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ABSTRACT Enteropathogenic Escherichia coli (EPEC) causes severe diarrheal disease
and is present globally. EPEC virulence requires a bacterial type III secretion system
to inject �20 effector proteins into human intestinal cells. Three effectors travel to
mitochondria and modulate apoptosis; however, the mechanisms by which effectors
control apoptosis from within mitochondria are unknown. To identify and quantify
global changes in mitochondrial proteolysis during infection, we applied the mito-
chondrial terminal proteomics technique mitochondrial stable isotope labeling by
amino acids in cell culture-terminal amine isotopic labeling of substrates (MS-TAILS).
MS-TAILS identified 1,695 amino N-terminal peptides from 1,060 unique proteins
and 390 N-terminal peptides from 215 mitochondrial proteins at a false discovery
rate of 0.01. Infection modified 230 cellular and 40 mitochondrial proteins, generat-
ing 27 cleaved mitochondrial neo-N termini, demonstrating altered proteolytic pro-
cessing within mitochondria. To distinguish proteolytic events specific to EPEC from
those of canonical apoptosis, we compared mitochondrial changes during infection
with those reported from chemically induced apoptosis. During infection, fewer than
half of all mitochondrial cleavages were previously described for canonical apopto-
sis, and we identified nine mitochondrial proteolytic sites not previously reported,
including several in proteins with an annotated role in apoptosis, although none oc-
curred at canonical Asp-Glu-Val-Asp (DEVD) sites associated with caspase cleavage.
The identification and quantification of novel neo-N termini evidences the involve-
ment of noncaspase human or EPEC protease(s) resulting from mitochondrial-
targeting effectors that modulate cell death upon infection. All proteomics data are
available via ProteomeXchange with identifier PXD016994.

IMPORTANCE To our knowledge, this is the first study of the mitochondrial pro-
teome or N-terminome during bacterial infection. Identified cleavage sites that had
not been previously reported in the mitochondrial N-terminome and that were not
generated in canonical apoptosis revealed a pathogen-specific strategy to control
human cell apoptosis. These data inform new mechanisms of virulence factors tar-
geting mitochondria and apoptosis during infection and highlight how enteropatho-
genic Escherichia coli (EPEC) manipulates human cell death pathways during infec-
tion, including candidate substrates of an EPEC protease within mitochondria. This
understanding informs the development of new antivirulence strategies against the
many human pathogens that target mitochondria during infection. Therefore, mito-
chondrial stable isotope labeling by amino acids in cell culture-terminal amine isoto-
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pic labeling of substrates (MS-TAILS) is useful for studying other pathogens targeting
human cell compartments.

KEYWORDS infection, mitochondria, EPEC, type III secretion system, apoptosis,
proteomics, SILAC, TAILS, N termini, proteolysis

Apoptosis is a broadly conserved cell death process that removes damaged cells to
protect tissues as a whole (1). In humans, this is essential in immune defense and

healthy tissue maintenance, such as turnover of the intestinal epithelium (2, 3). Apo-
ptosis can be triggered by various stimuli, from infection to irradiation, with all
pathways converging at mitochondria. In healthy cells, mitochondria sequester highly
toxic compounds, such as cytochrome c, which are released during apoptosis and
activate cytosolic caspases that canonically cause cell-wide proteolysis and destruction
(reviewed by Galluzzi et al. [4]). While best known as the “powerhouse of the cell,”
mitochondria are also signaling hubs for many cellular processes, including the intrinsic
(or “mitochondrial”) pathway of apoptosis and innate immunity (reviewed by Mills et al.
[5]). Mitochondria are, therefore, appealing targets for pathogens because many human
pathogens target mitochondria and regulate cell death to favor ongoing infection,
including prominent human pathogens, such as Salmonella enterica, Neisseria menin-
gitidis, and pathogenic Escherichia coli (reviewed by Rudel et al. [6]).

Enteropathogenic E. coli (EPEC) uses a type III secretion system to inject �20
virulence factors into infected human intestinal epithelial cells. Several type III-secreted
(T3S) effector proteins localize to mitochondria and affect several steps in the intrinsic
apoptosis pathway, including depolarization of inner mitochondrial membrane poten-
tial (Δ�m), release of cytochrome c, and activation of early and late stage caspase-9 and
-3, respectively (7–10). For example, the conserved T3S effectors EspF and EspZ induce
and delay intrinsic apoptosis during infection, respectively; both are essential for
optimal bacterial colonization (7, 11, 12). The amino (N) terminus of EspF mimics a
cleavable human mitochondrial targeting sequence (MTS) and, thus, hijacks human
pathways for import into the mitochondrial matrix, at which point the MTS is cleaved
(8). EspF localization to mitochondria is important for virulence; in a mouse model
comparing full-length EspF with a mutant lacking the MTS (thereby preventing mito-
chondrial localization), infected mice had less intestinal inflammation, cell death, and
mortality (7, 13). In contrast, EspZ interacts with the inner mitochondrial membrane to
stabilize Δ�m and, thereby, delay apoptosis (10); EspZ is important for cell death and
colonization in a rabbit model and protects human intestinal cells from chemically
induced apoptosis (12, 14).

Because EPEC mitochondrial-targeting effectors have opposing effects on cell death,
studies examining mitochondria as a system during infection will inform on the net
balance. However, our understanding of how EPEC controls apoptosis has been limited
by the lack of techniques able to detect global mitochondrial changes. In particular,
global proteolysis—a canonical aspect of apoptosis— has not been well characterized
during infection (reviewed by Marshall et al. [15]). Recently, we addressed this gap by
developing an N-terminal proteomics (terminomics) technique called mitochondrial
stable isotope labeling by amino acids in cell culture-terminal amine isotopic labeling
of substrates (MS-TAILS) to simultaneously assess global proteolysis within enriched
mitochondria and whole cells in parallel (16). This technique is performed by detecting
and quantifying the neo-N termini that are generated at the sites of proteolytic
processing (17, 18). Previously, we reported the development of MS-TAILS to identify
the normal mitochondrial N-terminome in healthy cells (16). We also directly compared
cell lysates and their mitochondria from healthy cells with those from two models of
chemically induced early intrinsic apoptosis by applying stable isotopic labeling be-
tween conditions. Here, we hypothesized that the identification and quantification of
T3S-mediated changes in mitochondria would reveal how EPEC effectors control
apoptosis during infection. Therefore, we applied MS-TAILS to study EPEC infection and
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identify mitochondrial changes that were distinct from apoptosis and, therefore, me-
diated directly or indirectly by mitochondrial-targeted T3S effectors.

RESULTS
EPEC infection and T3S effectors alter human mitochondrial membrane poten-

tial. EPEC infection conditions were optimized to capture the early events of type
III-secreted (T3S) effectors on apoptosis when Δ�m decreases as a sign of mitochondrial
membrane depolarization before activation of the late-stage executioner caspase-3. To
identify when mitochondrial-targeting effectors were present in human mitochondria
during infection, mutant EPEC strains containing C-terminal epitope tags on full-length,
chromosomally encoded EspF and EspZ were used. After 2 h of infection, the C-terminal
epitope tags from EspF and EspZ were identified within enriched mitochondria and
EspF was detected at its MTS-cleaved molecular weight, suggesting mitochondrial
localization and import (Fig. 1A). Similarly, Δ�m was significantly decreased during
wild-type EPEC infection compared with mock-infected cells, revealing the induction of
early intrinsic apoptosis comparable with our earlier work capturing events before
caspase-3 activation (P � 0.0367) (Fig. 1B). Notably, the Δ�m decrease during infection
was not significantly different from that measured during chemically induced early
intrinsic apoptosis with Bax agonist molecule 7 in our recent MS-TAILS study (P � 0.90)
(16). Therefore, we used these conditions to compare the N-terminomes of infected
cells and mitochondria during (i) mock infection, (ii) EPEC infection with the wild-type
strain, and (iii) EPEC infection with a mutant strain lacking the EscN motor that drives
type III secretion (Fig. 2).

Infection altered the human cellular terminome. For MS-TAILS, human epithelial
HeLa cells were isotopically labeled with “light” (�0 Da) or “heavy” (�10 Da) arginine
and infected (n � 3 biological replicates) (Fig. 2). Infected cells were pooled and 500 �g
as retained for whole-cell TAILS analyses. Mitochondria were enriched, and the pro-
teomes of whole-cell and mitochondrial fractions were isolated in parallel, taking
needed precautions to prevent proteolysis during sample preparation. All primary
amines were chemically blocked, including mature N termini and neo-N termini gen-
erated at proteolytic sites in each infection condition. Proteins were trypsinized, and the
new, unblocked N termini were captured with a polyaldehyde-HPG-ALD polymer. The
remaining N-terminally blocked peptides were identified and quantified by liquid
chromatography tandem mass spectrometry (LC-MS/MS) using MaxQuant, the Mito-
Carta2.0 database of mitochondrial proteins, and our freely available MS-TAILS bioin-
formatics software suite (16, 19–21).

FIG 1 EPEC infection induced early intrinsic apoptosis with T3S effectors detected from enriched
mitochondria. (A) HeLa cells were infected with EPEC strains containing C-terminally tagged EspZ and
EspF. At 2 h postinfection, mitochondria were enriched and analyzed by SDS-PAGE and Western
immunoblot using antibodies specific to each epitope tag (HA, �-hemagglutinin; HSV, �-herpes simplex
virus) to detect EspZ:HA and EspF:HSV and markers of mitochondria (COX-IV, cytochrome c oxidase IV)
and cytoplasm (�-tubulin) to assess mitochondrial purity. ns, nonspecific binding. (B) HeLa cells were
infected with EPEC wild type (WT), or intrinsic apoptosis was induced by adding BAM7. Control
conditions were prepared under the same conditions, either a mock infection or the addition of only the
vehicle control (i.e., DMSO), respectively. Mitochondrial membrane potential (Δ�m) was measured using
JC-1 dye, and data were normalized relative to each respective control condition. An unpaired, two-tailed
t test was used to compare each experimental treatment with its respective control. *, P � 0.05.
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MS-TAILS identified 1,695 N-terminal peptides from 1,060 unique proteins at a false
discovery rate (FDR) of 0.01 (Table 1; see Data Set S1 in the supplemental material). Of
these peptides, the abundance of 230 N-terminal peptides was significantly different
from EPEC wild-type infection (i.e., seen at least 1.5-fold more/less and with a P value
of identification of �0.05) (see Fig. S1 in the supplemental material). Of all N-terminal
peptide ratios altered during infection, those that significantly differed between wild-
type versus mock infection were considered generally “infection dependent,” or those
between wild-type versus �escN infection were considered specifically “T3S depen-
dent.” These changes encompassed a network of 191 proteins across the human
cellular and mitochondrial proteomes (Fig. 3), such as decreased initiator methionine

FIG 2 MS-TAILS experimental workflow. Light- or heavy-labeled HeLa cells were either mock infected,
infected with EPEC wild type (WT; n � 3), or infected with EPEC ΔescN (n � 3), which cannot deliver T3S
effectors. Cells were pooled 1:1 and homogenized. An aliquot was taken for parallel whole-cell TAILS
analysis, and mitochondria were enriched from the remaining cell homogenates. Proteomes were
purified from each fraction, and N-terminal peptides were enriched. Each N-terminal peptide was
identified, quantified, and located within its full-length protein using tandem mass spectrometry and a
bioinformatics pipeline.

TABLE 1 MS-TAILS identified 1,060 unique proteins from 1,695 N-terminal peptides in whole cells and mitochondrial fractionsa

MS-TAILS identification Total (n)
Whole cell
fraction (n)

Mitochondrial
fraction (n)

Identified from
mitochondrial vs.
whole cell fraction (%)

Identified from
whole cell fraction
(% of total)

All proteins identified 1,060 738 474 64.2 69.6
All N-terminal peptides identified 1,695 1,010 737 73.0 59.6
Mitochondrial proteins identified 215 86 169 196.5 40.0
Mitochondrial N-terminal peptides identified 390 107 283 264.5 27.4
aUnique proteins and N-terminal peptides were identified from MS-TAILS of mitochondria and whole cells during EPEC infection experiments (n � 3; FDR � 0.01).
Mitochondrial proteins were identified using the MitoCarta2.0 database (20, 21).
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(Met1) removal in the cell death-inducing p53 target protein during wild-type infection
compared with uninfected cells. Of these proteins, 97 (50.8%) were identified with
T3S-dependent changes (Fig. 4) and 40 (20.9%) were known mitochondrial proteins in
the MitoCarta2.0 database (20, 21).

Infection altered termini within mitochondrial proteins. MS-TAILS identified 390
N-terminal peptides from 215 mitochondrial proteins. The mitochondrial fraction iden-
tified 2.0-fold as many mitochondrial proteins and 2.6-fold as many mitochondrial
N-terminal peptides as the whole cell, which identified only 27.4% of all mitochondrial
N-terminal peptides overall (Table 1). Within the mitochondrial terminome, infection or
T3S effectors altered the abundance of 40 mitochondrial proteins at 45 total sites,
corresponding to either mature protein termini (Met1 or Met1 removal), an annotated
MTS removal, signal peptide removal, or other proteolytic processing (Fig. 5A and
B; see Table S1 in the supplemental material). Of these sites, 37.8% were T3S
dependent (n � 17) (Fig. 5B) and 60.0% were neo-N termini from proteolytic
processing (n � 27) (Fig. 5A and C), including 9 proteolytic sites not previously
reported in the DegraBase or our prior MS-TAILS study of apoptosis, none of which
occurred at classical DEVD caspase cleavage motifs (Table 2) (16, 22). Notably, there
were no significant abundance changes observed in protein mature N termini,
including MTS removal (Fig. 5A).

Infection resulted in canonical apoptotic proteolytic changes in mitochondria.
To identify known mitochondrial changes due to apoptosis, we compared the 45
mitochondrial termini altered during infection with those identified in (i) the DegraBase

FIG 3 EPEC infection and T3S effectors altered N termini in 191 proteins across cellular and mitochondrial proteins. All
proteins with significantly altered N-terminal peptides, in either cell fraction, were analyzed with STRING. Known
mitochondrial proteins are displayed with red font. Blue circle, cellular protein; red circle, mitochondrial protein in
MitoCarta2.0.
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apoptosis terminomics database, and (ii) our MS-TAILS study of chemical-induced, early
intrinsic apoptosis of HeLa cells (Fig. 6) (16, 22). Of the 40 mitochondrial proteins altered
during infection, 31 (77.5%) were also altered during chemical apoptosis, suggesting
similar apoptotic events during both chemical induction and EPEC infection (Fig. 6A
and B). Of the 45 mitochondrial termini altered during infection, 21 (46.7%) were also
altered in chemical apoptosis (Fig. 6C), including T3S-dependent neo-N termini in three
proteins involved in apoptosis, namely, endonuclease G (MTS removal), 39S ribosomal
protein S30 (P1’ � Ala26; i.e., proteolysis to the N terminus of Ala26), and histidine triad
nucleotide-binding protein 2 (P1’ � Ala31) (Table 3).

Infection uniquely altered the abundance of N termini from proteins anno-
tated as being involved in apoptosis. To identify infection-specific or candidate
T3S-mediated events, we examined the 24 mitochondrial termini that had not been
identified previously during canonical apoptosis. Nine proteins were known to be
cleaved during apoptosis but not at the terminus observed during infection, which
therefore represents alternative cleavage sites in these classically targeted proteins. For
five proteins, the terminus was at a previously unreported site, and three of these
proteins have a known role in apoptosis, namely, voltage-dependent anion-selective
channel protein 1 (VDAC1), 60-kDa heat shock protein 1 (HSPD1), and ATP synthase
subunit alpha (ATP5A1) (Fig. 6D; Table 4). These cleavage events may be due to
alternative apoptotic pathways triggered by EPEC effectors.

Novel mitochondrial neo-N termini were observed during infection. The re-
maining 11 mitochondrial N termini that were not identified during canonical apoptosis
were also not associated with apoptosis in earlier studies, including 7 mature N termini

FIG 4 T3S effectors specifically altered a unique subset of N termini in cellular and mitochondrial proteins. All proteins with
significantly altered N-terminal peptides were analyzed with STRING. Orange, infection dependent; green, T3S dependent.
Known mitochondrial proteins are displayed with red font.
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and 4 neo-N termini. Three of four neo-N termini were previously unreported in prior
terminomics studies or in Merops, namely, carbamoyl-phosphate synthase (ammonia)
(P1’ � Ser588 and Asp1250) and deoxyuridine 5=-triphosphate nucleotidohydrolase
(P1’ � Ser4) (Table 4) (23), implying the presence of novel proteolytic sites in these
proteins in the context of infection.

FIG 5 EPEC T3S effectors altered the human mitochondrial N-terminome. (A) Mitochondrial N-terminal peptides that were
significantly increased or decreased during infection were annotated according to the N-terminal type indicated, including
mature (i.e., at Met1, Met1 removal; green), transit peptide removal (yellow), and neo-N termini arising from proteolytic
processing (red). Differences between the number of altered termini of each type were assessed with a two-way analysis
of variance (ANOVA) with a Šídák multiple-comparison test (*, P � 0.05; ***, P � 0.001). (B) The 40 mitochondrial proteins
with infection- and/or T3-dependent changes (orange and green circles, respectively) were analyzed for protein-protein
interactions using STRING. Blue line, binding partners; black line, reaction. (C) Each mitochondrial protein with a significant
change in a mature N terminus is shown with a filled circle (green, significant increase; red, significant decrease). Those
with a change in a neo-N terminus are shown with outer rings. Red asterisk (*), proteins containing significant neo-N
termini at sites not previously reported.
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DISCUSSION

In this study, we demonstrate that both T3S-dependent and -independent processes
occur in mitochondria during EPEC infection. Of all 230 N termini altered in abundance
during infection, 45 were from mitochondrial proteins and approximately half were T3S
dependent. We show that nearly half of EPEC-induced mitochondrial events were
directly attributable to canonical apoptosis, suggesting that most mitochondrial
changes during infection may be from nonapoptotic virulence mechanisms. Further-
more, we identify nine mitochondrial neo-N termini not previously reported in healthy
or apoptotic cells. As the first direct N-terminomics study of bacterial infection, this
work provides the first look at global protease dysregulation during active infection and
a novel perspective of T3S-mediated disease during infection.

During EPEC infection, multiple virulence factors traffic to mitochondria and pro-
mote or delay apoptosis. However, the underlying mechanisms are unknown. Systems-
level approaches have proven insightful for deciphering the complex interaction
between a pathogen and its host during infection (15, 24). Due to the key roles of
proteolysis in inflammation and the immune response (both frequent targets of
virulence factors) terminomics is a powerful approach for deciphering pathogenic
mechanisms involving proteolysis. Our previous N-terminomics analyses using TAILS
identified viral and human protease substrates from cell lysates but not from active
infection (25–28). Thus, we applied mitochondrial terminomics to identify T3S-
dependent changes and, thereby, assess how effectors manipulate apoptosis while
capturing the host response.

Due to the crucial role of proteolysis in apoptosis, it was necessary to distinguish
canonical apoptotic events in order to identify those that arose due to bacterial
virulence or host defense. Most of the significant changes in the mitochondrial termi-
nome were in neo-N termini, demonstrating altered proteolytic processing of many
mitochondrial proteins during infection that occurred with few changes in mature
protein N termini that would otherwise suggest a concurrent change in protein
abundance. We show that nearly half of altered mitochondrial termini that were
altered in abundance during infection were identical to those seen in canonical
apoptosis, including that in our earlier MS-TAILS study of mitochondria during early
intrinsic apoptosis in the same cell line as well as in whole-cell terminome studies
of intrinsic and extrinsic apoptosis in multiple cell lines in the DegraBase (16, 22).
Mitochondrial changes that occurred during both infection and apoptosis included
established apoptotic events, such as MTS removal of endonuclease G and prote-
olysis in histidine triad nucleotide-binding protein 2 (Hint2; P1’ � Ala31), an apoptotic

TABLE 2 Novel proteolytic sites identified in mitochondrial proteins during EPEC infectiona

Gene Protein name N-terminal siteb

Fold change,
WT:mock

Fold change,
WT:�escN

T3S
dependent?C M C M

ACAA2 3-Ketoacyl-CoA thiolase, mitochondrial KHKISR2E177* 11.5
HSPD1 60-kDa heat shock protein, mitochondrial ALNATR2A430* ns ns ns 11.6 Yes
ATP5A1 ATP synthase subunit alpha, mitochondrial SILEER2I59* ns 11.7
CPS1 Carbamoyl-phosphate synthase [ammonia], mitochondrial YPVMIR2S588* 116.7
CPS1 Carbamoyl-phosphate synthase [ammonia], mitochondrial FLVKGN2D1250* 12.3
DUT Deoxyuridine 5’-triphosphate nucleotidohydrolase,

mitochondrial
MPC2S4* 21.7 22.9 ns ns

NDUFAF3 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex
assembly factor 3

WAPRRG2H32* 11.9 ns ns ns

HSPA9 Stress-70 protein, mitochondrial NAEGAR2T86* ns 12.2 Yes
VDAC1 Voltage-dependent anion-selective channel protein 1 TDNTLG2T83* 110.1 13.4 21.7 21.7 Yes
aMitochondrial N-terminal peptides that were altered in abundance during EPEC infection are listed according to the N-terminal type, site, and relative fold change
between EPEC wild-type (WT) infection versus either mock-infected cells or T3S-deficient infection (ΔescN). These sites have not been previously reported in the
DegraBase or MS-TAILS experiments of apoptosis (16, 22). C, whole-cell fraction; M, mitochondrial fraction; bold text, protein known to be associated with apoptosis
from UniProt; 2, N-terminal location of observed N terminus in the full-length protein; ns, not significantly altered in abundance; *, previously unreported site in the
DegraBase or MS-TAILS of apoptosis (16, 22).

bN-terminal site denotes the six amino acids to the prime and nonprime sides of the predicted site of proteolysis (i.e., P6 to P6’).
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sensitizer correlated with increased rates of cell death following apoptosis initiation
(29). Mitochondrial changes that were not previously reported from apoptosis may
inform how mitochondrial-targeting T3S effectors modulate cell death, such as an
alternative strategy to subvert host-regulated apoptosis.

In particular, eight mitochondrial proteins were identified with novel neo-N termini
or proteolysis, namely, VDAC1, HSPD1, HSPA9, ACAA2, ATP5A1, NDUFAF3, CPS1, and
DUT (Table 2). None of these novel mitochondrial cleavage sites occurred at DEVD
cleavage motifs, which are classically associated with caspases, and may instead
indicate the involvement of an EPEC protease within mitochondria, the dysregulation
of a human mitochondrial protease, or the induction of a human protease that
modulates apoptosis in the context of infection. For instance, a previously unreported
neo-N terminus in VDAC1 (P1’ � Thr83) was altered in an infection- and T3S-dependent
manner. Proteolysis at this site could directly impact the formation of the VDAC1-
containing pore in the inner mitochondrial membrane, through which toxic, proapo-

FIG 6 EPEC infection altered mitochondrial proteins involved with apoptosis. (A) Mitochondrial N-terminal peptides identified and
quantified by MS-TAILS that showed significant alterations in abundance ratios during EPEC infection and/or in the presence of T3S
effectors. Mitochondrial protein termini were compared with those altered during either chemical-induced intrinsic apoptosis with
MS-TAILS or chemical-induced intrinsic or extrinsic apoptosis in the DegraBase (16, 22). A common subset of 31 proteins was identified.
(B) N termini abundances that were affected in an infection- or T3S-dependent manner were compared with those altered in prior
apoptosis studies (pink). (C) The sites of infection-/T3S-dependent N termini in mitochondrial proteins (green and orange, respectively)
were compared with the DegraBase and MS-TAILS. A common subset of 21 N termini was identified. (D) Thirteen infection-/T3S-
dependent mitochondrial termini were altered in proteins also seen in prior studies of apoptosis. However, the sites within each
protein were different, including 2 mature protein N termini, 1 MTS removal N terminus, and 10 proteolytic processing termini in 6
proteins. The P1’ amino acid position of significantly altered N termini are indicated. Previously unreported termini are displayed with
a blue background.
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ptotic proteins are released, accelerating cell-wide consequences of apoptosis. Second,
a previously unreported neo-N terminus in HSPD1 (P1’ � Ala430) could abrogate the
function of this mitochondrial chaperone, which was recently shown to modulate
cellular immune pathways and resistance to Pseudomonas aeruginosa infection (30).
Finally, proteolysis in ACAA2 (P1’ � Glu177) would physically divide its active site and
potentially abrogate its binding to a proapoptotic protein in the Bcl-2 family that is also
altered in Shigella flexneri infection, namely, BCL2/adenovirus E1B 19-kDa protein-
interacting protein 3 (BNIP3) (31). ACAA2 binding abrogates BNIP3-mediated apoptosis
(32); therefore, increased ACAA2 proteolysis may overall promote BNIP3-mediated
apoptosis during infection.

While our study focused on mitochondria, MS-TAILS also identified changes in the
whole-cell N-terminome as well as changes in proteins that cofractionated with mito-
chondria. These N-terminomes may shed light upon important differences in mito-
chondrial protein import and protein-protein interactions, particularly with recent
evidence from Scott et al. about the importance of the mitochondrial membrane
interactome in apoptosis (33). By combining both mitochondrial and whole-cell
changes, MS-TAILS depicts a broader view of affected pathways and may help to
contextualize interesting findings. For example, decreased initiator Met removal in the
cell death-inducing p53 target protein during infected versus mock-infected cells
suggests a decreased abundance of this protein that regulates apoptosis mediated
through tumor necrosis factor � (34). Similar approaches may be particularly useful in
examining infection with pathogens that alter cytosolic proteolysis, including both
EPEC and the intracellular pathogen Shigella flexneri, which inhibit cytosolic caspases
during infection using the T3S effector NleF and cytosolic lipopolysaccharide, respec-
tively (35, 36).

TABLE 3 Twenty-one mitochondrial protein termini were significantly altered in abundance during both EPEC infection and apoptosisa

Gene by terminus type Protein name
N terminus site
(P6–P1’)

T3S
dependent?

Natural protein terminus
AK2 Adenylate kinase 2, mitochondrial M1 Yes
COX6C Cytochrome c oxidase subunit 6C M1 Yes

Initiator methionine removed
ALDH9A1 4-Trimethylaminobutyraldehyde dehydrogenase M2S2

TFB1M Dimethyladenosine transferase 1, mitochondrial M2A2

MTS removed
NDUFAB1 Acyl carrier protein, mitochondrial QLCRQY2S69

CPT2 Carnitine O-palmitoyltransferase 2, mitochondrial APSRPL2S26

ENDOG Endonuclease G, mitochondrial LPVAAA2A49 Yes

Other signal peptide removed
RCN2 Reticulocalbin-2 CAAAAG2A22

Proteolytic processing
MRPL49 39S ribosomal protein L49, mitochondrial CGLRLL2S27

MRPS18A 39S ribosomal protein S18a, mitochondrial RLPARG2F35 Yes
MRPS30 39S ribosomal protein S30, mitochondrial TAANAA2A26 Yes
ACAA1 3-Ketoacyl-CoA thiolase, peroxisomal PQAAPC2L27

GPT2 Alanine aminotransferase 2 SWGRSQ2S25

CCDC109B Calcium uniporter regulatory subunit MCUb, mitochondrial YQSHHY2S52

TUFM Elongation factor Tu, mitochondrial LLDAVD2T245

MECR Enoyl-[acyl-carrier-protein] reductase, mitochondrial GCHGPA2A31

HINT2 Histidine triad nucleotide-binding protein 2, mitochondrial GGQVRG2A31 Yes
TOMM34 Mitochondrial import receptor subunit TOM34 MAP2K4 Yes
NIPSNAP1 Protein NipSnap homolog 1 AAAARF2Y35 Yes
TBRG4 Protein TBRG4 VAHKTL2T40

PDHB Pyruvate dehydrogenase E1 component subunit beta, mitochondrial LQVTVR2D37

aEPEC infection- and T3S-dependent mitochondrial N termini were compared with those from our previous MS-TAILS study of chemical-induced early intrinsic
apoptosis and with termini identified in the DegraBase database of apoptotic protein termini (16, 22). Bold text, protein known to be associated with apoptosis; 2,
N-terminal location of observed N terminus in the full-length protein.
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Ultimately, N-terminomic approaches are an important complement to build com-
plete host-pathogen protein interaction networks and fully understand host-pathogen
interactions (37–40), despite the many challenges in studying this complex and dy-
namic association (reviewed by Fels et al. [41]). This study demonstrates the potential
of organelle-specific N-terminomics in studying infection for understanding how patho-
gens target and disrupt mitochondrial signaling. Hence, using TAILS to identify new
molecular events during infection will improve our understanding of how and why
multiple EPEC T3S effectors localize to mitochondria and subvert apoptosis. Subse-
quent terminomic studies with EPEC strains lacking single T3S effectors (e.g., ΔespF and
ΔespZ) should help identify the specific roles of each effector during T3S-mediated
subversion of apoptosis. Ultimately, temporal and in vivo studies may be essential to
distill the role of each effector and their complex interplay in host immune suppression
and apoptosis of intestinal epithelial cells along microvilli before shedding and trans-
mission to the next host.

Because many important human pathogens possess virulence factors that target

TABLE 4 Mitochondrial protein termini altered during infection but not in prior apoptosis studiesa

Terminus type Gene by terminus type Protein name
N terminus site
(P6–P1’)

T3S
dependent?

Termini from proteins cleaved
at different sites in
prior apoptosis studies

Natural protein terminus
MTHFD1 C-1-tetrahydrofolate synthase, cytoplasmic M1 Yes

Initiator methionine removed
HINT1 Histidine triad nucleotide-binding protein 1 M2A2

MTS removed
OAT Ornithine aminotransferase, mitochondrial SSVASA2T26 Yes

Proteolytic processing
ACAA2 3-Ketoacyl-CoA thiolase, mitochondrial KHKISR2E177*
HSPD1 60-kDa heat shock protein, mitochondrial RALMLQ2G43 Yes
HSPD1 60-kDa heat shock protein, mitochondrial ALNATR2A430* Yes

ATP5A1 ATP synthase subunit alpha, mitochondrial HLQKTG2T48 Yes
ATP5A1 ATP synthase subunit alpha, mitochondrial SILEER2I59*
ATP5A1 ATP synthase subunit alpha, mitochondrial RILGAD2T64

NDUFAF3 NADH dehydrogenase [ubiquinone] 1 alpha
subcomplex assembly factor 3

WAPRRG2H32*

HSPA9 Stress-70 protein, mitochondrial NAEGAR2T86* Yes
HSPA9 Stress-70 protein, mitochondrial FNDSQR2Q203

VDAC1 Voltage-dependent anion-selective
channel protein 1

TDNTLG2T83* Yes

Termini that were observed
during infection
but not in prior
apoptosis studies

Natural protein terminus
NDUFA12 NADH dehydrogenase [ubiquinone] 1 alpha

subcomplex subunit 12
M1 Yes

NDUFB6 NADH dehydrogenase [ubiquinone] 1 beta
subcomplex subunit 6

M1

Met1 removed
UQCRB Cytochrome b-c1 complex subunit 7 M2A2

IDH1 Isocitrate dehydrogenase [NADP] cytoplasmic M2S2

NDUFB4 NADH dehydrogenase [ubiquinone] 1 beta
subcomplex subunit 4

M2S2 Yes

ACOX3 Peroxisomal acyl-coenzyme A oxidase 3 M2A2

QTRT1 Queuine tRNA-ribosyltransferase catalytic
subunit 1

M2A2

Proteolytic processing
CPS1 Carbamoyl-phosphate synthase [ammonia],

mitochondrial
YPVMIR2S588*

CPS1 Carbamoyl-phosphate synthase [ammonia],
mitochondrial

FLVKGN2D1250*

DUT Deoxyuridine 5’-triphosphate
nucleotidohydrolase, mitochondrial

MPC2S4*

IDE Insulin-degrading enzyme KKTYSK2M42

aMitochondrial N termini that were significantly altered during infection were compared with known apoptotic termini from the DegraBase or MS-TAILS, as well as the
Merops peptidase database, to compare infection- and T3S-dependent termini with known proteolytic events in human proteins (16, 22, 23). Bold text, protein
known to be associated with apoptosis.; 2, N-terminal location of observed N terminus in the full-length protein; *, previously unreported site in the DegraBase, MS-
TAILS of apoptosis, or Merops (16, 22, 23).
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mitochondria and apoptosis (6), similar approaches can help us understand how many
pathogens manipulate apoptosis during infection. For instance, several pathogens
identified as priority threats for antimicrobial resistance by the U.S. Centers for Disease
Control of Prevention also target mitochondrial signaling pathways (e.g., Acinetobacter
baumannii, Clostridioides difficile, Mycobacterium tuberculosis, Neisseria gonorrhoeae,
Staphylococcus aureus, and many Enterobacteriaceae members), suggesting the broad
and applicable value of MS-TAILS for translational benefits to human health (42).

MATERIALS AND METHODS
Cell culture. HeLa cells (CCL-2, American Type Culture Collection) were cultured in Dulbecco’s

modified Eagle medium (DMEM; HyClone) with high glucose and sodium pyruvate supplemented with
heat-inactivated fetal bovine serum (10% vol/vol; Gibco), GlutaMax (1% vol/vol; HyClone), and nones-
sential amino acids (1% vol/vol; HyClone). Cells were used between passages 5 and 20.

Infection. The following four EPEC O127:H6 E2348/69 strains were used: wild type, ΔescN, ΔespZ/
espZ:HA, and ΔespF/espF:HSV (10, 43). HeLa human epithelial cells (2.0 � 106) were seeded into 15-cm
tissue culture plates and allowed to grow to 75% confluence. EPEC colonies were incubated in lysogeny
broth overnight, and T3S was preinduced by subculturing 1:20 in prewarmed DMEM without phenol red
(G.E. Healthcare) at 37°C in 5% CO2 for 3.5 h without shaking. Simultaneously, HeLa cells were
synchronized in prewarmed, serum-free DMEM for 3 h. A replicate 15-cm plate of HeLa cells was
trypsinized and counted to determine the number of cells to be infected, and the volume of preinduced
culture required for a multiplicity of infection of 20:1 was calculated at optical density at 600 nm (OD600).
For infection, HeLa cell medium was replaced with 15 ml of prewarmed, serum-free DMEM containing
preinduced bacteria and incubated for 2 h. Mock infections were performed only with DMEM lacking
phenol red.

Mitochondrial membrane potential (��m) assay. HeLa cells (5 � 104) were seeded into each well
of a 96-well plate (Costar) and incubated overnight at 37°C with 5% CO2. Prepared JC-1 dye was added
to each well 15 min before the end of infection. Δ�m was measured according to the manufacturer’s
instructions (Cayman Chemical) on a Tecan M200 plate reader. J-aggregate:J-monomer ratios were
normalized to the relevant control (i.e., mock-infected cells for infected cells and vehicle control-treated
cells for Bax agonist molecule 7; Calbiochem). Three technical replicates for each of three independent
biological replicates were performed for each condition.

Mitochondrial enrichment. Cells were lysed manually in a prechilled glass Teflon Potter-Elvehjem
homogenizer on ice, and mitochondrial enrichments were performed by sequential centrifugation in a
sucrose-containing buffer with protease inhibitors (5 mM EDTA and EDTA-free HALT protease inhibitor
cocktail; Thermo Fisher), as described previously by Frezza et al. and adapted by Marshall et al. (16, 44).

Western blotting. Wells of 15% SDS-polyacrylamide gels were loaded with 20 �l of protein sample
and analyzed by SDS-PAGE and Western blotting as previously described (16). Membranes were
incubated overnight with the primary antibody in blocking buffer at 4°C with a primary antibody, namely,
anti-cytochrome c oxidase IV (COX-IV; 1:1,000; 3E11; Cell Signaling Technologies), anti-calnexin (1:1,000;
Enzo Life Sciences), anti-�-tubulin (1:5,000; number T4026; Sigma-Aldrich), anti-herpes simplex virus
epitope tag (1:1,000; Abcam), anti-hemagglutinin (1:1,000; Roche), anti-ACAA2 (1:1,000; Abcam), anti-
COX6C (1:1,000; Abcam), anti-DNAJA3 (1:500; Abcam), or anti-endonuclease G (1:500; Abcam).

MS-TAILS N-terminomics. Two populations of HeLa cells were cultured separately in high-glucose
DMEM without arginine and lysine (Caisson Labs) supplemented with L-lysine (1.0 M; Sigma-Aldrich),
dialyzed fetal bovine serum (10% vol/vol; Gibco), GlutaMax (1% vol/vol), and nonessential amino acids
(1% vol/vol). For media for each stable isotope labeling by amino acids in cell culture (SILAC) cell
population, arginine was replaced with either normal or heavy isotope-coded arginine (13C(6), 15N(4)
[arginine]; Cambridge Isotope Laboratories). Two parallel MS-TAILS experiments were prepared, as in
Fig. 2. Following infection or mock infection, cells were pooled 1:1 and lysed, and mitochondria were
enriched. Three independent biological replicates were performed on separate days at subsequent cell
passages. For each replicate, 500 �g of whole-cell lysate and 500 �g of enriched mitochondria were
analyzed in parallel. MS-TAILS was performed as previously described (16). Briefly, the collected pro-
teome was precipitated with chloroform-methanol and the precipitate was reconstituted in 1 M
guanidine chloride in HEPES (pH 7.5). Proteins were denatured and reduced with 10 mM DTT at 60°C, and
subsequently, cysteines were alkylated with 15 mM iodoacetamide in the dark. After pH adjustment to
6.5, free amine groups were blocked by reductive amination with 40 mM formaldehyde using cyano-
borohydride as a catalyst for 18 h at 37°C. After sample cleanup by chloroform-methanol precipitation,
proteins were digested with trypsin, and N-terminal peptides were negatively enriched using 2.5 mg of
a soluble aldehyde-functionalized highly-branched polyglycerol, aldehyde-derivatized (HPG-ALD) poly-
mer (http://flintbox.com/public/project/1948/).

Mass spectrometry. MS-TAILS samples were analyzed on a linear-trapping quadrupole-Orbitrap
Velos tandem mass spectrometer (ThermoFisher Scientific) following a 90-minute high-performance
liquid chromatography (HPLC) gradient (Agilent 1290; ThermoFisher Scientific), as previously described
(45).

Bioinformatics. N-terminomics data analysis was performed at a false discovery rate of 0.01 using
MaxQuant version 1.5.2.8 (19) and the UniProt/Swiss-Prot human protein database (version 2013_10;
84,843 entries) as previously described (16). Mitochondrial proteins were identified with the MitoCarta2.0
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database (20, 21). Protein interaction networks were assembled using STRING (version 11.0) with a
minimum interaction score of 0.700 at high confidence (46).

Data availability. The mass spectrometry proteomics data have been deposited in the ProteomeX-
change Consortium via the PRIDE partner repository with the data set identifier PXD016994 (47).

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
FIG S1, TIF file, 2.4 MB.
TABLE S1, DOCX file, 0.04 MB.
DATA SET S1, XLS file, 2.4 MB.
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