## RESEARCH Open Access



# Escherichia coli causing bloodstream infections in Mexican paediatric patients: molecular typing, antimicrobial resistance, virulence factors, and clinical features

Laura Belmont-Monroy<sup>1†</sup>, Jocelin Merida-Vieyra<sup>1†</sup>, Ruben Bautista-Hernandez<sup>1</sup>, Josúe Adonis Mateo-Arreola<sup>1</sup>, Agustín de Colsa-Ranero<sup>2</sup>, Isabel Medina-Vera<sup>3</sup>, Erik Emmanuel Jandete-Martinez<sup>1</sup> and Alejandra Aguino-Andrade<sup>1\*</sup>

### **Abstract**

**Background** *Escherichia coli* is one of the main pathogens causing bloodstream infections (BSIs) in paediatric patients. It is classified into pathogenic (B2, D and F) and commensal (A, B1 and C) phylogroups, with virulence mainly attributed to adhesins, toxins and iron acquisition systems. In recent years, the global spread of high-risk clones such as ST131 and ST405, often associated with extended-spectrum beta-lactamases (ESBLs), has contributed to increased resistance and limited treatment options. The BSI mortality rate in children varies from 14 to 21.6%. This study aimed to describe resistant mechanisms; virulence factors and clonal distribution of *E. coli* isolates that cause BSIs in children in Mexico and clinical features.

**Methods** Thirty-eight ceftriaxone (CRO)-resistant *E. coli* isolates were included. Beta-lactamase and virulence genes were detected by PCR. Molecular typing included phylogroup determination, sequence types (ST), and pulsed-field gel electrophoresis (PFGE). Clinical information was acquired.

**Results** CTX-M was the most frequently identified beta-lactamase (82%) and aac(6')-lb-cr was present in 45%. Phylogroup distribution was A (21.1%), C (7.9%), D (28.9%), B2 (23.7%), and F (18.4%). The most common virulence factor was fimH (71%), while papC, sat and irp2 were significantly more frequently in the pathogenic phylogroups (P=0.029, 0.011 and 0.006, respectively). PFGE identified 5 clusters, 20 non-related isolates and 4 non-typeable. Predominant clonal complexes (CC) were CC405 (23.7%) and CC131 (21.1%), with 82% of isolates belonging to high-risk clones. Survival rates differed significantly with moderate high-grade fever (P=0.022). All patients who died had complications, compared to 34.8% of survivors (P<0.0001). Mortality was higher in adolescents (53.3%), patients with leukaemia or lymphoma (40%), those with hospital-acquired infections (86.8%), those with an abdominal or pulmonary focus (33.3% each). No significant differences were found in of haematological parameters.

<sup>\*</sup>Correspondence:
Alejandra Aquino-Andrade
aaquinoa@pediatria.gob.mx
Full list of author information is available at the end of the article



© The Author(s) 2025. **Open Access** This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

<sup>&</sup>lt;sup>†</sup>Laura Belmont-Monroy and Jocelin Merida-Vieyra contributed equally to this work.

**Conclusions** Both commensal and pathogenic *E. coli* strains cause BSIs in paediatric patients with underlying diseases. Resistance to 3GCs and 4GCs is mainly mediated by CTX-M, hence treatment with carbapenems was used. Infection-related deaths were more frequent in patients infected by pathogenic phylogroups, where *papC*, *sat*, and *irp2* were more prevalent. High-risk clones were widely distributed among isolates.

Keywords BSI, E. coli, ESBL, ExPEC, Virulence factors, Phylogenetic groups, Paediatric patients, High-risk clone, Mexico

### Introduction

It is estimated that infectious diseases caused 13.7 million deaths in 2019, of which 4.9 million were associated with antimicrobial resistance (AMR) and 1.27 million were attributed to AMR. In total, 45.3% of the deaths attributable to AMR occurred due to infections caused by gram-negative bacteria, 219,000 of which were attributed to *E. coli* [1, 2]. Another estimate indicates that 2.68 million deaths from sepsis that occurred among children under 5 years of age in 2021, were associated with AMR [3]. From 2013–2016, the main pathogen that caused bloodstream infections (BSIs) in Latin America was *E. coli*, which was responsible for 18.3% of the cases [4]. The mortality rate from BSIs in children is 14% in the United States and 21.6% in Brazil [5].

*E. coli* strains that cause infections outside the intestine are known as extraintestinal pathogens (ExPECs) as meningitis and urinary tract infections (UTIs), in addition to BSIs [6].

The virulence of ExPECs is associated with genes that encode adhesins, such as type 1 fimbriae (fimH) and S fimbriae adhesins (sfa); toxins, such as  $\alpha$ -haemolysin (hlyA), cytotoxic necrotizing factor 1 (cnf 1), secreted autotransporter toxin (sat), plasmid-encoded toxin (pet), and vacuolating autotransporter toxin (vat); and proteins involved in intestinal colonization (pic) and iron acquisition, such as the siderophores aerobactin siderophore receptor (iutA), yersiniabactin siderophore (irp2), aerobactin (iucC), and salmochelin siderophore receptor (iroN) [7]. Together, these virulence factors facilitate host colonization and allow the pathogen to invade the bloodstream [8, 9].

ESBLs are a group of enzymes that hydrolyse beta-lactam antibiotics, including third- and/or fourth-generation cephalosporins (3GCs and 4GCs, respectively) and monobactams, which has led to carbapenems being the main treatment option for infections caused by ESBL-producing bacteria. The most important ESBL family members are Temoneira beta-lactamase (TEM), sulfhydryl variable beta-lactamase (SHV), cefotaximase-Munich beta-lactamase (CTX-M), oxacillinase (OXA) and Guiana extended-spectrum beta-lactamase (GES), each with a different level of activity against beta-lactams [10].

*E. coli* can be classified into pathogenic (B2, D, and F) and commensal (A, B1, and C) phylogroups [11]). PFGE is considered as the molecular gold standard in local epidemiological studies and allows identify clonal relationships and potential outbreaks [12]. ExPECs belong mainly to the STs 131, 69, 73 and 95; among them, ST131 strains are considered high-risk clones because they are carriers of the ESBL CTX-M and are resistant to aminoglycosides and fluoroquinolones [13, 14].

Hospital-acquired infections (HAIs) caused by ESBL-producing *E. coli* in intensive care units (ICUs) remain significant contributors to morbidity and mortality, often leading to prolonged hospital stays and higher healthcare costs compared with infections caused by susceptible *E. coli* strains [12]. However, data on comorbidities among paediatric patients from Latin America with *E. coli* causes BSIs, as well as information on their virulence profiles and molecular typing is limited [15–17]. The aim of this study was to describe resistant mechanisms, virulence factors and clonal distribution of *E. coli* isolates that cause BSIs in children in Mexico and clinical features.

### **Methods**

### Identification and susceptibility profiling

This study was performed at the National Institute of Paediatrics (INP), a tertiary hospital with 254 beds, located at south of Mexico City. During a two-year period from February 2013-January 2015, consecutive CRO- resistant *E. coli* isolates that caused BSIs in paediatric patients (aged 0–18 years) were included. After the isolates were identified, their susceptibility profiles were obtained using the Microbiology Phoenix<sup>®</sup> automated system (Becton Dickinson, NJ, USA) according to the manufacturer's instructions. Antibiotic categorization was performed according to the M100 document of the Clinical Laboratory Standards Institute (CLSI) [18].

### **Confirmatory ESBL test**

ESBL activity detection was performed by the double disk diffusion method using cefotaxime and ceftazidime SensiDisks alone and in combination with clavulanic acid following CLSI guidelines [18].

# Molecular detection of beta-lactamase and quinolone resistance genes

Total DNA was extracted using the QIAamp® DNA Mini Kit (QIAGEN, Hilden, Germany) according to the manufacturer's instructions. PCR was used to detect the beta-lactamase genes bla<sub>CTX-M-1</sub>, bla<sub>CTX-M-2</sub>, bla<sub>CTX-</sub> <sub>M-9</sub>, bla<sub>CTX-M8/25</sub>, bla<sub>LAT</sub>, bla<sub>DHA</sub>, bla<sub>TEM</sub>, bla<sub>SHV</sub> and quinolone resistance genes qnrA, qnrB, qnrS and aac(6)-*Ib-cr* using previously published primers (Table S1) [19– 21]. PCR was performed with an AB9700 thermal cycler (Applied Biosystems Foster City, CA, USA) with Ampli-Tag Gold<sup>®</sup> 360 MasterMix (Applied Biosystems, Foster City CA, USA). The fragments obtained were purified with a QIAquick PCR Purification Kit (QIAGEN, Hilden, Germany) and sequenced on a 3500 XL system (Applied Biosystems) exclusively for beta-lactamase genes. The sequences were analysed with the BLASTN program [22, 23]. Multiple sequence alignments were performed with BioEdit v.7.7.1 (Ibis Biosciences, Carlsbad CA, USA) to determine the enzyme subtypes and for comparison with sequences from the Beta-Lactamase Data Resources of the National Center for Biotechnology Information (NCBI).

### Identification of virulence genes

Thirteen virulence genes were detected by multiplex PCR. Amplifications were carried out in 25 µL reaction mixtures containing 0.1 µg of template DNA and Ampli-Taq Gold<sup>®</sup> 360 Master Mix (Applied Biosystems, Foster City, CA, USA). Four multiplex PCR assays were performed as follows: PCR 1 included iroN (665 bp), cnf1 (498 bp), and papC (328 bp), with cycling conditions of initial denaturation at 95 °C for 2 min; 30 cycles of denaturation at 95 °C for 30 s, annealing at 64 °C for 30 s, and extension at 72 °C for 1 min; and a final extension at 72 °C for 7 min. PCR 2 targeted pic (1011 bp), iucC (269 bp), and sat (501 bp), using an annealing temperature of 56 °C and a final extension of 10 min at 72 °C. PCR 3 included irp2 (287 bp) and fimH (508 bp), with an annealing temperature of 63 °C and final extension of 7 min. PCR 4 targeted pet (302 bp) and vat (420 bp), with an annealing temperature of 58 °C and final extension of 7 min. Additionally, hlyCA (556 bp), sfa (410 bp), and iutA (302 bp) were individually amplified under standard PCR conditions, using an annealing temperature of 55 °C. The sequence of the primers used are available in Table S1 [24–30]. E. coli CFT073 was used as a positive control.

### Molecular typing

### Determination of phylogenetic group

A multiplex PCR was performed to determine the phylogenetic group of each strain, based on the presence

or absence of four genetic markers (*arp*A, *chu*A, *yja*A, TspE4.C2). using specific primers (Table S1). PCR conditions included an initial denaturation at 94 °C for 4 min; 30 cycles of 94 °C for 5 s, 59 °C for 20 s, and 72 °C for 1 min; followed by a final extension at 72 °C for 5 min. Phylogenetic groups (A, B1, B2, C, D, E, F, or clade I) were determined according to the genotypic profiles obtained using the Clermont method [11].

### Pulsed-field gel electrophoresis (PFGE)

Clonal relatedness was assessed by PFGE using XbaI (Invitrogen, Life Technologies, Waltham, MA, USA), following the PulseNet protocol [31]. Salmonella enterica serovar Braenderup ATCC BAA-664 was used as a molecular size marker. PFGE gels were stained with ethidium bromide (10 mg/mL) and visualized under UV light. Banding patterns were interpreted according to Tenover criteria [32] using Image Lab Software v6.1 (Bio-Rad, Hercules, CA, USA). The resulting dendrogram from PFGE analysis were visualized using the GGTREE v3.16.0 package in Rv4.5.0 [33], enabling detailed annotation and graphical display of the clonal relationships among E. coli isolates.

### Genotyping by MLST

Seven housekeeping genes (adk, fumC, gyrB, icd, mdh, purA, and recA) were amplified by PCR using specific primers (Table S1). Each amplification reaction was performed in a 25 µL volume using a Veriti Thermal Cycler (Applied Biosystems) under the following conditions: initial denaturation at 95 °C for 2 min; 30 cycles of denaturation at 95 °C for 15 s, annealing at 54-60 °C for 30 s, and extension at 72 °C for 1 min; followed by a final extension at 72 °C for 7 min. PCR products were confirmed by agarose gel electrophoresis and purified using the QIAquick PCR Purification Kit (QIAGEN, Hilden, Germany). Purified amplicons were sequenced by an external service (Macrogen Inc., Korea), and the resulting sequences were analyzed using the *E. coli* multilocus sequence typing (MLST) database (https://pubmlst.org/organisms) [34, 35]. The closest ST or clonal complex (CC) was assigned based on the concordance of at least four loci from the MLST scheme and classified as a high-risk clone according to previously published data [36].

### **Clinical information**

The clinical records of the patients were reviewed to obtain information such as age, sex, underlying diseases, history of previous surgery, HAI or community-acquired infection (CAI), focus of bacteraemia, presence of fever, respiratory rate (RR), blood counts, treatments, admission to ICU, use of mechanical ventilation or central venous catheter (CVC), bacteriemia complications

(sepsis, septic shock, multiple organ failure), outcome (cure or death), and, in the case of death, if it was associated with the infection also were recorded.

We used the following age categories: neonatal (birth–27 days), infant (28 days–12 months), toddler (13 months–2 years), early childhood (2–5 years), middle childhood (6–11 years), and early adolescence (12–<18 years) [37]. Underlying diseases were defined as medical conditions that involved any organ or system that required specialized care and were classified into the following categories: neurological, renal, gastrointestinal, congenital, leukaemia and lymphoma, solid tumours, nonneoplastic haematological disease and malnutrition [38]. Surgeries performed (14-days and 1-year) before the onset of symptoms were considered.

BSIs were classified as HAIs if they developed on or after the third day of hospitalisation, while CAIs were defined as those diagnosed in an outpatient setting or detected by culture within 48 h of hospital admission [39]. Primary BSI was defined as a laboratory confirmed bloodstream infection without a secondary site of infection [39], whereas a secondary was defined as a BSI that is thought to be seeded from a site-specific infection at another body site. The focus of bacteraemia was classified as pulmonary, abdominal, skin and soft tissue, urinary, catheter-related, or without a determined focus [39].

The presence of low-grade fever was considered 37.3 to 38.0 °C; moderate-grade fever: 38.1 to 39.0 °C; high-grade fever: 39.1 to 41 °C and hyperthermia: greater than 41 °C [40].

The interpretation of the haematological results was performed according to the age of the patients and were categorized into anaemia, leukocytosis, leukopenia, neutrophilia, neutropenia, lymphocytosis, lymphopenia, thrombocytosis, and thrombocytopenia [41]. Neutropenia was defined as mild ( $\geq 1000$  to <1500 cells/ $\mu$ L), moderate ( $\geq 500$  to <1000 cells/ $\mu$ L) and severe (<500 cells/ $\mu$ L) [42].

Previous treatment was considered the use of antibiotic in the last 3 months; empiric treatment was defined as any antimicrobial administered from the day of symptoms until date of susceptibility profile report day (SPRD); definitive treatment was the antibiotics administered after the SPRD, monotherapy or combined therapy. To standardize the duration of treatment in all cases, the day of symptoms was considered Day 0.

Microbiological cure was defined as obtaining negative culture results following antimicrobial treatment. General mortality was considered when a patient died during hospitalisation with *E. coli* BSI, whereas infection-related mortality was defined as death directly attributable to the BSI or resulting from the exacerbation of a pre-existing

condition within three months of the onset of BSI symptoms [39, 43].

### Statistical analysis

The Kolmogorov–Smirnov test was used to evaluate the distribution of the variables. Continuous variables are presented as the median [25–75 th percentile]. Qualitative variables are expressed as frequencies (%). The Mann–Whitney U test was used to evaluate the differences between continuous quantitative variables between two groups. The  $\chi^2$  test for trends and Fisher's exact test were used to evaluate the proportional differences among the qualitative variables. All analyses were performed using SPSS version 21 (IBM). A value of P < 0.05 was considered to indicate statistical significance.

### Results

In total, 38 *E. coli* isolates obtained from paediatric patients with BSIs were included. All isolates were resistant to ampicillin-sulbactam (SAM), cefazolin (CFZ), cefuroxime (CXM), and ceftriaxone (CRO). Furthermore, 3% were susceptible to ceftazidime (CAZ), 5% aztreonam (AZT) and cefepime (FEP); 13% to ciprofloxacin (CIP); 18% tobramycin (TOB); 24% to levofloxacin (LEV); 37% to gentamicin (GE), 53% to piperacillin-tazobactam (PTZ); 13% to trimethoprim-sulfamethoxazole (SXT), 95% to amikacin (AK), and 97% to MEM and IPM (Fig. 1).

Enzymes from the CTX-M family were the most identified ESBLs (n = 31, 81.6%). SHV-ESBL was detected in two isolates (P17 and P19). No ESBLs were identified in five isolates, among which three had CMY-type enzymes (P23, P32 and P36). In 17 (45%) isolates, aac(6')-Ib-cr gene was detected. None isolate carried qnrA, qnrB and qnrS genes (Fig. 1).

The most identified virulence factor was *fimH* (71%), followed by irp2 (63%), iucC (55%) and iutA (40%). The isolates from the pathogenic phylogroups B2, D, and F contained a higher number of virulence genes compared to those from other phylogroups (Fig. 1, Table 1). Moreover, the genes papC, sat, and irp2 were significantly more frequent in the pathogenic phylogroups (P = 0.029, 0.011, and 0.006, respectively). None of the isolates harbored the sfa, picU, or pet gene (Fig. 1, Table 1).

A total of 28.9% of the isolates were classified into commensal phylogroups A (21.1%) and C (7.9%), and 71.1% were classified as pathogens (D, 28.9%; B2, 23.7%; and F, 18.4%). None isolate was classified in B1 phylogroup. No relationship was observed between phylogroup and mortality (P = 0.455). The virulence factors did not show statistical difference with the outcome (Table 1, Table S3).

The analysis of PFGE profiles grouped 14 isolates into 5 clusters, 20 isolates were non-related (Fig. 2). Four isolates (P25, P32, P36 and P38) were non-typeable by this

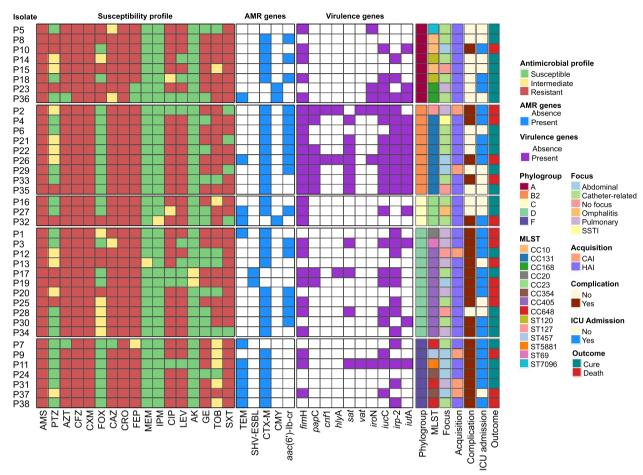



Fig. 1 Characteristics of the E. coli caused BSI in paediatric patients

MLST: multilocus sequence typing, AMS: ampicillin-sulbactam, PTZ: piperacillin-tazobactam, AZT: aztreonam, CFZ: cefazolin, CXM: cefuroxime, FOX: cefoxitin, CAZ: ceftazidime, CRO: ceftriaxone, FEP: cefepime, MEM: meropenem, IPM: imipenem, CIP: ciprofloxacin, LEV: levofloxacin, AK: amikacin, GE: gentamicin, TOB: tobramycin, SXT: trimethoprim-sulfamethoxazole, CC: clonal complex, ST: sequence typing, CAI: community-acquired infection, HAI: hospital-acquired infection, SSTI: skin and soft tissue infections, ICU: intensive care unit, AMR: antimicrobial resistance. Data visualization was performed using R software (v4.5.0) with the ComplexHeatmap package (v2.24.0)

 Table 1
 Virulence gene distribution among the commensal and pathogenic phylogroups

| Phylogroup (n)    | Virulence gene |       |        |       |       |       |              |       |       |      |  |
|-------------------|----------------|-------|--------|-------|-------|-------|--------------|-------|-------|------|--|
|                   | Adhesins       |       | Toxins |       |       |       | Siderophores |       |       |      |  |
|                   | fimH           | рарС  | cnf 1  | hly A | sat   | vat   | iroN         | iucC  | irp2  | iutA |  |
| Commensal (11)    | 8              | 0     | 0      | 0     | 0     | 0     | 3            | 5     | 3     | 4    |  |
| A (8)             | 5              | 0     | 0      | 0     | 0     | 0     | 3            | 4     | 3     | 3    |  |
| C (3)             | 3              | 0     | 0      | 0     | 0     | 0     | 0            | 1     | 0     | 0    |  |
| Pathogenic (27)   | 19             | 9     | 2      | 3     | 11    | 2     | 3            | 16    | 21    | 11   |  |
| B2 (9)            | 9              | 7     | 2      | 2     | 7     | 1     | 2            | 8     | 9     | 8    |  |
| D (11)            | 7              | 2     | 0      | 1     | 3     | 0     | 0            | 5     | 8     | 2    |  |
| F (7)             | 3              | 0     | 0      | 0     | 1     | 1     | 1            | 3     | 4     | 1    |  |
| <b>Total</b> (38) | 27             | 9     | 2      | 3     | 11    | 2     | 6            | 21    | 24    | 15   |  |
| P value           | 0.604          | 0.029 | 0.499  | 0.347 | 0.011 | 0.499 | 0.221        | 0.438 | 0.006 | 0.55 |  |

P values that indicate statistical significance, as determined by Fisher's exact test upon comparison of the virulence genes and the total number of commensal (n = 11) and pathogenic (n = 27) isolates, are shown in **bold** 

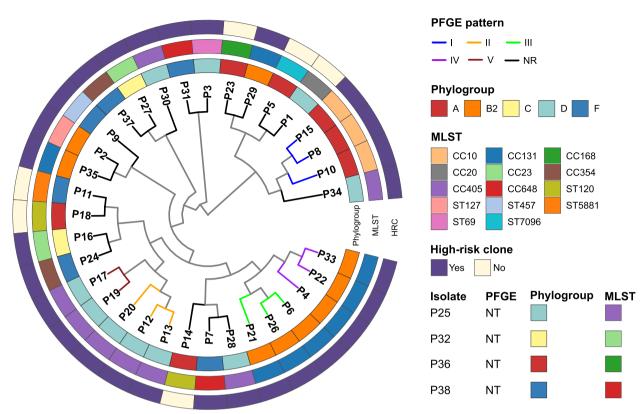



Fig. 2 Clonal relationship of the E. coli isolates associated with bacteraemia

Dendrogram based on PFGE pattern analysis showing clonal relationships among isolates. Sequence types (ST), phylogroup and high-risk clones or clonal complex (HRC)/HRCC are indicated for each isolate. Four isolates were non-typeable (NT) by PFGE. MLST: multilocus sequence typing, CC: clonal complex, PFGE: pulsed-field gel electrophoresis and NR: non-related

method. *E. coli* CC405 were the most frequent (n = 9, 23.7%) followed by CC131(n = 8, 21.1%), and one isolate was classified as ST69 (P3). We detected CC10, CC23 y CC648 with three isolates each one (7.9%) (Fig. 2). Eighty-two percent of the isolates belonged to high-risk clones or high-risk CC (CC405, CC131, CC648, CC10, CC23, CC354, ST127, ST457 and ST69).

A total of 31.6% of the patients were female, and adolescents composed the predominant group (36.8%). Leukaemia and lymphoma and congenital diseases were the most common underlying diseases among children with BSIs (42.1% and 21.1%, respectively). Most of the BSI were secondary (86.4%), catheter-associated infections were the most prevalent with 42.1% of the cases, followed by abdominal and pulmonary infections (21.1% each). Twenty-five (65.8%) patients had a previous surgery in the last year; 29 (76.3%) received at least one antimicrobial in last 3 months and 34 (89.5%) in the last year. Sixty-five per cent of the patients presented fever, 57.9% polypnea. Anaemia was observed in 76.3% and leukopenia in 65.7% (Table S2).

A total of 57.9% of the patients received empirical monotherapy; 36.8% combined therapy and 5.3% did not receive empirical treatment (P = 0.151). A total of 75% of the patients received carbapenems as empirical therapy (P = 0.272). By other side, A total of 55.3% of the patients received definitive monotherapy; 34.2% combined therapy and 10.5% did not receive definitive treatment (P = 0.294). A total of 81.6% of the patients received carbapenem as definitive therapy (P = 0.261) (Table 2, Table S3).

Sixty-five percent of the patients were admitted to the ICU and 63% required mechanical ventilation (Table S2). The BSI was resolved in 60.5% of the patients, and 34.5% of the deaths were considered related to the infection (Table 2, Table S3). Mortality did not differ significantly with respect to sex (P=0.337), age (P=0.471), underlying condition (P=0.506) and site of bacteraemia (P=0.105) and haematological parameters. However, the presence of fever (P=0.038) and grade of fever (moderate and high-grade fever, P=0.022) were related with cure. A total of 60.5% of patients had complications, the most common was septic shock (52%) followed by multiple organ failure

**Table 2.** Antimicrobial treatment in paediatrics patients with BSI

| Patient | SPRD | CTX       | CRO     | PTZ      | FEP      | MEM      | ERT     | COL      | AK     | SXT      | CIP      | Outcome, days |
|---------|------|-----------|---------|----------|----------|----------|---------|----------|--------|----------|----------|---------------|
| P1      | 11   |           |         |          |          | 0 to 9   |         |          |        |          |          | Dead,9        |
| P2      | 9    |           |         |          |          |          |         |          |        |          |          | Dead.2        |
| Р3      | 3    |           |         |          | 3 to 8   |          |         |          |        |          |          | Dead,8        |
| P4      | 5    |           | 0 to 3  |          |          | 4 to 55  |         |          |        |          |          | Dead, 56      |
| P5      | 3    |           |         |          | -9 to -7 | 1 to 14  |         |          |        |          |          | Alive         |
| P6      | 4    |           | -5 to 0 |          |          | 1 to 45  |         |          |        |          |          | Alive         |
| P7      | 4    |           |         |          |          | 1 to 15  |         |          |        |          |          | Alive         |
| P8      | 5    |           | 1 to 3  |          |          | 2 to 17  |         |          |        |          |          | Alive         |
| P9      | 14   |           | 9 to 10 | 12 to 14 |          | 11 to 14 |         |          |        |          |          | Dead,14       |
| P10     | 3    |           |         |          |          | 1 to 5   |         |          |        |          |          | Dead,5        |
| P11     | 3    |           | 1 to 3  |          |          | 3 to 28  |         |          |        | -5 to 4  |          | Alive         |
| P12     | 16   |           | 0 to 7  |          |          | 16 to 29 |         |          |        |          |          | Alive         |
| P13     | 2    |           |         |          |          | 1 to 8   |         |          | 2 to 8 |          |          | Dead,8        |
| P14     | 4    |           |         |          | -5 to 0  | 1 to 20  |         |          |        |          |          | Alive         |
| P15     | 14   |           |         |          | 3 to 9   | 10 to 18 |         |          |        |          |          | Alive         |
| P16     | 3    |           |         |          |          | 1 to 6   |         |          |        |          | 11 to 28 | Alive         |
| P17     | 9    |           |         |          |          | 1 to 14  |         |          |        |          |          | Alive         |
| P18     | 2    |           | -8 to 0 |          |          | 0 to 71  |         | 54 to 71 |        |          |          | Alive         |
| P19     | 3    |           |         |          |          |          | 0 to 2  |          |        |          |          | Dead,2        |
| P20     | 2    |           |         |          |          | 0 to 2   |         |          |        |          |          | Dead,1        |
| P21     | 4    |           |         |          |          | 3 to 9   |         |          |        |          |          | Alive         |
| P22     | 7    |           | -5 to 2 |          |          | 3 to 14  | 4 to 19 |          |        |          |          | Alive         |
| P23     | 4    |           |         |          |          | 0 to 16  |         |          |        |          |          | Alive         |
| P24     | 3    |           |         | 2 to 6   |          | 1 to 17  |         |          |        |          |          | Alive         |
| P25     | 7    |           |         | 13 to 15 | 0 to 6   | 7 to 15  |         | 14 to 15 |        | 13 to 15 |          | Dead,15       |
| P26     | 5    | -4 to 1   |         |          |          | 0 to 5   |         |          |        |          |          | Dead,5        |
| P27     | 4    | -22 to -5 |         |          |          |          |         |          |        |          |          | Alive         |
| P28     | 3    |           |         |          | 1 to 4   | 5 to 11  |         |          |        |          |          | Alive         |
| P29     | 4    |           | 1 to 11 |          |          |          |         |          |        |          |          | Alive         |
| P30     | 6    |           | 1 to 2  |          |          | 1 to 13  |         |          |        | 1 to 8   |          | Alive         |
| P31     | 5    |           |         | 7 to 21  | 2 to 4   | 3 to 36  |         |          |        |          |          | Alive         |
| P32     | 5    |           |         | 18 to 24 |          | 1 to 24  |         | 23 to 24 |        |          |          | Dead,24       |
| P33     | 4    |           | 0 to 4  |          |          | 5 to 8   |         |          |        |          |          | Dead,8        |
| P34     | 10   | 0 to 7    |         | 11 to 30 | 6 to 7   | 7 to 30  |         |          |        | 9 to 30  |          | Alive         |
| P35     | 1    |           |         |          | 0 to 2   | 1 to 10  |         |          |        |          |          | Alive         |
| P36     | 2    |           | 0 to 1  |          | 1 to 16  |          |         |          |        |          |          | Alive         |
| P37     | 8    |           |         |          |          | 2 to 9   |         |          |        |          |          | Dead,9        |
| P38     | 17   |           |         |          |          | 1 to 21  |         | 17 to 21 |        | 18 to 21 |          | Dead,21       |

Colour coding for antimicrobial susceptibility: red, resistant; orange, intermediate; green, susceptible; white, not determined. Numbers indicate duration of treatment in days. Treatment type: italics: empirical, bold: definitive, bold and italics: empirical and definitive. SPRD: susceptibility profile report days. The day of symptoms was considered Day 0.CTX cefotaxime, CRO ceftriaxone, PTZ piperacillin-tazobactam, FEP cefepime, MEM meropenem, ERT ertapenem, COL colistin, AK amikacin, SXT trimethoprim-sulfamethoxazole, CIP ciprofloxacin

(22%); the complications were statistically significant with mortality (P = < 0.0001) (Table S3.)

Moreover, the mortality rate was higher among adolescents (53.3%), those with leukaemia or lymphoma (40%), those with HAIs (86.8%), those with BSIs with an abdominal or pulmonary focus (33.3% each) and those with *E. coli* from a pathogenic phylogroup as the causative agent (86.7%), but none showed statistically significant (P = 0.455) (Table S2 and S3).

### Discussion

In this study, 38 isolates of *E. coli* causing BSIs were characterized in paediatric patients, among which more than 85% were resistant to 3GCs and 4GCs. Among

other BSI-related isolates collected from children, 33% to 57.8% exhibited resistance to these antimicrobials [44, 45]. None of the isolates in this study were resistant to carbapenems.

Resistance to 3GCs and 4GCs among *E. coli* isolates in our study was mainly due to CTX-M-type ESBLs (81.6%), which are the most widely distributed ESBLs globally [46], similar findings were reported from Nepalese children (84.6%) and Shanghai, China (97.5%) [47].

The enzyme SHV-ESBL, predominant a few decades ago but later displaced by CTX-M [48, 49], was detected in two isolates; however, it is possible that resistance to 3GCs and 4GCs can be attributed to these enzymes, as shown by Patil et al. in a collection of *E. coli* ST410 isolates, 62% of which contained the *bla*<sub>SHV</sub> gene [50].

AmpC-type beta-lactamases were identified in three isolates (CMY in three isolates); these enzymes can hydrolyse 3GCs and 4GCs [51]. Therefore, detecting these beta-lactamases is important if antibiotics such as ceftazidime-avibactam or ceftolozane-tazobactam are available [52] so that escalation to carbapenem use can be avoided to reduce selection pressure. However, CMY-2 has been reported to coexist with CTX-M-15 and NDM-5 in children with BSIs and underlying conditions [53].

FimH is essential for the translocation of bacteria, their invasion of the urinary epithelium, and the formation of intracellular bacterial communities [54]. In this study, fimH was the most frequently identified virulence gene (71%); this gene was also identified in BSI collections in other countries, such as Lithuania (98.4%) and Iran (85%) [10, 55]. Unlike the papC gene, which is detected only in pathogenic strains, the fimH gene is found in both pathogenic and commensal phylogroups. This gene is associated mainly with UTIs but is also involved in kidney damage and pyelonephritis; however, its role in bacteraemia has yet to be fully explored.

Siderophores capture ferric iron from media by competing with other chelating compounds from the host, such as transferrin or lactoferrin [56]. The *iuc*C and *iro*N genes were previously identified in ExPEC isolates from patients with neonatal meningitis, UTIs, and prostatitis and in avian pathogenic *E. coli* (APEC) [57]. In this study, siderophores were mainly found in the pathogenic phylogroups B2, D and F, as reported in Brazil, where the genes *pap*C, *sat* and *irp*2 were found in isolates of phylogroups B2 and D [58]. In studies carried out in Iran and Turkey, *iut*A was detected in 69% of the isolates; *iuc*C was detected in 79%; *iut*A was detected in 45.3%; and *iro*N was detected in 23.7% [10, 59]. In a study from Belgium, the *irp*2 gene was also identified as encoding the main siderophore [60].

In this study, the isolates that caused BSIs presented genes mainly related to iron acquisition (*irp*2 and *iut*A) and adherence (*fim*H), which are essential for successful BSI and can lead to bacteraemia. Pathogenic phylogroups often contain more virulence genes than commensal groups do.

In this work, the pathogenic phylogroups B2 and D and the commensal phylogroup A were detected in relatively high proportions, whereas groups E and B1 were not detected. A higher frequency of phylogroup A (21%) was detected in this study than that reported by Hemati et al. among Iranian patients with bacteraemia (9%) [10]. All the children had an underlying condition that led to some degree of immunosuppression, which could facilitate the development of BSIs with commensal *E. coli* strain, like what occurs in UTIs [54]. Finally, 87.5% of these isolates

belonged to a pathogenic phylogroup. Information on the characteristics of commensal strains is limited [61]. However, isolates from phylogroups A and C presented resistance to antibiotics, ESBLs and virulence factors such as *fimH* and siderophores. Moreover, an isolate of phylogroup A carrying NDM-5 and *mcr*-1.1 was recently reported [62]. These findings highlight the importance of expanding surveillance of commensal *E. coli* strains in healthy individuals. Although these bacteria form part of the intestinal microbiota, they have the potential to become pathogenic and cause infections in other organ sites, resulting in invasive diseases such as UTIs, BSIs, pneumonia and meningitis.

PFGE analysis identified five cluster and 20 non-related unique patterns, revealing substantial clonal heterogeneity suggestive of multiple origins rather than a single outbreak. This clonal diversity was confirmed by MLST, which detected 14 distinct CC/ST. Notably, we observed high frequencies of HRCC CC405 (23.8%) and CC131 (21%). ST131 has been reported with a frequency ranging from 8–50.8% in similar studies, confirming its status as one of the most widespread clones worldwide [10, 63, 64]. In contrast to our study, ST405 has been observed at a lower frequency ranging from 4.1-8.8% [47, 65, 66]. Additional HRCC detected included CC10, CC23, CC648, CC354, ST69, ST127 and ST457, all of them contribute to spread ESBLs, mainly CTX-M enzymes [36]. Some of these clones such as ST131, ST167 (which belongs to CC10), ST354 and ST648 are also reported to harbour carbapenemases [67].

The distribution of the *E. coli* STs causing BSIs varies according to factors such as the genetic diversity of strains, geographic distribution, host characteristics, associated clinical conditions, and hospital type [68–70]. Other ExPEC high-risk clones, such as ST69, ST73, ST95, ST410 and ST1193, have been increasingly in recent years [71–73]. In this study, only one ST69 isolate was detected; previous reports have shown a frequency for this clone ranging from 5.6% to 20% [66, 74]. ST73 and ST95 were not detected in this collection. Notably, this 2013–2015 collection predates the first reported carbapenemase-producing Enterobacterales (CPE) at INP [75]; suggesting that these high-risk clones may have facilitated the initial acquisition and dissemination of CRE within INP.

A total of 31.6% of the patients in this study were female, a proportion similar to that described in a report from Spain, where 45% of the patients were female, and an Iranian study involving patients with leukaemia, where 35% of the BSI patients were female [76, 77].

*E. coli* is the first gram-negative bacterium causing hospital-acquired BSIs in high-income countries (HICs), and the second in middle- and low-income countries (MICs

and LICs) [78]. Among children under three months of age,  $E.\ coli$  is also the principal cause of BSIs [79]. However, in MICs and LICs, the predominant species causing community-acquired BSIs are *Salmonella Typhi*, *Staphylococcus aureus*, and *Streptococcus pneumoniae* [80, 81]. In our study, 13.1% (n=5) of BSIs were classified as CAIs.

Eighty percent of the patients had leukaemia or lymphoma as the underlying condition, which has been reported as a risk factor for BSI complications [79]. Importantly, none of the infections in this series were associated with UTIs.

In this study, most of the BSI were secondary (86.4%), catheter-associated infections were the most prevalent with 42.1% of the cases. However, no statistically significant differences were observed between primary and secondary infections (P = 0.12) or between different source of BSI (P = 0.105) in relation to the clinical outcome (death or cure), suggesting that, in our population, neither the type nor the focus of infection were determining factors for mortality. These results partially coincide with the EUROBACT-2 study conducted in adults, where secondary BSIs represented 83.7% of cases. However, in that study, catheter-associated infections were the second most common cause (26.4%) and were confirmed not to be a risk factor for mortality (OR = 1, 95%CI, P = 0.027) [82]. In contrast, our analysis could not establish a definitive association between infection source and clinical outcome.

Although limited data exist on children, recent studies have reported that paediatric patients with catheter-related BSI have a four-fold increased risk of mortality (OR =4.29, 95%CI =1.28–14.36, P= 0.018) [83], high-lighting the importance of considering the differences between paediatric and adult populations in BSI management.

Our study found that 66% of the patients had previous surgery (within 1 year) and 39% had surgery before BSI onset (within  $\leq 14$  days) with no statistical significance (P = 0.332 and P = 0.418, respectively). This contrasts with findings from a Chinese retrospective study which demonstrated that surgery and/or trauma (within 3 months) was associated with significantly higher mortality in children with BSI caused by Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanni, Pseudomonas aeruginosa, Enterobacter spp. and E. coli (ESKAPEEc) pathogens [OR =7, P= 0.006, 95 CI (1.761–27.876)] [84]. An association between previous surgical interventions and BSI caused by Enterobacterales has also been reported. In a Turkish paediatric tertiary university hospital, previous surgery interventions (3 months) was a predisposing factor for BSI caused by carbapenem resistant Enterobacterales (CRE) [85].

Similarly, Ruvinsy et al. found that invasive surgeries or procedures were major risk factors for CRE-bacteraemia development [OR = 3, 95% CI (1–7), P= 0.008] in an Argentine paediatric referral hospital [86].

Fever, however, demonstrated a notable relationship with patient outcomes. Survivors presented with significantly higher median temperatures compared to nonsurvivors (38.4 °C vs. 37.4 °C, P= 0.038), and moderate to high-grade fever was more frequent among those who survived (62.5% vs. 26.7%, P= 0.022). These findings suggest that a febrile response may be linked to better outcome, possibly reflecting a stronger inflammatory reaction. Similarly, previous studies have shown that fever is a key early marker for bacteremia in pediatric patients, supporting its importance in both diagnosis and prognosis [76].

RR is an important indicator in evaluating febrile children, with some studies suggesting its potential to predict serious bacterial infections. However, in our analysis, no significant differences in RR patterns (such as polypnea and tachypnea) were found between the deceased and cured groups (P > 0.05). This indicates that RR alone may not reliably predict outcomes, and other clinical factors likely play a more important role in assessing infection severity [87].

Hematological abnormalities such as anemia, leukopenia, severe neutropenia, and thrombocytopenia were common but did not show a significant association with mortality. This finding is consistent with previous observations that hematologic parameters alone may not reliably predict outcomes, particularly in children with underlying malignancies or immunosuppression, where baseline hematologic dysfunctions are frequent [88]. These results highlight the complexity of mortality risk in this population and suggest that isolated blood count alterations must be interpreted within a clinical context.

In our study, prior antimicrobial treatment was common among patients with BSIs, and no significant differences were observed between cured and death. These findings are consistent with previous reports suggesting that, although previous antibiotic exposure is frequent and may increase the risk of hospital-acquired infections, it does not independently predict mortality. Instead, factors such as the severity of the underlying condition are likely to have a greater influence on patient outcomes [89].

Empirical antimicrobial treatment was initiated in most patients, with 86.7% of deceased patients and 100% of survivors receiving empirical antibiotics. However, monotherapy was the most common initial strategy, and carbapenems were frequently used both empirically and definitively. Despite these efforts, no significant differences were observed between survivors and

non-survivors regarding empirical or definitive treatment regimens, including the use of carbapenems. Our findings are consistent with previous studies showing that while prior and current antibiotic use, including carbapenem administration, are frequent in children with *E. coli* BSIs, they are not independently associated with mortality. This suggests that disease severity and underlying conditions may have a greater influence on clinical outcomes [81].

This work provides valuable information regarding the epidemiology of resistance to 3GCs and 4GCs, and the results indicate that these antibiotics should not be used as empirical therapies for *E. coli* bacteraemia in this paediatric hospital. This situation may be similar in other hospitals, as reported by the Network for the Research and Surveillance of Drug Resistance (Red Temática de Investigación y Vigilancia de la Farmacorresistencia in Spanish; INVIFAR) [90]. Clinical guidelines suggest that a carbapenem should be used for the treatment of ESBLproducing Enterobacterales strains [91]. A total of 87% of the patients received carbapenems as empirical monotherapy or in combination with AK or CIP. Ninety-five percent of the isolates were susceptible to AK and 13% to CIP. Resistance to 3GCs and 4GCs and susceptibility to AK and carbapenems has also been reported in isolates from Chinese patients [45].

Our study found a survival rate of 52.2% among patients admitted to the ICU, suggesting that the care protocols in place may have positively influenced patient outcomes. Statistical analysis revealed no significant differences between survivors and non-survivors with respect to ICU admission rates (73.3% vs. 52.2%, P= 0.168) or ICU length of stay (median 4 [2-17] days vs. 12 [6–16] days, P = 0.134). These findings are consistent with those reported by previous studies, who, in a cohort of 6,487 admissions, found no association between PICU stay duration and mortality, despite observing markedly elevated standardized mortality ratios (SMRs) in patients with cardiovascular (SMR 191) and oncological/hematological (SMR 179) diagnoses. Notably, these studies also reported a median follow-up of 7.2 years and highlighted a significantly higher long-term mortality risk among patients with repeated ICU admissions, particularly those with oncological, hematological, or neurological conditions [92].

The length of hospital stay serves as indicator of the severity of BSI. In a study from the Second Western China University Hospital, patients infected with ESKA-PEEc pathogens, including  $E.\ coli$ , experienced significantly longer hospital stays compared to those with non-ESKAPEEc infections, with a median of 20.5 days versus 14.0 days (P=0.023). Although our findings did not reveal significant differences in ICU stay duration

between death and cured (4 days [2-17] vs. 12 days [6-16], P=0.134), the tendency toward longer stays in the ICU for deaths suggests that infection severity plays a significant role in the need for prolonged critical care [84].

Mechanical ventilation was more frequently required among patients who died compared with those who survived (73.3% vs. 56.5%); however, this difference was not statistically significant (P = 0.242). Studies in similar settings have shown that the need for mechanical ventilation in children with sepsis nearly triples the risk of death, and that prolonged ventilation lasting 96 h or more tends to worsen clinical outcomes. While our findings did not reveal a significant association, the proportion of ventilated patients among those who died suggests that respiratory support remains an important indicator of illness severity in paediatric BSIs. [93, 94]. In our study, 60.5% of patients had complications, the most frequent being septic shock (52%). In Chinese children, this complication was also the most common and was associated with mortality (P < 0.001) [95]. On the other hand, 22% for our patients had multiple organ failure, in a South African study, this was reported in only 1.3% [96].

E. coli is the most common cause of BSIs, and a significant cause of morbidity and mortality in hospitalized children [84]. When compared to a study from a tertiary pediatric hospital in China, where a 28-day mortality rate of 36.9% was reported among PICU patients with BSI [95], our data demonstrated a higher survival rate. Differences in patient profiles, infection severity, and critical care resources likely contribute to these variations across centers.

The overall estimate for case-fatality rate among 8 studies was 12.7% [6.6–20.2%]. Underlying conditions, such as malnutrition or HIV infection were assessed as a factor associated with bacteraemia in 4 studies each [77].

Sepsis is the second leading cause of death in paediatric patients, with a frequency of 7%. In MICs and LICs, the mortality rate from community-acquired BSIs is estimated to be 12.7% (6.6–20.2%) [79], whereas the rate of mortality attributable to infection is estimated to be 13.6% [97]. In our study, 34.5% of the deaths were considered related to infection. It is estimated that 3.02 million deaths from sepsis occurred in children under 14 years of age and that the pathogens that caused the deaths attributable to AMR were *S. aureus*, *Acinetobacter baumannii* and *E. coli* [3].

Adolescents were the predominant group in this study (n = 14, 36.8%), 57.1% of whom died. Deaths occurred between days 1 and 56 after the onset of symptoms. Only one case was considered a CAI.

This single-centre study does not reflect the epidemiology of all *E. coli* isolates causing BSIs in the paediatric

population in Mexico; however, it provides important insights into the commensal phylogroups, and pathogenic strains associated with BSIs.

### **Conclusion**

E. coli is a major cause of BSIs in paediatric patients in Mexico. High resistance to 3GCs and 4GCs was predominantly mediated by CTX-M-type ESBLs, leading to increased reliance on carbapenems. High-risk clones such as CC131, CC405, and CC10 were frequently identified, demonstrating significant genetic diversity among the isolates. Virulence factors associated with adhesion and iron acquisition were common across both pathogenic and commensal phylogroups. Clinically, the presence of fever at admission was linked to better outcomes, while complications were associated with increased disease severity.

### **Abbreviations**

AK Amikacin

AMR Antimicrobial resistance APEC Avian pathogenic *E. coli* 

AZT Aztreonam

BSI/BSIs Bloodstream infection/s
CAI/CAIs Community-acquired infection/s

CAZ Ceftazidime
CC Clonal complex
CFZ Cefazolin
CIP Ciprofloxacin

 cnf 1
 Cytotoxic necrotizing factor 1

 CLSI
 Clinical Laboratory Standards Institute

 CPE
 Carbapenemase-producing Enterobacterales

 CRE
 Carbapenem resistant Enterobacterales

CRO Ceftriaxone

CTX-M Cefotaximase-Munich beta-lactamase

CVC Central venous catheter

CXM Cefuroxime

ESBL Extended-spectrum beta-lactamase

ESKAPEEc Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumo-

niae, Acinetobacter baumannii, Pseudomonas aeruginosa, Entero-

bacter spp. and E. coli

ExPEC Extraintestinal pathogenic *E. coli*FEP Cefenime

FEP Cefepime GE Gentamicin

GES Guiana extended-spectrum beta-lactamase

HAI Hospital-acquired infection
HICS High-income countries
HRC High-risk clones
HRCC High-risk clonal complexes

hlyA α-haemolysin
ICU Intensive care unit
fimH Type 1 fimbriae
IPM Imipenem

INP National Institute of Pediatrics

INVIFAR Network for the Research and Surveillance of Drug Resistance

iroN Salmochelin siderophore receptor iutA Aerobactin siderophore receptor irp2 Yersiniabactin siderophore

iucC Aerobactin
LEV Levofloxacin
LICs Low-income countries
MEM Meropenem

MICs Middle- income countries
MLST Multilocus sequence typing

NCBI National Center for Biotechnology Information

NR Non-related OXA Oxacillinase

pet Plasmid-encoded toxinPFGE Pulsed-field gel electrophoresis

pic Proteins involved in intestinal colonization

PTZ Piperacillin–tazobactam
RR Respiratory rate
SAM Ampicillin-sulbactam
sat Secreted autotransporter toxin
sfa S fimbriae adhesins

SHV Sulfhydryl variable beta-lactamase
SMR Standardized mortality ratios
SPRD Susceptibility profile report day

SSTI Skin and soft tissue infections ST Sequence type

SXT Trimethoprim-sulfamethoxazole
TEM Temoneira beta-lactamase

TOB Tobramycin

 vat
 Vacuolating autotransporter toxin

 HIV
 Human immunodeficiency virus

 UTI/UTIs
 Urinary tract infection/s

3GCs Third-generation cephalosporins4GCs Fourth-generation cephalosporins

### **Supplementary Information**

The online version contains supplementary material available at https://doi.org/10.1186/s12879-025-11163-3.

Supplementary Material 1. Table S1: Primers used in this Study.

Supplementary Material 2. Table S2: Clinical features of patients with BSI

by E. coli.

Supplementary Material 3. Table S3: Statistical Analysis of Clinical Variables

Between deaths and cured.

### Acknowledgements

Not applicable.

### **Clinical trial**

Not applicable.

### Authors' contributions

AAA designed the study, JMV, LBM, ACR and AAA analysed and interpreted the data; LBM, JMV, JAMA, RBH, EEJM and AAA conducted the experiments; AAA, IMV and ACR collected the clinical information; AAA, JAMA and IMV created the database and performed the statistical analysis; RBH: bioinformatic analysis, AAA, LBM and JMV wrote the first version of the manuscript. All the authors reviewed and approved the final version of the manuscript.

### **Funding**

This work was carried out with the support of the Fiscal resource modality A and B Instituto Nacional de Pediatria, protocol INP 2013/066 and the National Council of Science and Technology (CONACyT) FOSISS 2012–1-18104.

### Data availability

The nucleotide sequences generated in this study have been submitted to the GenBank database and are openly accessible at <a href="https://www.ncbi.nlm.nih.gov/genbank/">https://www.ncbi.nlm.nih.gov/genbank/</a>. Accession numbers for ESBL-related genes range from PV494929 to PV494961. Multilocus sequence typing gene sequences were deposited under the following ranges PV564256–PV564431 and PV575742-PV575766. All data supporting the findings of this study are available in the main text and listed as Supplementary Material.

### **Declarations**

### Ethics approval and consent to participate

This study was approved by the research, ethics, and biosafety committees of Instituto Nacional de Pediatria (IRB: 00008064 and IRB: 00008065) under

registration INP 2013/066. The ethics committee of Instituto Nacional de Pediatria waived informed consent because the samples obtained were part of the standard care for hospitalized patients, and the isolates were obtained retrospectively. The patient data were deidentified. This study adhered to the Declaration of Helsinki.

### Consent for publication

Not applicable.

### Competing interests

The authors have no conflicts of interest to declare.

### **Author details**

<sup>1</sup>Laboratory of Molecular Microbiology, Instituto Nacional de Pediatria, Mexico City, Mexico. <sup>2</sup>Department of Pediatric Infectious Diseases, Instituto Nacional de Pediatria, Mexico City, Mexico. <sup>3</sup>Department of Research Methodology, Instituto Nacional de Pediatria, Mexico City, Mexico.

Received: 10 February 2025 Accepted: 23 May 2025 Published online: 27 May 2025

### References

- Collaborators R. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–55.
- GBD 2019 Antimicrobial Resistance Collaborators. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2022;400(10369):2221–2248.
- GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. Lancet. 2024;404(10459):1199–1226.
- Diekema DJ, Hsueh PR, Mendes RE, Pfaller MA, Rolston KV, Sader HS, et al. The Microbiology of Bloodstream Infection: 20-Year Trends from the SEN-TRY Antimicrobial Surveillance Program. Antimicrob Agents Chemother. 2019;63(7):e00355-e419.
- Pereira CA, Marra AR, Camargo LF, Pignatari AC, Sukiennik T, Behar PR, et al. Nosocomial bloodstream infections in Brazilian pediatric patients: microbiology, epidemiology, and clinical features. PLoS ONE. 2013;8(7): e68144.
- Riley LW. Distinguishing Pathovars from Nonpathovars: Escherichia coli. Microbiol Spectr. 2020;8(4):10.
- Lüthje P, Brauner A. Virulence factors of uropathogenic E. coli and their interaction with the host. Advances in microbial physiology. 2014;65:337–72.
- Santos ACM, Santos-Neto JF, Trovão LO, Romano RFT, Silva RM, Gomes TAT. Characterization of unconventional pathogenic *Escherichia coli* isolated from bloodstream infection: virulence beyond the opportunism. Braz J Microbiol. 2023;54(1):15–28.
- Hemati S, Halimi S, Jabalameli F, Emaneini M, Beigverdi R. Phylogenetic group, antibiotic resistance, virulence gene, and genetic diversity of *Escherichia coli* causing bloodstream infections in Iran. Front Microbiol. 2024;15:1426510.
- Vance MK, Cretella DA, Ward LM, Vijayvargiya P, Garrigos ZE, Wingler MJ. Risk Factors for Bloodstream Infections Due to ESBL-Producing *Escherichia coli, Klebsiella* spp, and *Proteus mirabilis*. Pharmacy (Basel). 2023;11(2):74.
- Clermont O, Christenson JK, Denamur E, Gordon DM. The Clermont *Escherichia coli* phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environ Microbiol Rep. 2013;5(1):58–65.
- Al-Zahrani IA. A novel Xbal multiplex PCR method for rapid typing of Klebsiella pneumoniae strains. Sci Rep. 2025;15(1):14641.
- Lau SH, Kaufmann ME, Livermore DM, Woodford N, Willshaw GA, Cheasty T, et al. UK epidemic *Escherichia coli* strains A-E, with CTX-M-15 beta-lactamase, all belong to the international O25:H4-ST131 clone. J Antimicrob Chemother. 2008;62(6):1241–4.
- Doumith M, Day M, Ciesielczuk H, Hope R, Underwood A, Reynolds R, et al. Rapid identification of major *Escherichia coli* sequence types causing urinary tract and bloodstream infections. J Clin Microbiol. 2015;53(1):160–6.

- Krapp F, García C, Hinostroza N, Astocondor L, Rondon CR, Ingelbeen B, et al. Prevalence of Antimicrobial Resistance in Gram-Negative Bacteria Bloodstream Infections in Peru and Associated Outcomes: VIRAPERU Study. Am J Trop Med Hyg. 2023;109(5):1095–106.
- Tsai WL, Hung CH, Chen HA, Wang JL, Huang IF, Chiou YH, et al. Extendedspectrum β-lactamase-producing *Escherichia coli* bacteremia: Comparison of pediatric and adult populations. J Microbiol Immunol Infect. 2018;51(6):723–31.
- Larru B, Gong W, Vendetti N, Sullivan KV, Localio R, Zaoutis TE, et al. Bloodstream Infections in Hospitalized Children: Epidemiology and Antimicrobial Susceptibilities. Pediatr Infect Dis J. 2016;35(5):507–10.
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 33rd ed. CLSI supplement M100. Clinical and Laboratory Standards Institute; 2023.
- Alcantar-Curiel D, Tinoco JC, Gayosso C, Carlos A, Daza C, Perez-Prado MC, et al. Nosocomial bacteremia and urinary tract infections caused by extended-spectrum beta -lactamase-producing Klebsiella pneumoniae with plasmids carrying both SHV-5 and TLA-1 genes. Clin Infect Dis. 2004;38:1067–74.
- Dallenne C, da Costa A, Decré D, Favier C, Arlet G. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J Antimicrob Chemother. 2010:65:490–5.
- 21. Rodríguez-Martínez JM, Machuca J, Cano ME, Calvo J, Martínez-Martínez L, Pascual A. Plasmid-mediated quinolone resistance: Two decades on. Drug Resist Updat. 2016;29:13–29.
- Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol. 2000;7(1–2):203–14.
- Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, Schäffer AA. Database indexing for production MegaBLAST searches. Bioinformatics. 2008;24(16):1757–64.
- Ruiz J, Simon K, Horcajada JP, Velasco M, Barranco M, Roig G, et al. Differences in virulence factors among clinical isolates of *Escherichia coli* causing cystitis and pyelonephritis in women and prostatitis in men. J Clin Microbiol. 2002;40(12):4445–9.
- Tiba MR, Yano T, Leite DS. Genotypic characterization of virulence factors in *Escherichia coli* strains from patients with cystitis. Rev Inst Med Trop Sao Paulo. 2008;50(5):255–60.
- Usein CR, Damian M, Tatu-Chitoiu D, Capusa C, Fagaras R, Tudorache D, et al. Prevalence of virulence genes in *Escherichia coli* strains isolated from Romanian adult urinary tract infection cases. J Cell Mol Med. 2001;5(3):303–10.
- Freire CA, Santos ACM, Pignatari AC, Silva RM, Elias WP. Serine protease autotransporters of Enterobacteriaceae (SPATEs) are largely distributed among *Escherichia coli* isolated from the bloodstream. Braz J Microbiol. 2020;51(2):447–54.
- Ananias M, Yano T. Serogroups and virulence genotypes of *Escherichia coli* isolated from patients with sepsis. Braz J Med Biol Res. 2008;41(10):877–83.
- Rodriguez-Siek KE, Giddings CW, Doetkott C, Johnson TJ, Fakhr MK, Nolan LK. Comparison of *Escherichia coli* isolates implicated in human urinary tract infection and avian colibacillosis. Microbiology (Reading). 2005;151 (Pt 6):2097–110.
- Zhao L, Gao S, Huan H, Xu X, Zhu X, Yang W, et al. Comparison of virulence factors and expression of specific genes between uropathogenic *Escherichia coli* and avian pathogenic *E. coli* in a murine urinary tract infection model and a chicken challenge model. Microbiology (Reading). 2009;155(Pt 5):1634–44.
- 31. Centers for Disease Control and Prevention (CDC). Modified PulseNet Procedure for Pulsed-field Gel Electrophoresis of Select Gram Negative Bacilli. Atlanta, GA: CDC; 2014. Available from: https://www.cdc.gov/gram-negative-bacteria/media/pdfs/Modified-PulsedNet-Procedure-GNB-P.pdf.
- Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol. 1995;33(9):2233–9.
- Yu G, Smith DK, Zhu H, Guan Y, Lam TT. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017;8(1):28–36.
- Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST org website and their applications. Wellcome Open Res. 2018;3:124.

- Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, et al. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol. 2006;60(5):1136–51.
- Kocsis B, Gulyás D, Szabó D. Emergence and Dissemination of Extraintestinal Pathogenic High-Risk International Clones of Escherichia coli. Life (Basel). 2022;12(12):2077.
- Williams K, Thomson D, Seto I, Contopoulos-loannidis DG, Ioannidis JP, Curtis S, et al. Standard 6: age groups for pediatric trials. Pediatrics. 2012;129(Suppl 3):5153–60.
- Lindley LC, Cozad MJ, Fortney CA. Pediatric Complex Chronic Conditions: Evaluating Two Versions of the Classification System. West J Nurs Res. 2020;42(6):454–61.
- Centers of Diseases Control and Prevention. National Healthcare Safety Network (NHSN) Patient Safety Component Manual. Atlanta: Centers of Diseases Control and Prevention; 2024. https://www.cdc.gov/nhsn/pdfs/ pscmanual/pcsmanual\_current.pdf.
- Balli S, Shumway KR, Sharan S. Physiology, Fever. 2023 Sep 4. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan –. PMID: 32966005.
- Ahsan S, Noether NJ. Hematología. In: Robertson J, Johns Hopkins Hospital, editors. Manual Harriet Lane De Pediatría: Para La Asistencia Pediátrica Ambulatoria. España: Elsevier; 2006:322–353.
- 42. Long B, Koyfman A. Incidental neutropenia: An emergency medicine focused approach. Am J Emerg Med. 2025;89:190–4.
- Laupland KB, Church DL. Population-based epidemiology and microbiology of community-onset bloodstream infections. Clin Microbiol Rev. 2014:27(4):647–56.
- Shao H, Zhang X, Li Y, Gao Y, Wang Y, Shao X, et al. Epidemiology and drug resistance analysis of bloodstream infections in an intensive care unit from a children's medical center in Eastern China for six consecutive years. Int Microbiol. 2024;27(5):1345–55.
- 45. Subramaniam K, Khaithir TMN, Ding CH, Che Hussin NS. Epidemiology of bloodstream infections in the paediatric population in a Malaysian general hospital over a 2-year period. Malays J Pathol. 2021;43(2):291–301.
- Castanheira M, Simner PJ, Bradford PA. Extended-spectrum β-lactamases: an update on their characteristics, epidemiology and detection. JAC Antimicrob Resist. 2021;3(3):dlab092.
- 47. Zhao SY, Wang YC, Xiao SZ, Jiang XF, Guo XK, Ni YX, et al. Drug susceptibility and molecular epidemiology of *Escherichia coli* in bloodstream infections in Shanghai, China, 2011–2013. Infect Dis (Lond). 2015;47(5):310–8.
- Bush K. Extended-spectrum beta-lactamases in North America, 1987–2006. Clin Microbiol Infect. 2008;14(Suppl 1):134–43.
- Siu LK, Lu PL, Hsueh PR, Lin FM, Chang SC, Luh KT, et al. Bacteremia due to extended-spectrum beta-lactamase-producing *Escherichia coli* and *Klebsiella pneumoniae* in a pediatric oncology ward: clinical features and identification of different plasmids carrying both SHV-5 and TEM-1 genes. J Clin Microbiol. 1999;37(12):4020–7.
- Patil S, Pai L, Chen H, Chen Y, Xinye L, Dong S, et al. Genetic landscape of ESBL producing international clone ST410 of *Escherichia coli* from pediatric infections in Shenzhen. China Front Cell Infect Microbiol. 2024;14:1403234.
- Merida-Vieyra J, De Colsa-Ranero A, Calderón-Castañeda Y, Aquino-Andrade A. Detection of CMY-type beta-lactamases in *Escherichia coli* isolates from paediatric patients in a tertiary care hospital in Mexico. Antimicrob Resist Infect Control. 2020;9(1):168.
- Acosta-Méndez HE, Merida-Vieyra J, Aparicio-Ozores G, Urzua-Abad MM, Aquino-Andrade A. Mecanismos moleculares y epidemiología de la resistencia a ceftazidima-avibactam: un análisis integral. Acta Pediatr Méx. 2024;45(4):326–42.
- Huang L, Hu H, Xu C, Zhou M, Li Y, Li Y, et al. Characterization of NDM-5-Producing *Escherichia coli* Strains Isolated from Pediatric Patients with Bloodstream Infections in a Chinese Hospital. Genes (Basel). 2023;14(2):520.
- Belmont-Monroy L, Ribas-Aparicio RM, González-Villalobos E, Pérez-Ramos JA, Aparicio-Ozores G, Eslava-Campos CA, et al. Molecular typification of *Escherichia coli* from community-acquired urinary tract infections in Mexico. Int J Antimicrob Agents. 2022;60(4): 106667.
- Kirtikliene T, Mierauskaitė A, Razmienė I, Kuisiene N. Genetic Characterization of Multidrug-Resistant *E. coli* Isolates from Bloodstream Infections in Lithuania. Microorganisms. 2022;10(2):449.

- Tsylents U, Burmistrz M, Wojciechowska M, Stępień J, Maj P, Trylska J. Iron uptake pathway of Escherichia coli as an entry route for peptide nucleic acids conjugated with a siderophore mimic. Front Microbiol. 2024:15:1331021
- 57. Gao Q, Wang X, Xu H, Xu Y, Ling J, Zhang D, et al. Roles of iron acquisition systems in virulence of extraintestinal pathogenic *Escherichia coli*: salmochelin and aerobactin contribute more to virulence than heme in a chicken infection model. BMC Microbiol. 2012;12:143.
- Tanabe RHS, Dias RCB, Orsi H, de Lira DRP, Vieira MA, Dos Santos LF, et al. Characterization of Uropathogenic Escherichia coli Reveals Hybrid Isolates of Uropathogenic and Diarrheagenic (UPEC/DEC) E. coli. Microorganisms. 2022;10(3):645.
- Bozcal E, Eldem V, Aydemir S, Skurnik M. The relationship between phylogenetic classification, virulence and antibiotic resistance of extraintestinal pathogenic *Escherichia coli* in İzmir province. Turkey PeerJ. 2018;6: e5470.
- D'Onofrio V, Cartuyvels R, Messiaen PEA, Barišić I, Gyssens IC. Virulence Factor Genes in Invasive *Escherichia coli* Are Associated with Clinical Outcomes and Disease Severity in Patients with Sepsis: A Prospective Observational Cohort Study. Microorganisms. 2023;11(7):1827.
- Kaspersen HP, Brouwer MS, Nunez-Garcia J, Cárdenas-Rey I, AbuOun M, Duggett N, et al. *Escherichia coli* from six European countries reveals differences in profile and distribution of critical antimicrobial resistance determinants within One Health compartments, 2013 to 2020. Euro Surveill. 2024;29(47):2400295.
- Tumeo A, McDonagh F, Kovarova A, Ryan K, Clarke C, Miliotis G. Draft genome sequence of a co-harbouring bla<sub>NDM-5</sub> and mcr-1.1 Escherichia coli phylogroup A isolate associated with patient colonization in Ireland. J Glob Antimicrob Resist. 2024:S2213–7165(24)00459–4.
- Brumwell A, Sutton G, Lantos PM, Hoffman K, Ruffin F, Brinkac L, et al. *Escherichia coli* ST131 Associated with Increased Mortality in Blood- stream Infections from Urinary Tract Source. J Clin Microbiol. 2023;61(7): e0019923
- Pitout JD, DeVinney R. Escherichia coli ST131: a multidrug-resistant clone primed for global domination. F1000Res. Faculty Rev-195. 2017;6:F1000.
- Mamani R, Flament-Simon SC, García V, Mora A, Alonso MP, López C, et al. Sequence Types, Clonotypes, Serotypes, and Virotypes of Extended-Spectrum β-Lactamase-Producing *Escherichia coli* Causing Bacteraemia in a Spanish Hospital Over a 12-Year Period (2000 to 2011). Front Microbiol. 2019;10:1530.
- Wang S, Zhao SY, Xiao SZ, Gu FF, Liu QZ, Tang J, et al. Antimicrobial Resistance and Molecular Epidemiology of *Escherichia coli* Causing Bloodstream Infections in Three Hospitals in Shanghai, China. PLoS ONE. 2016;11(1): e0147740.
- Peirano G, Chen L, Nobrega D, Finn TJ, Kreiswirth BN, DeVinney R, et al. Genomic Epidemiology of Global Carbapenemase-Producing Escherichia coli, 2015–2017. Emerg Infect Dis. 2022;28(5):924–31.
- Taati Moghadam M, Mirzaei M, Fazel Tehrani Moghaddam M, Babakhani S, Yeganeh O, et al. The Challenge of Global Emergence of Novel Colistin-Resistant Escherichia coli ST131. Microb Drug Resist. 2021;27(11):1513–24.
- Shropshire WC, Amiji H, Bremer J, Selvaraj Anand S, Strope B, Sahasrabhojane P, et al. Genetic determinants underlying the progressive phenotype of β-lactam/β-lactamase inhibitor resistance in *Escherichia coli*. Microbiol Spectr. 2023;11(6): e0222123.
- Park JY, Yun KW, Choi EH, Lee HJ. Prevalence and Characteristics of Sequence Type 131 Escherichia coli Isolated from Children with Bacteremia in 2000–2015. Microb Drug Resist. 2018;24(10):1552–8.
- Pitout JDD, Peirano G, Chen L, DeVinney R, Matsumura Y. Escherichia coli ST1193: Following in the Footsteps of E. coli ST131. Antimicrob Agents Chemother. 2022;66(7):e0051122.
- Roer L, Overballe-Petersen S, Hansen F, Schønning K, Wang M, Røder BL, et al. Escherichia coli Sequence Type 410 ls Causing New International High-Risk Clones. mSphere. 2018;3(4):e00337–18.
- Li D, Elankumaran P, Kudinha T, Kidsley AK, Trott DJ, Jarocki VM, et al. Dominance of *Escherichia coli* sequence types ST73, ST95, ST127 and ST131 in Australian urine isolates: a genomic analysis of antimicrobial resistance and virulence linked to F plasmids. Microb Genom. 2023;9(7):mgen001068.
- Zueter AM, Mharib T, Shqair D, Al-Tamimi M, Sawan HM, Zaiter A, et al. Multilocus sequence typing of *Escherichia coli* isolated from clinical samples in Jordan. J Infect Dev Ctries. 2024;18(4):571–8.

- Aquino-Andrade A, Merida-Vieyra J, Arias de la Garza E, Arzate-Barbosa P, De Colsa Ranero A. Carbapenemase-producing Enterobacteriaceae in Mexico: report of seven non-clonal cases in a pediatric hospital. BMC Microbiol. 2018;18(1):38.
- Elgoibar B, Gangoiti I, Garcia-Garcia JJ, Hernandez-Bou S, Gomez B, Martinez Indart L, et al. Bacteremia Study Working Group from the Infectious Diseases Working Group, Spanish Society of Pediatric Emergencies (SEUP). Paediatric Escherichia coli bacteraemia presentations and high-risk factors in the emergency department. Acta Paediatr. 202:110(3):1032–1037.
- Droz N, Hsia Y, Ellis S, Dramowski A, Sharland M, Basmaci R. Bacterial pathogens and resistance causing community acquired paediatric bloodstream infections in low- and middle-income countries: a systematic review and meta-analysis. Antimicrob Resist Infect Control. 2019;8:207.
- Hallmaier-Wacker LK, Andrews A, Nsonwu O, Demirjian A, Hope RJ, Lamagni T, et al. Incidence and aetiology of infant Gram-negative bacteraemia and meningitis: systematic review and meta-analysis. Arch Dis Child. 2022;107(11):988–94.
- Ferreira M, Santos M, Rodrigues J, Diogo C, Resende C, Baptista C, et al. Epidemiology of bacteremia in a pediatric population - A 10-year study. Enferm Infecc Microbiol Clin (Engl Ed). 2023;41(2):85–91.
- Roshani M, Taheri M, Goodarzi A, Yosefimashouf R, Shokoohizadeh L. Evaluation of antibiotic resistance, toxin-antitoxin systems, virulence factors, biofilm-forming strength and genetic linkage of *Escherichia coli* strains isolated from bloodstream infections of leukemia patients. BMC Microbiol. 2023;23(1):327.
- Cheng J, Liu Y, Li S, Pu K, Yang L, Tan L. Incidence of and Risk Factors for Third-Generation Cephalosporin-Resistant *Escherichia coli* Bloodstream Infections in Children. Infect Drug Resist. 2024;17:543–50
- 82. Tabah A, Buetti N, Staiquly Q, Ruckly S, Akova M, et al. Epidemiology and outcomes of hospital-acquired bloodstream infections in intensive care unit patients: the EUROBACT-2 international cohort study. Intensive Care Med. 2023;49(2):178–90
- Karagiannidou S, Kourlaba G, Zaoutis T, Maniadakis N, Papaevangelou V. Attributable Mortality for Pediatric and Neonatal Central Line-Associated Bloodstream Infections in Greece. J Pediatr Intensive Care. 2021;13(2):174–83.
- Peng X, Zhou W, Zhu Y, Wan C. Epidemiology, risk factors and outcomes of bloodstream infection caused by ESKAPEEc pathogens among hospitalized children. BMC Pediatr. 2021;21(1):188.
- Avcu G, Erci E, Bilen NM, Ersayoglu I, Ozek G, Celtik U, et al. Clinical outcomes and the impact of treatment modalities in children with carbapenem-resistant Enterobacteriaceae bloodstream infections: a retrospective cohort study from a tertiary university hospital. J Antimicrob Chemother. 2025;80(1):147–53.
- Ruvinsky S, Voto C, Roel M, Deschutter V, Ferraro D, Aquino N, et al. Carbapenem-resistant Enterobacteriaceae bloodstream infections: A case-control study from a pediatric referral hospital in Argentina. Front Public Health. 2022;10:983174.
- 87. Wittmann S, Jorgensen R, Oostenbrink R, Moll H, Herberg J, Levin M, et al. Heart rate and respiratory rate in predicting risk of serious bacterial infection in febrile children given antipyretics: prospective observational study. Eur J Pediatr. 2023;182(5):2205–14.
- 88. Shahunja KM, Ahmed T, Hossain MI, Islam MM, Monjory MB, Shahid ASMSB, et al. Clinical and laboratory characteristics of children under five hospitalized with diarrhea and bacteremia. PLoS One. 2020;15(12):e0243128.
- Briassoulis G, Natsi L, Tsorva A, Hatzis T. Prior antimicrobial therapy in the hospital and other predisposing factors influencing the usage of antibiotics in a pediatric critical care unit. Ann Clin Microbiol Antimicrob. 2004;3:4.
- Garza-González E, Camacho-Ortiz A, Ponce-de-Leon A, Ortiz-Brizuela E, López-Jácome LE, et al. Bacterial incidence and drug resistance from pathogens recovered from blood, cerebrospinal and pleural fluids in 2019–2020. Results of the Invifar network PeerJ. 2023;11: e14411.
- Tamma PD, Heil EL, Justo JA, Mathers AJ, Satlin MJ, Bonomo RA. Infectious Diseases Society of America 2024 Guidance on the Treatment of Antimicrobial-Resistant Gram-Negative Infections. Clin Infect Dis. 2024; 79:ciae403.
- Hannegård Hamrin T, Eksborg S. Risks for death after admission to pediatric intensive care (PICU)-A comparison with the general population. PLoS ONE. 2022;17(10): e0265792.

- 93. Rusmawatiningtyas D, Rahmawati A, Makrufardi F, Mardhiah N, Murni IK, Uiterwaal CSPM, et al. Factors associated with mortality of pediatric sepsis patients at the pediatric intensive care unit in a low-resource setting. BMC Pediatr. 2021;21(1):471.
- Pisitcholakarn V, Sunkonkit K, Reungrongrat S. Incidence and factors associated with prolonged use of mechanical ventilation in pediatric intensive care unit in a single tertiary care hospital. PLoS ONE. 2024;19(11): e0311275.
- 95. Chen J, Huang H, Zhang R, Fu Y, Jing C. Risk factors associated with mortality and pathogen characteristics of bloodstream infection-induced severe sepsis in the pediatric intensive care unit: a retrospective cohort study. Front Cell Infect Microbiol. 2025;15:1492208.
- Mvalo T, Eley B, Bamford C, Stanley C, Chagomerana M, Hendricks M, et al. Bloodstream infections in oncology patients at Red Cross War Memorial Children's Hospital, Cape Town, from 2012 to 2014. Int J Infect Dis. 2018;77:40–7
- Brady M, Oza A, Cunney R, Burns K. Attributable mortality of hospital-acquired bloodstream infections in Ireland. J Hosp Infect. 2017;96(1):35–41.

### **Publisher's Note**

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.