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Abstract 

Background:  Breast cancer is the malignant tumor with the highest incidence in women. DNA methylation has an 
important effect on breast cancer, but the effect of abnormal DNA methylation on gene expression in breast cancer is 
still unclear. Therefore, it is very important to find therapeutic targets related to DNA methylation.

Results:  In this work, we calculated the DNA methylation distribution and gene expression level in cancer and para-
cancerous tissues for breast cancer samples. We found that DNA methylation in key regions is closely related to gene 
expression by analyzing the relationship between the distribution characteristics of DNA methylation in different 
regions and the change of gene expression level. Finally, the 18 key genes (17 tumor suppressor genes and 1 onco‑
gene) related to prognosis were confirmed by the survival analysis of clinical data. Some important DNA methylation 
regions in these genes that result in breast cancer were found.

Conclusions:  We believe that 17 TSGs and 1 oncogene may be breast cancer biomarkers regulated by DNA methyla‑
tion in key regions. These results will help to explore DNA methylation biomarkers as potential therapeutic targets for 
breast cancer.
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Background
Breast cancer is the most commonly diagnosed cancer. 
Worldwide, breast cancer is the leading type of cancer in 
women, there were about 2.26 million newly diagnosed 
female breast cancer cases and about 0.68 million death 
in 2020 [1]. The mortality rate of breast cancer has been 
decreased compared with the past, which is attributed to 
the early diagnosis of breast cancer and the improvement 
of the level for surgery, radiotherapy, and chemotherapy 
[2–5]. In addition, new targeted drug therapies have sig-
nificantly improved the survival of breast cancer patients. 
However, the target drugs for breast cancer are relatively 

lacking [6, 7]. Therefore, it is important to find new target 
genes related to the pathogenesis of breast cancer.

Epigenetics is a heritable variation that can cause 
changes in gene expression [8]. DNA methylation is 
considered a biomarker for epigenome analysis [9, 10]. 
Many studies have reported that DNA methylation can 
affect gene expression, which is an important factor in 
the development and progression of cancer [11]. Whole-
genome hypomethylation and gene-specific hypermeth-
ylation were associated with malignant tumors [9, 12]. 
In particular, hypermethylation of tumor suppressor 
genes (TSGs) can lead to cancer development [13–15]. 
For example, CAV1 [16], CDH13 [17], ID4 [18], and 
SCGB3A1 [19] are epigenetically regulated by DNA 
hypermethylation in breast carcinogenesis. The hyper-
methylation in promoters of APC, SFRP1, SFRP2, SFRP5, 
WIF1, DKK3, ITIH5, and RASSF1A [17] are associated 
with the development of breast cancer, and studies have 
found that APC and RASSF1A are common epigenetic 
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biomarkers for early detection of breast cancer [20–22]. 
Experiments have demonstrated that abnormal DNA 
methylation in the promoter can down-regulate the gene 
expression of the YAP gene for breast cancer patients 
[23]. In our previous work, we also found that some 
key hypomethylation sites in enhancer regions and key 
hypermethylation sites in CpG islands are used to regu-
late the expression of key genes, such as oncogenes ESR1 
and ERBB2, and TSGs FBLN2, CEBPA, and FAT4 [24].

However, despite the significant progress were made 
in the methylation changes of breast cancer, many 
questions remain unanswered. Here, we explored the 
relationship between abnormal DNA methylation in 
different regions and the differential expressions of 
genes and found the key regions where DNA methyla-
tion abnormalities lead to changes in gene expression. 
Finally, we discovered 18 key genes related to breast 
cancer and confirmed that the genes are related to the 
prognosis of breast cancer.

Results
Abnormal DNA methylation distribution in up‑regulated 
hypomethylation and down‑regulated hypermethylation 
genes
The study design flowchart is shown in Fig.  1a. By ana-
lyzing gene expression data, we found that 3741 genes 
were significantly up-regulated, and 2369 genes were 
significantly down-regulated in breast cancer tissues. 
By computing the DNA methylation data in the pro-
moter regions of genes, it was found that 2991 genes 
were hypermethylated and 832 genes were hypomethyl-
ated in breast cancer tissues. Because the level of DNA 
methylation in the promoter region has a negative regu-
latory effect on gene expression [25], therefore, through 
the intersection of genes, we found that 171 genes were 

up-regulated and hypomethylated (U-Hypo), 612 genes 
were down-regulated and hypermethylated (D-Hyper) in 
breast cancer tissues (Fig. 1b).

To understand the DNA methylation characteristics 
of these genes and whether DNA methylation has also 
changed in other regions, we analyzed DNA methyla-
tion distribution in the enhancer, promoter, 5’UTR, exon, 
intron, 3’UTR, and intergenic regions of U-Hypo and 
D-Hyper genes between cancer and paracancerous tis-
sues (Fig. 2). It can be seen from Fig. 2a, there were no 
significant changes of the DNA methylation levels in the 
exons, introns, 3’UTR, and intergenic regions between 
cancer tissues and paracancerous tissues. The methyla-
tion levels in the promoter regions and 5’UTR regions 
of the D-Hyper genes were significantly higher in cancer 
tissue than that in paracancerous tissues. Notably, there 
were significant differences in the 22nd bin (− 400 bp, 
− 300 bp), 24th bin (− 200 bp, − 100 bp) and 26th bin 
(0 bp, 100 bp) regions near TSS, and the most differ-
ence of methylation occurs in the 24th bin (− 200 bp, 
− 100 bp). As it can be seen from Fig.  2b, the U-Hypo 
genes also showed a significant difference of methylation 
occurs in the promoter and the 5’UTR regions, but the 
methylation level of the cancer tissues was lower than the 
methylation level of the paracancerous tissues. The most 
obvious difference occurs in the 26th bin (0 bp, 100 bp) of 
the promoter region.

To further investigate the effect of DNA methylation 
in the promoter and 5’UTR region on gene expression, 
we calculated the relative difference of DNA methyla-
tion between cancer tissues and paracancerous tissues 
for each bin in each D-Hyper or U-Hypo gene, and 
results were shown by heat maps (Fig. 2c, d, e, and f ). 
Abnormal DNA methylations were mainly enriched in 
14 ~ 17th bins (− 200 bp, 200 bp) of the promoter region 

Fig. 1  The analysis of aberrantly methylated in the promoter region and differentially expressed genes. a The flowchart of D-Hyper and U-Hypo 
genes. b Overlap analysis of up-regulated, down-regulated expression genes and hyper-methylation, hypomethylation genes, up represents 
up-regulated genes in cancer tissues, down represents genes down-regulated in cancer tissues, hyper represents hypermethylated genes in cancer 
tissues, and hypo represents hypomethylated genes in breast cancer tissues
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for the D-Hyper genes and the U-Hypo genes (Fig. 2c, 
d, and g), indicating the DNA methylation in 200 bp 
upstream and downstream of TSS have the obvious 
difference between cancer tissues and paracancerous 

tissues. In the 5’UTR region (Fig.  2e, f, and h), the 
main changes of DNA methylation were significantly 
enriched in the 1st bin for the D-Hyper genes and the 
U-Hypo genes.

Fig. 2  DNA methylation profiles of 612 D-Hyper, 171 U-Hypo genes. a, b The distribution of DNA methylation in the functional regions of D-Hyper, 
U-Hypo genes, respectively. Wherein the ordinate is the average β value of the CpG site in each bin, and the abscissa is the bin of each functional 
region. c, d The distribution of RD value in the promoter (PRO) of the D-Hyper and the U-Hypo genes. e, f The distribution of RD value in the 5’UTR 
(5U) region of the D-Hyper and the U-Hypo genes. Pink means that the DNA methylation value in breast cancer tissues is higher than that in 
paracancerous tissues, and blue opposite. g, h The distribution density of aberrant methylation genes in the promoter and 5’UTR regions
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The characteristics of abnormal methylation 
in differentially methylated enhancers (DME) genes
To study the effect of the DNA methylation level in 
specific regions of enhancers on the gene expression in 
breast cancer. By using a comprehensive model (Fig.  8), 
we selected genes (162 DME-gene pairs) with abnor-
mal DNA methylation in the enhancer region, while no 
abnormal DNA methylation in the promoter region, and 
the abnormal DNA methylation in the enhancer region is 
negatively correlated with gene expression (Supplemen-
tary Table). Since some genes are regulated by multiple 
enhancers, 162 DME-gene pairs are corresponding to 154 
genes.

To understand the DNA methylation characteristics 
in the enhancer and other regions of the DME genes, we 
analyzed the DNA methylation profile of the 154 DME 
genes. We could conclude that the DNA methylation was 
different in the enhancer region of DME genes, but the 
level of DNA methylation had no significant difference in 
other regions between breast cancer and paracancerous 
tissues (Fig. 3a). From the differential DNA methylation 
gene density distribution of the enhancer region, it can be 
seen that the differential methylation of DME genes was 
mainly enriched in the 6th and 7th bins (Fig. 3b). Further, 
we analyzed the differential methylation levels of each bin 
of the enhancer region in DME genes. There were more 
hypermethylated genes than the hypomethylated genes, 
and the differential methylation was enriched in the 6th 
and 7th bins (Fig.  3c). Therefore, we can conclude that 

abnormal DNA methylation in the 6th and 7th bins of the 
enhancer region affects the expression of the DME gene.

GO, KEGG analysis of D‑Hyper, U‑Hypo, and DME genes
To explore the potential biological functions of 
D-Hyper, U-Hypo, and DME genes, we performed GO 
function and KEGG pathway analysis. The GO analysis 
results showed that D-Hyper genes are related to the 
cell-cell adhesion via plasma-membrane adhesion mole-
cules, regulation of system process, ion channel activity, 
RNA polymerase II regulatory region DNA binding, and 
growth factor binding, etc. The analysis of the KEGG 
pathway revealed that these genes were significantly 
enriched in Neuroactive ligand-receptor interaction, 
Oxytocin signaling pathway, and Pathways in cancer, 
etc. (Fig. 4). For U-Hypo genes, it was mainly related to 
the cytokine-mediated signaling pathway and the regu-
lation of gene silencing. Transcriptional misregulation 
in cancer and the IL-17 signaling pathway are path-
ways associated with potential oncogenes (Supplemen-
tary Figure 1). The DME genes were mainly associated 
with the regulation of the ERBB signaling pathway, the 
negative regulation of cell differentiation, and the nega-
tive regulation of cell proliferation, etc. Through the 
KEGG pathway analysis revealed that the DME genes 
are enriched in pathways such as Focal adhesion, Viral 
carcinogenesis, and Melanoma (Supplementary  Fig-
ure 2). These analyses suggested that the three kinds of 
the gene are relevant to cancer.

Fig. 3  DNA methylation profiles of DME genes. a The distribution of DNA methylation in the functional regions of the DME gene set, wherein 
the ordinate is the average β value of the CpG site in each bin, and the abscissa is the bin of each functional region. b The distribution density of 
aberrant methylation in the enhancer. c The distribution of RD value in the enhancer (EN) of DME genes



Page 5 of 13Cao et al. Hereditas           (2022) 159:7 	

The key genes related to breast cancer
In order to further explore the DNA methylation distri-
bution characteristics of oncogenes and TSGs, we inter-
sect D-Hyper, U-Hypo, DME genes with cancer-related 
gene sets, respectively, and obtained 41 oncogenes and 91 
TSGs. By analyzing the DNA methylation distribution of 
these genes, it can be seen that abnormal DNA methyla-
tion in the promoter region was still significantly enriched 
in 14 ~ 17th bins (− 200 bp, 200 bp) (Fig. 5a). Therefore, we 
further selected the genes of abnormal DNA methylation 
in the promoter 14 ~ 17th bins (− 200 bp, 200 bp) (Fig. 5b 
and c). Then by analyzing the GO and KEGG path-
ways of these genes, 20 key genes related to breast can-
cer were finally obtained, including 19 TSGs (ACVR2A, 
CAV1, EGFR, FAT4, ID1, ID4, KIT, LEP, LEPR, MET, 
NRG1, PPARG​, PRDM16, PREX2, PROX1, RYR3, SOX17, 
STAT5A, VIM) and 1 oncogene (PLK1).

The analysis of DNA methylation and gene expression 
for key genes in large samples
To verify whether the 20 key genes had the same pattern 
in large samples, we analyzed DNA methylation data 
and gene expression data from breast cancer samples in 
TCGA. The genes expression levels (log2(FPKM)) of 20 
are shown in Fig.  6a, it can be seen that the expression 
levels of the 19 genes were higher in the paracancer-
ous tissues than in breast cancer tissues, except that the 
expression level of the PLK1 was lower in the paracan-
cerous tissues than in breast cancer tissues. It could be 
concluded that PLK1 acts as an oncogene in breast can-
cer, while the remaining 19 genes acted to inhibit tumors. 
Figure 6b and c show the distribution of abnormal DNA 
methylation in the promoter regions of the 20 key genes 
in the large samples. The results indicated that only the 
29th bin in the promoter region of the PLK1 gene was 

Fig. 4  GO-function and KEGG pathway of D-Hyper genes. Bubble plot shows GO and KEGG pathway enrichment data for D-Hyper genes
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abnormally hypomethylated, while other genes were 
abnormally hypermethylated (Fig.  6b). Figure  6c shows 
that abnormal DNA methylation in the promoter region 
was mainly enriched in 14 ~ 17th bins (− 200 bp, 200 bp). 
These are consistent with the conclusions we have drawn 
in the small sample.

Survival analysis of key genes
To further verify the influence of the expression for the 
above 20 key genes on breast cancer, we used KM plot-
ter to perform Kaplan-Meier survival analysis of these 
key genes to determine the prognostic value of these 
key genes in breast cancer. Figure  7 shows survival 
curves for all breast cancer patients (n = 4929). It can 
be seen that the high expression of PLK1 was associ-
ated with poor overall survival of breast cancer patients. 
This result further indicated that PLK1 was an onco-
gene. In contrast, the high expression of the 17 genes 
(EGFR (211550_at), ACVR2A (205327_s_at), CAV1 
(203065_s_at), FAT4 (219427_at), ID1 (208937_s_at), 
ID4 (209292_at), KIT (205051_s_at), LEPR (207255_
at), MET (213816_s_at), NRG1 (208241_at), PPARG​ 
(208510_s_at), PRDM16 (220928_s_at), PREX2 
(220732_at), PROX1 (207401_at), RYR3 (206306_at), 
SOX17 (219993_at), and STAT5A (203010_at)) could 
significantly improve the prognosis of breast cancer 
patients. However, the high expression of LEP (207092_
at) and VIM (201426_s_at) were weakly correlated with 
a good prognosis. It has been proved that 17 TSGs and 
1 oncogene can be used as the markers of the prognosis 
for breast cancer patients.

Discussion
Based on the analysis of the genome DNA methyla-
tion profiles for differentially expressed genes and DME 
genes, the results indicated that the most of hyper- and 

hypo- DNA methylation sites were located in the 
14 ~ 17th bins (− 200 bp, 200 bp). Furthermore, we identi-
fied 1 oncogene and 17 TSGs as potential biomarkers for 
breast cancer diagnostic.

In addition, we further confirmed the selected TSGs 
and oncogenes are associated with breast cancer. We 
found that EGFR, NRG1, and STAT5A were enriched in 
the ErbB signaling pathway, ID1 and ID4 were enriched 
in the Hippo signaling pathway, EGFR, KIT, and MET 
were enriched in the PI3K-Akt signaling pathway and 
SOX17 was enriched in the Wnt signaling pathway. 
These pathways related to environmental information 
processing and signal transduction had been shown 
to be closely related to the occurrence of breast cancer 
and play a decisive role [24, 26–29]. EGFR, KIT, MET, 
PPARG​, and STAT5A were enriched in the Pathways 
in cancer, CAV1, EGFR, and MET were enriched in the 
Proteoglycans in cancer, and MET and PPARG​ were 
enriched in the Transcriptional misregulation in can-
cer. These pathways play a very important role in most 
human cancers [26, 30]. These findings further indicate 
that these genes can be used as biomarkers for breast 
cancer. In addition, ACVR2A, ID1, and ID4 are enriched 
in the TGF-β signaling pathway, and the role of TGF-β 
in osteolytic bone metastasis was well known [31, 32]. 
The GO biological processes of ACVR2A, KIT, and FAT4 
are skeletal system development, RYR3 and EGFR are 
in the Calcium signaling pathway enrichment, the GO 
molecular functions of RYR3 and FAT4 are calcium ion 
binding and the GO molecular function of RYR3 is cal-
cium-induced calcium release activity [33], and the most 
common metastasis of breast cancer is bone metastasis, 
so the enrichment of these GO biological processes, GO 
molecular functions and key pathways seems to explain 
why 85% of patients with advanced breast cancer have 
bone metastases [31, 34].

Fig. 5  The distribution in promoter region for TSGs and oncogenes. a The distribution of density in promoter region for TSGs (tumor suppressor 
genes) and oncogenes. b and c Is the number of the tumor suppressor genes and oncogenes for abnormal DNA methylation in the promoter 
14 ~ 17th bins
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Conclusions
In this study, we found that the abnormal DNA meth-
ylation of TSGs and oncogenes associated with the 

pathogenesis of breast cancer is mainly concentrated 
in the TSS ±200 bp region. we obtained 17 TSGs and 
1 oncogene associated with breast cancer, and verified 

Fig. 6  Gene expression levels and abnormal DNA methylation distribution in the promoter of 20 key genes. a The distributions of log2(FPKM) 
values of 20 key genes in cancer and paracancerous tissues. Dark gray is the distribution of log2(FPKM) values for paracancerous tissues, and light 
gray is the distribution of log2(FPKM) values for cancer tissues. b The distribution of the DNA methylation RD values for 30 bins in the promoter 
region. c The gene number distribution of 30 bins in the promoter region with an absolute value of RD greater than 0.2
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Fig. 7  The effect of changes in expression levels of the 20 key genes on overall survival. The KM plotter of these key genes. The name of each figure 
is the gene symbol and Affymetrix ID. The abscissa is the survival time, the unit is the month, and the ordinate is the survival rate
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them by survival analysis. Our results may provide help 
for studying, the pathogenesis of breast cancer, potential 
therapeutic targets, and epigenetic modification as novel 
target drugs.

Materials and methods
Data sources
We downloaded the DNA methylation (Illumina Infin-
ium Human Methylation 450 K) data and gene expres-
sion data (FPKM and COUNTS) of 1097 breast cancer 
samples from TCGA (https://​tcga-​data.​nci.​nih.​gov/​tcga/) 
(Table 1). There were 9 breast cancer samples that con-
tain breast cancer tissue and matched paracancerous tis-
sue data. The RefSeq genes of the human genome (hg38) 
were downloaded from the University of California Santa 
Cruz (UCSC) (http://​genome.​ucsc.​edu/). The Ensemble 
Gene ID (GRCh38) annotation file and the location file of 
the human breast tissue enhancer were downloaded from 
Ensembl (http://​www.​ensem​bl.​org/​Homo_​sapie​ns/).

We obtained a cancer genes sets associated with 
breast cancer from the Catalogue Of Somatic Muta-
tions In Cancer (COSMIC) (https://​cancer.​sanger.​ac.​
uk/​census) [35], the Candidate Cancer Gene Database 
(CCGD) (http://​ccgd-​starr​lab.​oit.​umn.​edu/​downl​oad.​
php) [36], the Disease-gene associations mined from 
literature (DISEASES) (https://​disea​ses.​jense​nlab.​org) 
[37] and the National Cancer Institute (NCI) (https://​
wiki.​nci.​nih.​gov/x/​hC5yAQ).

Selection of differentially expressed genes
To obtain the differentially expressed genes between 
the paracancerous tissue and the cancer tissue, first, 
we standardized the expression data used the following 
formulas.

where

(1)NCkj = R
(

Ckj/sj
) (

1 ≤ k ≤ m, 1 ≤ j ≤ n
)

(2)

sj = eηj

ηj = M
(

d1j , d2j , · · · , dkj
)

dkj = lnCkj/ n

√

n
∏

j=1

Ckj

Here k is the k-th gene, j is the j-th sample, NCkj 
denotes the normalized expression value of the k-th 
gene in the j-th sample, R denotes the rounding, Ckj is 
the gene expression counts of the k-th gene in the j-th 
sample, sj is the standardization factor of the j-th sam-
ple, m (m = 60,483) is the total number of genes, and n 
(n = 1210) is the total number of samples, M denotes to 
take the median.

Then, using the DESeq function to calculate the dif-
ferential expression of gene, got the log2(FoldChange), 
pval (p value for the statistical significance of this 
change) and padj (p value adjusted for multiple testing 
with the Benjamini-Hochberg procedure) [38]. Among 
them, Fold Change (FC) was calculated as follows:

Here, k and j are the same as Eq. (1), t is the cancer 
sample, p is the paracancerous sample, NCkj, t (NCkj, p) 
is the normalized expression value of the k-th gene in 
the j-th cancer sample (paracancerous sample), nt (nt 
= 1097) is the number of the cancer sample, np (np = 
113) is the number of the paracancerous sample. FCk 
denotes the fold change of the k-th gene, when FCk 
> 1.25, padj < 0.05 as up-regulated expression genes, 
and FCk < 0.8, padj < 0.05 as down-regulated expression 
genes.

Selection of differential DNA methylation genes
The DNA methylation levels of DNA methylation 
HM450K data were measured by the value of each probe. 
The degree of methylation (β) was defined as follows:

Where i is the i-th CpG probe, mw (mw = 485,578) 
is the total number of the probes, max(yi, methy, 0) and 
max(yi, umethy, 0) are the signal intensities of the methyl-
ated and unmethylated for the i-th probe, respectively. 
The α is a constant (the default value is set to 100) to 
eliminate the effect on the β value when the max(yi, 

methy, 0) and max(yi, umethy, 0) are simultaneously low [39]. 
There are 485,578 probes in the file of the DNA meth-
ylation data, and 482,421 CpG probes were left after the 
non-CpG probes were removed. There are many “NA”s in 
the column due to the presence of single nucleotide poly-
morphisms (SNPs) [40]. Further, 96,079 probes contain-
ing “NA” were deleted. Finally, 386,342 probes remained.

We matched these probes to the promoter region 
(1500 bp upstream and downstream of TSS) of 18,861 

(3)
FCk =

nt
∑

j=1

NCkj,t

nt
/

np
∑

j=1

NCkj,p

np

(4)

βi =
max

(

yi,methy,0
)

max
(

yi,methy,0
)

+max
(

yi,umethy,0
)

+α
(1 ≤ i ≤ mw)

Table 1  The details of 1097 breast cancer samples data types

Type DNA methylation Gene expression 
(FPKM and 
COUNTS)

Paracancerous sample 96 113

Cancer sample 789 1097

https://tcga-data.nci.nih.gov/tcga/
http://genome.ucsc.edu/
http://www.ensembl.org/Homo_sapiens/
https://cancer.sanger.ac.uk/census
https://cancer.sanger.ac.uk/census
http://ccgd-starrlab.oit.umn.edu/download.php
http://ccgd-starrlab.oit.umn.edu/download.php
https://diseases.jensenlab.org
https://wiki.nci.nih.gov/x/hC5yAQ
https://wiki.nci.nih.gov/x/hC5yAQ
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genes, and calculated the DNA methylation level of genes 
according to the following formula.

Here i is the same as Eq. (4), k and j are the same as Eq. 
(1), S is the sample type, t is the cancer sample, p is the 
paracancerous sample, mr is the number of probes fall-
ing into the promoter region for the k-th gene, βi, S is the 
average DNA methylation value of the i-th probe in the 
cancer sample (paracancerous sample), βk, S is the DNA 
methylation level of the k-th gene in the cancer sample 
(paracancerous sample), βij, S denotes the DNA methyla-
tion level of the i-th probe in the j-th cancer sample (par-
acancerous sample), nS is the total number of sample (nt 
= 789, np = 96).

The genes of differential DNA methylation were 
defined by using relative difference (RD) [41]. The for-
mula was as follows:

(5)
βk ,S =

mr
∑

i=1

βi,S

mr

(

1 ≤ i ≤ mr , S = t, p
)

βi,S =

nS
∑

j=1

βij,S

nS

(

1 ≤ j ≤ nS
)

Here k is the k-th gene, RDk is the relative difference of 
DNA methylation in the k-th gene, βk, t and βk, p denotes 
the average DNA methylation level of the k-th gene in 
the cancer sample and paracancerous sample, respec-
tively. Δ = 10−9, mg (mg = 18,861) is the total number of 
the genes. When RDk > 0.2, the DNA methylation level 
of this gene is higher in breast cancer tissues than that 
in paracancerous tissues, we defined it as a hypermethyl-
ated gene; when RDk < − 0.2, the DNA methylation level 
of this gene is lower in breast cancer tissues than that in 
paracancerous tissues, we defined it as a hypomethylated 
gene.

Calculation of DNA methylation levels in different regions
First, we used the file of tissue-specific gene regulatory 
location in the Ensembl database to extract the enhancer 
region. And according to the RefSeq annotation file, 
we divided the gene into the following regions: (1) pro-
moter (TSS ± 1500 bp), (2) 5’UTR, (3) exon, (4) intron, 

(6)RDk =
βk ,t−βk ,p
βk ,p+�

(

1 ≤ k ≤ mg

)

Fig. 8  Flow chart of DME-gene pairs prediction
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(5) 3’UTR, (6) intergenic region. Second, the promoter 
region was divided into 30 bins, each bin was 100 bp, and 
the other genomic functional regions were divided into 
10 bins, respectively. Third, the CpG site was matched to 
the bins, the methylation level of each bin was calculated 
by the following formula:

Here k, i, and βi, S are the same as Eq. (5), μ is the μ-th 
bin, ξ is the ξ-th region, mw (mw = 386,342) is the total 
number of probes, mb (mb = 10) is the total number of 
bins, mg (mg = 18,861) is the total number of genes, S is 
the sample type, t is the cancer sample, p is the paracan-
cerous sample, βµξ

k ,S is the DNA methylation level of the 
μ-th bin in the ξ-th region for the k-th gene. mr is the 
number of probes falling into the μ-th bin in the ξ-th 
region for the k-th gene.

Identifying the target gene of the enhancer and predicting 
genes regulated by differentially methylated enhancers 
(DME)
It is well known that the enhancer is a short (50 ~ 1500 bp) 
DNA region upstream or downstream 1Mbp of TSS in the 
gene [42, 43]. The enhancer can usually regulate the closest 
gene. By computing the distance from the TSS of each gene 
to the center of the enhancer region, and the gene closest to 
each enhancer was defined as the target gene of the enhancer. 
A comprehensive model was used for predicting genes regu-
lated by DME (Fig. 8). First, we used Eq. (6) to calculate the 
differential methylation between the paracancerous tissue 
and the cancer tissue for the enhancer and promoter regions. 
Second, Spearman’s correlation (rk) between the relative dif-
ference (RDkj) of the DNA methylation for DME and the dif-
ferential expression foldchange (FCkj) for its target gene was 
calculated in matched patients, and the highly negatively 
correlated (rk < − 0.4) DME gene pairs were retained. Third, 
we removed the gene whose differential methylation value is 
greater than 0.2 in promoter, and obtained the differentially 
expressed genes only due to methylation changes in enhancer 
as the DME gene pairs [44]. Among them, the correlation 
coefficient was calculated using the following formula:

Where k and j are the same as Eq. (1), n (n = 9) is the 
total number of samples, mg (mg = 1902) is the total 
number of the target genes, R(FCkj) is the rank of dif-
ferential expression foldchange for the k-th DME target 
gene. R(RDkj) is the rank of relative difference for meth-
ylation in the k-th DME.

(7)�
��

k ,S
=

mr
∑

i=1

�i,S

mr

�

1 ≤ i ≤ mw , 1 ≤ � ≤ mb , 1 ≤ k ≤ mg , S = t, p

�

(8)
rk = 1−

6
n
∑

j=1
[R

(

FCkj

)

−R
(

RDkj

)

]
2

n(n2−1)

(

1 ≤ j ≤ n, 1 ≤ k ≤ mg

)

Gene ontology (GO) function, KEGG pathway, and survival 
analysis
GO and KEGG pathway enrichment analysis was per-
formed using Metascape (http://​metas​cape.​org) [45]. Sur-
vival analysis was performed by using Kaplan-Meier Plotter 
(http://​kmplot.​com/). The Kaplan-Meier plotter has the 
information of 54,675 probes on survival using 5143 breast 
cancer patients with a mean follow-up of 69 months. Gene 
expression data and over survival (OS) information were 
downloaded from European Genome-phenome Archive 
(EGA), Gene Expression Omnibus (GEO), and TCGA [46].
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