audio-signal-
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based BCI is to be used for completely paralyzed people,
for whom visual or motor cortex-based BCI may not be
suitable. In this study, we used fNIRS signals evoked by
audio-stimuli from multiple sound-categories. Compared with
the conventional method, the LSTM-based approach could
decode the brain activities without heavy pre-processing of
the data, such as regression, feature selection, and feature
extraction. Though the LSTM network’s performance was a
little higher than the chance level, it is noteworthy that
we could classify the six sounds virtually without defining
the region of interest and feature extraction. The approach
using audio stimuli is promising for a passive-type BCI using
ordinary sounds in our daily lives. This study has a limitation
on the number of data, which needs to be improved in
the future.
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