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Ediacaran skeletal metazoan interpreted
as a lophophorate
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Moscow 119991, Russia
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While many skeletal biomineralized genera are described from Ediacaran

(635–541 million years ago, Ma) strata, none have been suggested to have

an affinity above the Porifera–Cnidaria metazoan grade. Here, we reinterpret

the widespread terminal Ediacaran (approx. 550–541 Ma) sessile goblet-

shaped Namacalathus as a triploblastic eumetazoan. Namacalathus has a stalked

cup with radially symmetrical cross section, multiple lateral lumens and a

central opening. We show that the skeleton of Namacalathus is composed of

a calcareous foliated ultrastructure displaying regular concordant columnar

inflections, with a possible inner organic-rich layer. These features point

to an accretionary growth style of the skeleton and an affinity with the

Lophotrochozoa, more specifically within the Lophophorata (Brachiopoda

and Bryozoa). Additionally, we present evidence for asexual reproduction

as expressed by regular budding in a bilateral pattern. The interpretation of

Namacalathus as an Ediacaran total group lophophorate is consistent with

an early radiation of the Lophophorata, as known early Cambrian representa-

tives were sessile, mostly stalked forms, and in addition, the oldest known

calcareous Brachiopoda (early Cambrian Obolellida) and Bryozoa (Ordovician

Stenolaemata) possessed foliated ultrastructures.
1. Introduction
The Cambrian radiation (starting at approx. 541 Ma) records the seemingly

abrupt appearance of biomineralized animals with highly sophisticated skel-

etons in the geological record. These are represented by calcareous and

phosphatic shelly fossils of triploblastic bilaterians, including various molluscs,

brachiopods and diverse stem group lophotrochozoans in the early Cambrian

Terreneuvian Epoch (approx. 541 to approx. 525 Ma) followed by biominera-

lized arthropods, other ecdysozoans and echinoderms during the Cambrian

Epoch 2 [1,2].

Over 10 genera with biomineralized skeletons are known from the terminal

Ediacaran (approx. 550–541 Ma) [3–7]. Most have been interpreted to be either

protistan sensu lato or poriferan–cnidarian grades of organization on the basis

of overall morphology and the presence of simple skeletal ultrastructures of

microgranular or microfibrous types [8,9].

Of these, Namacalathus is found in carbonate strata from the Nama Group,

Namibia [4,10], the Byng Formation of the Canadian Rocky Mountains [11], the

Birba Formation of Oman [1,12], the Kolodzha and Raiga formations of West

Siberia [13] and the Anastas’ino Formation of the Altay-Sayan Foldbelt [14].

Namacalathus has been proposed to represent either a possible cnidarian on the

basis of an overall goblet-shaped morphology and hexaradial cross section [4],

a protozoan owing to small size and an apparent lack of accretionary growth

[15], a stem-eumetazoan [16] or as a lophotrochozoan based on a microlamellar

ultrastructure as manifest in limited petrographic thin section material [6].

Here, we document additional features of growth form and skeletal structure

from exceptionallywell-preserved and abundant material of thewidespread species

Namacalathus hermanastes from the terminal Ediacaran (approx. 548–541 Ma) of
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Figure 1. Namacalathus hermanastes from the Nama Group, Namibia. Scale bars, 5 mm. (a) Longitudinal section through individual shows parental cup (PC) and
daughter cup (C) with continuous skeletal wall (arrowed). (b) Transverse section through individual cup with hexaradial symmetry and lumens (L) and central opening
(CO). (c) Longitudinal section through single individual showing lumens (L) and stem (S). (d ) Individual enclosed in micritic sediment and attached to a microbial mat
shows a bulb-like initial shell with constriction at the junction with the main skeleton (arrowed). (e) Longitudinal section of closely aggregated individuals with
daughter individuals budding from older ones (arrowed). ( f,g) Transverse section showing parent cup (PC) with two and budded daughter cups (arrowed) which
initiate as stems (S) then inflate to cups (C). (h,k) Transverse section shows spiral form as continued growth the new cup stems curved around the axis of the
parent cup. ( j ) Possible third generation of daughter cups (C), budding from parental cup (PC) and stem (S). (l,m) Longitudinal sections through individual showing
parental cup (PC) and daughter cup (C) with continuous skeletal wall (arrowed). (n,p,q) Three-dimensional model reconstructions from serial sections (see electronic
supplementary material). (n) Based on sections from sample in m, ( p,q), based on sections from sample in L, with arrows in same positions.
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the Nama Group, Namibia. This allows some potential con-

straints to be placed on original skeletal mineralogy, soft-tissue

distribution and mode of biomineralization, as well as insights

into the possible affinity of Namacalathus.
2. Namacalathus general morphology
Namacalathus has a stalked cup- or goblet-shaped form up to

35 mm in width and height, with a stem serving as attach-

ment to a substrate and a cup possessing a rounded central

opening on the top and usually six, but sometimes, five or

seven further rounded lumens on lateral facets [4,17]

(figure 1c). Namacalathus displays an almost regular hexago-

nal radial symmetry in cross section [4,17] (figure 1b),

although five and sevenfold radial cups based on the

number of lateral facets also occur. The stem and outer cup

surface can be covered with short, robust spines which

previously have been identified in Namacalathus from the

Ediacaran Byng Formation of the Canadian Rocky Mountains
only [11]. The wall of both the stem and the cup is continuous

(figure 1a,l,m) and up to 100 mm thickness.

We have noted in two longitudinal sections through two

specimens that the distal, lowermost, part of the stem is

closed. In the cases of in situ attached individuals, the lower-

most stem part is separated from the remainder of the

skeleton by a transverse septum-like structure resulting in a

bulb-like, initial shell appearance (figure 1d ).
3. Skeletal ultrastructure
The skeleton of Namacalathus has been variously interpreted as

either calcite [4] or high-magnesium (Mg) calcite [18] on the

basis of an absence of neomorphic calcitic textures or moldic

preservation, but no detailed study of ultrastructure has been

documented.

Scanning electron microscope (SEM) imaging reveals both

the cup and stem parts of the Namacalathus skeleton to present

a tripartite structure of two thin external (outer and inner) lami-

nar layers enclosing an internal space (middle layer) infilled by
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Figure 2. Secondary emission SEM images of etched and polished transverse sections of Namacalathus hermanastes skeletal wall ultrastructure from the Nama
Group, Namibia. (a,c,d), Tripartite organization. M, internal (middle) layer of rod-like microdolomite crystals; O, external outer foliated layers. I, inner foliated
layers. (a) Scale bar, 200 mm. (c) Scale bar, 100 mm. (d ) Scale bar, 100 mm. (b) Columnar microlamellar inflections (arrowed). Orientation with respect to
the interior and exterior of the cup is noted. Scale bar, 200 mm.
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irregularly freely arranged rod-like crystals (figure 2a,b,d).

The outer and inner laminar layers show a platy structure of indi-

vidual microlaminae in an ultrathin petrographic section [6].

These laminated skeletal layers have a fine-scale ultrastructure

of multiple, closely spaced, continuous, regularly foliated micro-

laminae of approximately 1.25 mm in thickness each in average

(figure 3). Microlaminae are oriented parallel to the skeletal sur-

face and follow its undulations and inflections (figure 3a,c).

Abundant rod-like microdolomite crystals are either restricted

to the middle layer (figure 2a,d) or concentrated along the

outer surface.

Commonly, microlaminae become denser to form arcuate,

inclined trails of tight columnar cone-in-cone deflections in

the skeleton lamination orientated normal to the skeletal sur-

face and crossing the entire laminar layer (figure 2b). These

deflections are spaced 10–30 mm apart and point towards

the inside of the skeleton.
4. Taphonomic inference from sediment infill
The sediment infill of Namacalathus cups often differs in colour

and/or grain size from externally adjacent sediments [4]. The

boundary between these two sediment types is as distinct

across lateral lumens as it is across solid walls, suggesting the

presence of a barrier within the lumens which prevented sedi-

ment ingress even some time after the death of the organism

(figure 1b,e,f). By contrast, internal and external sediments are
mixed adjacent to the central opening at the top of the cup

suggesting that this was open at time of burial [4] (figure 1b).
5. Potential asexual reproduction
The common close packing of Namacalathus individuals on

bedding planes infers growth by a regular larval recruitment

and settlement [19].

We note, additionally, that some individuals of

Namacalathus possess daughter cups communicating with a

presumable parental cup via stems with inner cavities that

are connected directly to the parental cup inner cavity by

an orifice (figure 1e–g,j,l,m) while skeletal walls are shared

[19] (figure 1a,l,m) and sometimes thickened between new

cups and the older one (figure 1f,l,m). Three-dimensional

model reconstructions using SPIERS software from serial sec-

tions (see electronic supplementary material, figures S1–S4)

confirms the skeletal continuity and budding nature of

parent and daughter cups (figure 1n,p,q).

Such an asexual clonal reproduction is comparable to

internal budding. Noteworthy is that two new stems of the

same diameter and length are attached to opposite outer sur-

faces of the upper part of a parental cup (figure 1e–g). This

imparts a consistent bilateral symmetry to the entire clonal

aggregation. The position of daughter individuals was

initially bilaterally symmetrical (figure 1e–g), but with con-

tinued growth, the new cup stems curved around the axis

of the parental cup (figure 1f,h,k). Possible second generations
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Figure 3. Secondary emission SEM images of etched and polished transverse sections of Namacalathus hermanastes external, outer skeletal wall ultra-
structure from the Nama Group, Namibia, shows regular foliated ultrastructure with closely spaced microlaminae. (a,b) Scale bars, 100 mm. (c,d) Scale
bars, 50 mm.
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of buds forming cups are observed in some specimens

(figure 1j ).
6. Discussion
In the following, we discuss inferences as to original skeletal

mineralogy and functional morphology, clonal budding,

soft-tissue reconstruction and finally, the possible affinity

of Namacalathus.

(a) Diagenesis and original mineralogy
The regular foliated ultrastructure of Namacalathus differs

drastically from those of co-occurring tubicolous Cloudina and

the massive honeycomb or calicular growth form of Namapoikia.

Cloudina from the Nama Group possesses a microgranular

ultrastructure [6,9], whereas Namapoikia displays a coarse calcitic

mosaic and its skeleton is commonly overgrown by neomor-

phosed botryoids of acicular crystals [5]. Co-occurrence of these

three ultrastructural varieties removed the possibility of conver-

gent diagenetic pathways implying a primary origin for any

ultrastructural differences. Recognition of primary skeletal

mineralogies can be assessed following the criteria of James &

Klappa [18,20].

A sparry calcite replacement mosaic that generally cross-

cuts skeletal structures together with the presence of botryoids

typical of primary aragonite marine cement that develops in

optical continuity with skeletal elements is indicative of an

original aragonite skeletal mineralogy for Namapoikia. By con-

trast, both Cloudina and Namacalathus skeletons are overgrown

by bladed and fibrous cements, and commonly show the

growth of microdolomite crystals upon skeletal surfaces. We

note that the rod-like microdolomite crystals are restricted to

the skeletal middle layer or concentrated along the outer sur-

face of Namacalathus, suggesting that the skeleton served as a

source of magnesium. These features point to a primary
high-Mg calcite mineralogy and preservation of primary skel-

etal fabrics [20]. We infer the irregular microdolomite

rhombohedra within the resultant middle cavity to represent

diagenetic precipitates after the post-mortem decay of the

organic material enriched by magnesium and seeded by

microdolomite crystals.

While a microgranular ultrastructure can originate diage-

netically after irregular, spherulitic, fascicular and orthogonal

primary fabrics of fibrous type [21,22], a regular foliated

ultrastructure has never been observed to be a result of

diagenetic alternation of a different primary fabric.
(b) Skeletal ultrastructure functional morphology
The columnar microlamellar inflections, an organic-rich inner

layer and robust external wall spines may all have imparted

mechanical strength fracture resistance to Namacalathus.
Columnar microlamellar inflections are considered to retard

the propagation of cracks through a skeleton displaying

increasing curvature of wall, and impart resistance to both

high-energy currents and predatory attack [23,24].

In molluscan shells, organic-rich layers have also been

interpreted to aid the dissipation of energy from hydro-

dynamic pressure or predation [25]. The organic-rich skeleton

with fine microlaminae separated by an organic envelope

would also have maintained flexibility and enabled growth

in energetic settings. Namacalathus was indeed able to occupy

energetic and current-swept reefal environments [4,19,26],

and skeletal flexibility is apparent by the common preservation

of folded or plastically distorted skeletal walls [4].

Early representatives of tommotiids, brachiopods and

bryozoans were able to secrete intercrystalline structural

organic compounds that penetrated the entire skeleton and

were anchored to the epithelium [27–29]. Thus, cone-in-cone

deflections may reflect traces of an original sensory organ

that would be particularly advantageous for sessile animals
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which possessed a mineralized exoskeleton that prevented

sensory evaluation of the environment through the epithelium.

(c) Clonal budding
The regular pattern of coexisting and attached individuals of

Namacalathus is interpreted to be a feature of a clonal develop-

ment, namely internal budding. During clonal growth, two new

potential buds appeared bilaterally symmetrical on the outer

surface of the upper part of the inferred parental cup. Such a

regular bilaterally symmetrical budding may reflect either the

presence of bilaterally spaced reproductive organs or represent a

prerequisite for the future development of such organs.

(d) Soft-tissue reconstruction
The overall morphology of Namacalathus is not consistent

with a sponge organization as the presence of relatively

large lateral lumens of a diameter comparable to that of the

central opening would reduce pressure within the filter feed-

ing system by decreasing the initial velocity of the cumulative

exhalant jet, in turn leading to permanent recycling of filtered

water and potential clogging of choanocyte chambers [30,31].

Formation of a foliated skeletal ultrastructure requires the

presence of compound-secreting tissue similar to that of the

mantle of some lophophorates or molluscs, but a molluscan

suspension-feeding mode would also require the presence

of siphon-type organs which is incompatible with the general

morphology of Namacalathus.

The taphonomic features of sediment ingress within the

Namacalathus skeleton allow us to infer the presence of some

type of non-skeletal tissue within the lumens, but none adja-

cent to the central opening. Such a soft tissue distribution is

not consistent with the presence of multiple tentacle-ringed

mouths as in a microcarnivorous sessile colonial cnidarian,

but rather with the existence of a suspension-feeding organ

within the cup of Namacalathus.

(e) Affinity of Namacalathus
To aid interpretation of possible affinity, the characteristics of

Namacalathus are summarized in table 1 along with those

from high-ranking modern taxa (calcareous algae, foraminifer-

ans, sponges, cnidarians and various crown group bilaterians)

and some extinct sessile organisms with calcareous and phos-

phatic skeletons (Ordovician–Jurassic tentaculitoids and early

Cambrian tommotiids).

We note that many features of Namacalathus are widely

distributed among unrelated taxa and so offer limited insight

into affinity. These include a high-Mg calcite skeletal compo-

sition, radial symmetry and a stalked appearance with a cup

bearing large lumens. The presence of a bulb-like feature at

the base of the Namacalathus stem (figure 1d ) may represent

initial growth stages anchored within or attached to microbial

mats. Such a bulb-like larval shell showing a distinct constric-

tion at the junction with the main skeleton is observed in

some bryozoans and tentaculitoids [27,32]. More material,

however, is required to support this initial observation.

The regular bilaterally symmetrical budding may reflect

either the presence of bilaterally spaced reproductive organs

or represent a prerequisite for the future development of

such organs. In clonal lophotrochozoans, including phoronids,

entoprocts, microconchids (tentaculitoids), cycliophorans and

some bryozoans, buds are similarly developed in the distal,
outermost parts of parental individuals and can produce a

bilaterally symmetrical pattern of conjoined, paired and in

the case of microconchids also coiled, buds [43–46].

A foliated skeletal ultrastructure, columnar microlamellar

skeletal deflections and internal budding have a restricted taxo-

nomic distribution (table 1). The open texture of the middle

skeletal layer in Namacalathus is reminiscent of the interlaminar

lenticular chambers found in lingulate brachiopods which con-

tains apatite aggregate meshes [47], and of organic layers in

high-Mg calcitic shells of the Craniaformea which bear a high

concentration of organic material and magnesium [48,49].

Regular, foliated ultrastructure is restricted only to the

accretionary-growing shells of molluscs [50], brachiopods

and bryozoans [27]. In addition, tight columnar cone-in-cone

deflections within skeletal laminations identical in form and

scale to structures to those noted in Namacalathus are found in

some brachiopod and bryozoan taxa, both of which belong

to the Lophophorata [27,33]. In brachiopods and bryozoans

such structures may form trabeculae on the inner shell

surface and contain rods, where they are known variously as

pseudo-punctae or acanthostyles [27,28].

Such features are not found in any other modern skeletal

groups, but are also found in the extinct tentaculitoids and

hederelloids. These are interpreted as possible extinct biomi-

neralized stem group phoronids representing the third

modern branch of the Lophophorata [27,32]. Of particular

note is the ‘canalicular’ ultrastructure of early Cambrian obolel-

lid brachiopods which shows fine calcareous laminations

and cone-in-cone deflections at the same scale as noted in

Namacalathus [34,35]. These forms are the first known brachio-

pods with a calcareous shell and appear in the basal Cambrian

Stage 2 [2,18]. Obolellids may, therefore, provide a potential

microstructural intermediate between Namacalathus and

pseudo-punctate brachiopods. Similar linear structures which

can deflect shell layers are also common in Cambrian tommo-

tiids, e.g. Micrina, which are considered to be stem group

brachiopods or lingulate brachiopods [29,35–37], although

these are found in inferred primary phosphatic mineralogy.

We tentatively conclude that foliated ultrastructure and tight

columnar cone-in-cone deflections within the skeletal walls

may represent characters limited to the Lophophorata.

Modern calcareous brachiopod shells and the exterior

walls of bryozoan skeletons are accreted from a shell-lining

secretory epithelium which first secretes an organic layer

that acts as a template for biomineralization. The epithelium

then changes its secretory regime to form calcareous layers

and the resultant calcified skeletal layer is sandwiched

between the secretory epithelium and an organic periostra-

cum or cuticle [28,33]. The arcuate trail and inclination of

columnar microlamellar inflections are growth effects that

result from the mantle pushing radially outwards in response

to thickening of the shell layer and marginal expansion of the

skeleton [33]. Formation and accretion of a foliated calcitic

ultrastructure requires a set of highly heterogeneous organic

matrices composed of a large number of different genetically

controlled shell proteins that play a critical role in determin-

ing the ultrastructure and material properties of the mature

biominerals [50,51]; such a set of organic matrices is not

observed in prismatic, fibrous or spherulitic ultrastructures

which are formed by epitaxial growth from seed crystals

within an organic matrix of variable origin [52].

We suggest a similar biomineralization mechanism for the

formation of the foliated ultrastructure of Namacalathus to that
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Figure 4. Reconstruction of the living Namacalathus. 1, stem; 2, parental cup; 3, daughter cups; 4, hollow ciliated tentacles; 5, spines; 6, lateral lumen; 7 central
opening; 8, inner skeletal layer—foliated with columnar microlamellar inflections; 9, internal (middle) skeletal later—organic rich; 10, external outer skeletal
layer—foliated with columnar skeletal inflections (image copyright: J. Sibbick).
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of the Lophophorata. We infer an original mineralogy of high-

Mg calcite where the growing skeleton was enveloped similarly

to accretionary-growing brachiopod shells and bryozoan skel-

etons by an organic matrix secreted by a mantle. This may

have been combined with a genetic toolkit that encoded for a

heterogeneous organic matrix which was capable of forming

a complex ultrastructure. Namacalathus skeletal microstruc-

ture, however, predates the hierarchical composite skeletal

architectures typical of more advanced lophotrochozoans.

While there is some debate over precise membership [53,54],

there is consensus that the brachiopods, phoronids, annelids,

molluscs, bryozoans, entoprocts and some other minor groups

form a single clade known as the lophophorates [55]. Modern

lophophorates feed on dissolved organic matter and small

food particles, especially phytoplankton, being captured before

they pass through the field of cilia which creates a feeding cur-

rent, together with direct absorption of organic compounds via

cilia on the tentacles. Such a type of suspension feeding may

have been enhanced by the presence of a central opening that

acted to generate exhalant upward currents, and the hollow

stems would have allowed connection between all asexually

budded cups within a colony. This allows a hypothetical recon-

struction of Namacalathus with ciliated tentacles being protracted

from the lateral lumens to form a net of ring-like compartments

in order to maximize capture of food particles and/or dissolved

organic compounds in regimes of switching current direction

(also the inner cup space may have allowed the tentacles to be

withdrawn; figure 4). The cilia whipped the particles being cap-

tured down into a semicircular food grove connected with a

U-shaped gut which ended in an anus at the central opening.

Although the skeleton of Namacalathus has hexaradial sym-

metry, the soft tissue probably did not as the observed bilateral
budding supports a bilateral interior organization. We do not

suggest that hexaradial symmetry characterized the stem

lophophorates. The skeletal and even cuticular organization

of many Ediacaran–Cambrian fossils such as Cambrian pria-

pulids and other cycloneuralians [56,57] shows pentameral or

hexaradial symmetry. Indeed, even modern priapulids may

show a pentameral or hexaradial skeletal organization. There

are no known bilateral forms among the extensive array of

Ediacaran body fossils, which are either radially symmetrical

or asymmetrical. This has led some to suggest a colonial

origin for bilaterians from radial ancestors [58].

We note that, in general, early Cambrian lophophorates

(brachiopods, tommotiids, the possible entoproct Cotyledion
and the tentative phoronids Cambrocornulitus and Yuganotheca)

possess skeletons that are either bivalved, sclerital (consisting

of small, repeating multiple scale-like elements) or aggluti-

nated [38,59–61]. As a result, some have suggested that

ancestral lophophorates bore either a scleritome or a skeleton

formed of a lightly mineralized organic-rich cuticle, and that

motile lophophorates predated sessile forms [61–63].

The Ediacaran Namacalathus, however, possessed a well-

mineralized organic-rich skeleton and was sessile. For an

early lophophorate to have had such a morphology has sup-

port from both molecular and morphological analyses.

Molecular phylogenetics suggests that the ancestor of the

Entoprocta and the Cycliophora can probably be interpreted

as a solitary, marine animal possessing a well-pronounced

ability for asexual reproduction [64]. A sister group relation-

ship between the Lophophorata and the Entoprocta and

Cycliophora despite the functional differences between the

lophophore and the tentacular apparatus of entoprocts and

cycliophorans is moderately supported by molecular analysis.
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This implies that tentacular apparatus for suspension feeding is

an adaptation to a sessile lifestyle and is a synapomorphy

among these clades [55]. Some cladistic interpretations of

brachiopod morphology assume that either the phosphatic

Lingiliformea are the most derived subphyla so creating

an argument in favour of a calcareous-shelled last common

ancestor (LCA) of the Brachiopoda [65], or propose that phos-

phatic- and calcareous-shelled brachiopods are sister groups

that had consistently distinct skeletal mineralogy from early

in their phylogenetic history [66]. None of the known puta-

tive early Cambrian lophophorates have a skeleton suitable

for a motile lifestyle but rather display evidence of a firm

attachment [36,38,59–61]. In addition, both the earliest cal-

careous brachiopods (early Cambrian Obolellida) and the

bryozoans (Ordovician Stenolaemata) possessed foliated

ultrastructures [33,34].
82:20151860
7. Conclusion
We here suggest reinterpretation of the Ediacaran Namacalathus
as sessile total group lophophorate. Namacalathus had an

accretionary growth skeletal wall composed of a calcareous

foliated ultrastructure together with columnar microlamellar

inflections: features restricted to the Lophophorata only.

Namacalathus additionally displays an internal organic-rich

wall layer similar to that found in brachiopods and an internal

budding being expressed in a symmetrical, bilateral pattern.
We conclude that at least some early lophophorates may

have possessed a whole, rather than multicomponent sclerital,

skeleton. These observations also suggest that the clonal, sessile

and active suspension-feeding Lophophorata may have formed

one of the earliest branches of the bilateria. Similarities in the

overall biominerlization pattern between the Brachiopoda,

the Bryozoa, the Tentaculitoidea and Namacalathus are likely

due to a commonality in the molecular, cellular and physio-

logical toolkits of biomineralization within a single group of

related organisms inherited from their LCA.
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