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INTRODUCTION

Black yeast-like fungi (BYF) are either of basidiomycetous or 
ascomycetous relationship. The basidiomycetes are classified in 
the genera Moniliella and Trichosporonoides, of which a precise 
phylogenetic position has as yet not been established. Most species 
of these genera are of industrial significance and are rarely seen in 
clinical practice. In the ascomycete order Chaetothyriales, mainly 
comprising the family Herpotrichiellaceae, the genus Exophiala is 
the preponderant yeast-like anamorph (de Hoog et al. 2000). The 
order contains numerous human pathogens, with a wide spectrum 
of clinical pictures (Vitale & de Hoog 2002, de Hoog et al. 2005). 
The majority of these infections are cutaneous or mild pulmonary, 
but rarely they may be devastating and fatal. These infections are 
very difficult to treat because in vivo the species are frequently 
more resistant antimycotics than in vitro (Vitale & de Hoog 2002, 
de Hoog et al. 2005). The pathology of these black yeasts and their 
relatives is poorly understood (de Hoog et al. 2000, 2005).

In contrast, the ascomycete order Dothideales (anamorph 
genus Aureobasidium and its relatives) mainly comprises saprobic 
fungi, which are only exceptionally involved in human disease. 
Aureobasidium pullulans is industrially important because of its 
production of extracellular polysaccharides (EPS), which are applied 
in biotechnology (Deshpande et al. 1992). The EPS concerned 
comprise pullulan, a poly-α-1,6-maltotriose, and aubasidan, a 
related glucan with α-1,4-D, β-1,6-D and β-1,3-D-glycosidic bonds. 
A separate variety, Aureobasidium pullulans var. aubasidani was 
described for the strains producing aubasidan-like components 
(Yurlova & de Hoog 1997).

Dothidealean black yeast-like fungi were found to be 
predominant in soils highly contaminated with radionuclides emitted 
during the Chernobyl accident (Zhdanova et al. 1994, 2007). They 
play an important role in blackening of rock and architectural 
surfaces, in the destruction of marble and limestone (Sterflinger 
& Krumbein 1995, 1997). The fungi show active growth in extreme 
ecological niches, surviving low humidity, high temperature, 
high solar irradiation, presence of long lived radionuclides, 
and absence of traditional sources of nutrition and energy. The 
presence of melanin pigments, which possess a wide protective 
action, provides the dark-coloured fungi a competitive advantage 
under harsh environmental conditions. The pigments contain 
stable organic free radicals (Lyakh 1981). Fungal melanins may 
occur as electron-dense granules located in the fungal cell wall, 
polymers in the cytoplasm, as extracellular polymers in the medium 
surrounding the fungus, or in any combination (Butler & Day 1998). 
In the scientific literature there is information on biological activity 
of melanins as radioprotectors, antitumor remedies and as growth 
stimulators of plant seeds (Lyakh 1981). It had been suggested that 
these pigments might be useful as topical sunscreens and sunlight-
protective coatings for plastics. DOPA melanins (of animal and 
biotechnological origin) have also been recommended for use in 
cosmetics (Della-Cioppa et al. 1990).

Melanins are produced by a variety of higher organisms 
including humans, but microbes are the melanin producers 
of choice in biotechnology. Melanin harvest from mammalian 
tissues sometimes may reach up to 8–10 mg/kg of raw material, 
while that of fungi can be 100–1000 times higher (Lyakh 1981). 
Differences were established between the absorption spectra of 
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black yeast melanins and commercial Sepia melanin, which have 
been kept in the dark and photomodified by daylight irradiation. 
These data indicate perspectives of some black yeast melanins 
as photoprotectors and stimulators of skin regeneration (Blinova et 
al. 2003, Turkovskij & Yurlova 2002). Some black yeast melanins 
have higher UV-defensive activity than commercial melanins and 
they stimulate human skin regeneration significantly (Yurlova 2001, 
Turkovskij & Yurlova 2002). The photochemical properties of these 
melanins were found to be dependent on both the producing strain 
and the condition of its cultivation.

Melanins are high-molecular weight pigments formed 
by the oxidative polymerisation of phenolic compounds. The 
phenolic compounds from which the fungal melanin polymers 
are derived include tyrosine via 3,4-dihydroxyphenylalanine 
(DOPA) in various fungi and other microorganisms; γ-glutaminyl-
3,4-dihydroxybenzene (GDHB) or catechol in Basidiomycetes, 
and 1,8-dihydroxynaphthalene (DHN) in Ascomycetes (Bell & 
Wheeler 1986). Dothideaceous species that have been found 
to synthesise DHN-melanin include Aureobasidium pullulans 
(Siehr 1981), Cladosporium cladosporioides (Latgé et al. 1988), 
Hortaea werneckii, Phaeotheca triangularis, and Trimmatostroma 
salinum (Kogej et al. 2004). Chaetothyrialean species include 
Cladophialophora carrionii, C. bantiana, Exophiala jeanselmei and 
E. mansonii (Taylor et al. 1987). The authors mentioned above 
used the inhibitor tricyclazole to test the fungi for the presence of 
1,8-dihydroxynaphthalene (DHN)-melanin biosynthesis.

The final step in the DHN melanin pathway is the conjoining 
of 1,8-DHN molecules to form the melanin polymer. There are a 
number of candidate enzymes for this step, including phenoloxidases 
such as tyrosinase and laccases, peroxidases, and perhaps also 
catalases (Butler & Day 1998). DHN appears to be polymerised 
to melanin via a laccase but not much is know about this enzyme 
and its function in the melanin pathway (Bell & Wheeler 1986). The 
aim of the present study was to analyze the influence of ortho- and 
para-diphenoloxidase substrates on pigment formation in black 
yeasts and to determine the type polyphenoloxidases that are 
involved in biosynthesis of black yeast melanins.

MATERIALS AND METHODS

Diphenoloxidase substrates

Stock cultures (Table 1) were maintained on 2 % malt extract agar 
(MEA) slants. The low molecular weight aromatic compounds tested 
are listed in Table 2. The formation of melanin from low molecular 
weight aromatic compounds was determined by a modified 
auxanographic technique in which plates of Czapek agar (CzA) (in 
90 × 15 mm Petri dishes) were divided in half diametrically (Fig. 1). 
One side of the plate was spread with a suspension of seven-day-
old culture cultivated on 2 % MEA at 24 °C. Simultaneously three 
substrate assay cups were placed on each side. Each cup on each 
side received 0.1 mL of a solution of aromatic substrate (Table 2) in 
0.1 M phosphate buffer (pH 7.0 or 7.2). The other half of the plate 
served as control for spontaneous oxidation of aromatic compounds. 
Plates were incubated at 24 °C and observed at intervals for 1 
to 7 ds for development of a black-brown colour. The intensity of 
growth and pigmentation was estimated visually, and the intensity 
of growth and pigmentation of strain Aureobasidium pullulans CBS 
105.22 = VKM F-179 (T) cultivated on 4 % MEA was listed as  
100 %. The intensity of the pigmentation was represented according 
to five-grade scale: 100 % (black), 75 % (dark-brown, dark olive-
green or dark grey), 50 % (brown or grey), 25 % (light brown or 
green-brown), and 0 % (yellow or white or pinkish).

Tricyclazole inhibition

Each fungus listed in Table 1 was grown in 90 × 15 mm Petri dishes 
containing 4 % MEA with tricyclazole, CzA with tricyclazole, and 
on 4 % MEA (control), and CzA (control). Tricyclazole was first 
dissolved in 100 % ethanol and then added to cooled medium 
prior to solidification to produce a concentration of 10–50 µg/mL. 
The final concentration of ethanol was 1.0 %. Control cultures 
were established on 4 % MEA and CzA which received only 1.0 
% ethanol. All media were adjusted to pH 7.5 prior to dispensing. 

Table 1. Strains examined.
Species Accession no. Source
Aureobasidium pullulans CBS 105.22 = ATCC 11942 = VKM F-179 T of Pullularia fermentans var. fusca 

VKPM F-370 Metallic equipment
VKPM F-371 Metallic equipment
VKM F-1125 Fruitbody of Inonotus obliquus 
VKM F-2204 Lake water, Latvia
VKM 2205 Lake water, Yaroslav region, Russia
SPChPhA 129(11) Unknown
SPChPhA 2320 Soil, Chernobyl district, Ukraine

Aureobasidium pullulans var. aubasidani T VKPM F-448 = CBS 100524 Birch sap, Betula sp., Russia
Hormonema macrosporum T VKM F-2452 = CBS 536.94 Rutilus rutilus, Vologda region, Russia
Hormonema dematioides VKM F-2836 Fruit body of Mycena sp., Moscow region, Russia
Kabatiella lini T CBS 125.21 Leaf, Linum usitatissimum 

Exophiala nigra T VKM F-2137 = CBS 535.94 T of Nadsoniella nigra, seawater
Exophiala prototropha T CBS 534.94 Unknown

Abbreviation used: T = ex-type strain, CBS = Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands; SPChPhA = St. Petersburg State 
Chemical-Pharmaceutical Academy, St. Petersburg, Russia; VKM = All-Russian Collection of Microorganisms, Pushchino, Russia; VKPM = All-Russian 
Collection of Industrial Microorganisms, Moscow, Russia.
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Table 2. Substrates of diphenoloxidases tested. 
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Point inoculation of each fungus was made centrally on the plate 
in Petri dishes (inoculation was made by a suspension of seven-
day-old culture cultivated on 2 % MEA at 24 °C). The cultures were 
grown in the dark at 24 °C for 21 d. The intensity of growth and 
pigmentation was estimated visually, and the intensity of growth 
and pigmentation of strain Aureobasidium pullulans CBS 105.22 
= VKM F-179 cultivated on 4 % MEA was accepted as 100 %. All 
tests were performed three times in duplicate. 

Thin-layer chromatography (TLC) 

Fourteen-day-old Petri dish cultures of A. pullulans VKM F-179 
= CBS 105.22, A. pullulans VKM F-370, A. pullulans VKPM 
F-371, A. pullulans var. aubasidani VKPM F-448, grown on CzA 
with (10–50 µg/mL ) or without tricyclazole, were cut into small 
fragments (about 1 cm3) and extracted in 150 mL acetone for 8 h. 
The extracts were subsequently filtered, evaporated under reduced 

pressure and the remaining aqueous solutions extracted twice with 
equal volumes of ethyl acetate. The ethyl acetate fractions were 
collected, combined, and residual water was removed over NaSO4. 
After the ethyl acetate was evaporated under reduced pressure, 
each sample was reconstituted with 1 mL of ethyl acetate to provide 
concentrated solutions for chromatographic evaluation (Taylor et 
al. 1987, Kogej et al. 2004). The concentrated extracts and the 
standards of flaviolin, 2-hydroxyjuglone (2-HJ), scytalone, 1,3,8-
trihydroxynaphthalene (1,3,8-THN), 1,8-dihydroxynaphthalene 
were spotted on silica gel-coated TLC plates with fluorescent 
indicator (Merck) and developed with ether-hexane-formic acid 
(60:39:1). Once separated, metabolites from the extracts were 
observed in daylight and under ultraviolet (UV) light at 254 and 
365 nm for characteristic colours and Rf values. The plates were 
then sprayed with an aqueous solution of 1 % FeCl3. Once they 
were dried, they were again evaluated for colours that appeared in 
daylight (Taylor et al. 1987, Kogej et al. 2004).

                               

                                      

 

 

 

 

 

 

 

 

Fig.1. The effect of the aromatic substrates on pigment production by BYF  strains  studied. 

The left half only of the plate was inoculated (O), the right half serving as a control (С) for spontaneous  

oxidation of aromatic substrates.  Cups 1, 2, 3 contained 0.1 ml  of a solution of aromatic substrates. 
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Fig. 1. The effect of the aromatic substrates on pigment production by strains 
studied. The left half only of the plate was inoculated (O), the right half serving 
as a control (С) for spontaneous oxidation of aromatic substrates. Cups 1, 2, 
3 contained 0.1 mL of a solution of aromatic substrates.
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 Fig. 2. The average intensity of pigmentation of some strains by presence of different phenoliс substracts.
Substrates of o-diphenoloxidases (EC 1.10.3.1.): 4-hydroxyphenyl-pyruvic acid, L-β-phenyllactic acid, tyrosine, pyrocatechol, 3,4-dihydroxyphenylalanine and homogentisic 
acid are indicated in red colour.
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 Fig. 3. The intensity of pigmentation of some strains cultivated on media with different aromatic substrates. 
Y-axis: intensity of pigmentation, %.
А. Second group; B. Third group; C. Fourth group. 
The intensity of pigmentation of strains Exophiala nigra F-2137 = CBS 535.94 (T) and E. prototropha CBS 534.94 (first group), when cultivated on all 12 aromatic substrates 
used, was listed as 100 %.
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 4. phloroglucinol;   10. homogentisic acid;
 5. resorcinol;   11. pyrocatechol;
 6. tyrosine;   12. guaiacol.
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RESULTS

Fourteen strains of BYF originating from different natural 
biotopes were investigated (Table 1). It was established that 
syringaldazine, pyrogallic acid (substrates of p-diphenoloxidases) 
and 4-hydrophenyl-pyruvic acid, L-β-phenyllactic acid (substrates 
of o-diphenoloxidases) optimally promoted melanin biosynthesis 
when compared to other groups of substrates investigated. Average 
intensities of pigmentation of all strains studied were the lowest 
when guaiacol (substrate of p-diphenoloxidases) was used as a 
substrate (Fig. 2).

Diphenoloxidase substrates

Strains investigated were divided into four groups based on their 
ability to produce dark pigments when they were cultivated on 
aromatic o- and on p-diphenoloxidase substrates (Fig. 3). 

Group 1. Exophiala nigra VKM F-2137 and E. prototropha CBS 
534.94 produced black pigments when they were cultivated on all 
12 aromatic substrates used, including o- and on p-diphenoloxidase 
substrates. The intensity of pigmentation of strains Exophiala nigra 
F-2137 = CBS 535.94 and E. prototropha CBS 534.94, cultivated 
on each of the 12 aromatic substrates, was listed as 100 %.

Group 2. Strains utilising 8−10 aromatic substrates and 
synthesising dark pigments (Fig. 3A). This group includes two 
strains. A. pullulans SPChPhA 129(11), growing and synthesizing 
black or dark brown or brown pigments when five substrates of 
o-diphenoloxidases (4-hydroxyphenyl-pyruvic acid, L-β-phenyllactic 
acid, tyrosine, 3,4-dihydroxyphenylalanine, homogentisic acid) and 
five substrates of p-diphenoloxidases (syringaldazine, resorcinol, 
p-phenylenediamine, phloroglucinol, pyrogallic acid) were used 
for cultivation. Kabatiella lini CBS 125.21 produced black or dark-
brown or brown pigment when five substrates of o-diphenoloxidases 
(4-hydroxyphenyl-pyruvic acid, L-β-phenyllactic acid, tyrosine, 
pyrocatechol, homogentisic acid) and three substrates of 
p-diphenoloxidases (syringaldazine, resorcinol, phloroglucinol) 
were used for cultivation.

Group 3. Strains utilising 5−7 aromatic substrates and 
synthesizing dark pigments when cultivated on CzA with 
aromatic substrates (Fig. 3B). This group includes mostly strains 
of Aureobasidium pullulans: VKPM F-371, VKM F-179, VKM 
F-1125 produced black or dark brown or dark olive-green or 
dark-grey, brown or grey, light brown or green-brown pigments 
on two substrates of o-diphenoloxidases (L-β-phenyllactic 
acid, 4-hydroxyphenyl-pyruvic acid) and on four substrates 
of p-diphenoloxidases (p-phenylenediamine, syringaldazine, 
pyrogallic acid, guaiacol). Strain A. pullulans var. aubasidani VKPM 
F-448 produced brown or light brown or green brown pigment on 
three substrates of o-diphenoloxidases (4-hydroxyphenyl-pyruvic 
acid, pyrocatechol, homogentisic acid) and four substrates of 
p-diphenoloxidases (syringaldazine, pyrogallic acid, phloroglucinol, 
guaiacol). Strain A. pullulans SPChPhA 2320 formed pigment on 
four substrates of o-diphenoloxidases (tyrosine, L-β-phenyllactic 
acid, 4-hydroxyphenyl-pyruvic acid, homogentisic acid) and two 
substrates of p-diphenoloxidases (syringaldazine, pyrogallic acid). 

Group 4. Strains synthesizing dark pigments only on 1−3 
aromatic substrates when cultivated on CzA with aromatic 
substrates (Fig. 3C). Strains included A. pullulans VKPM F-370 
(light brown pigmentation) and H. dematioides VKM F-2836 (dark 
olive-green pigmentation), producing pigment only when substrates 
of p-diphenoloxidases (pyrogallic acid, resorcinol) were used. 
Aureobasidium pullulans VKPM F-2204 produced pigment of equal 

intensity (brown or light brown) on p-diphenoloxidases (pyrogallic 
acid) and on o-diphenoloxidases (pyrocatechol) substrates. Strain 
VKPM F-2205 gave light brown pigmentation on two substrates of 
p-diphenoloxidases (p-phenylenediamine, pyrogallic acid) and on 
pyrocatechol (substrate of o-diphenoloxidases). 

Tricyclazole inhibition

Following the same subdivision:

Group 1. Tricyclazole had no apparent effect on growth of the 
black yeast strains belonging to the strains of this group, as was 
observed both on 4 % MEA and on CzA. The strains concerned 
were blackish or dark brown in colour, when grown on 4 % MEA 
containing 10–20 μL/mL tricyclazole, and on CzA containing 10–20 
μL/mL tricyclazole. We observed reddish pigment only in Group 
1 strains (Exophiala nigra VKM F-2137 and E. prototropha CBS 
534.94) when we used higher (40−50 µg/mL) concentrations of 
tricyclazole. Other groups (Groups 2−4) of strains studied did not 
form reddish or red-brown pigments even they were cultivated in 
media with high (30−50 µg/mL) concentrations of tricyclazole. 

Group 2. Tricyclazole had no apparent effect on growth and 
pigmentation of A. pullulans SPChPhA 129(11), when grown on 4 
% MEA. It slightly inhibited the growth of this strain on CzA and had 
no effect on pigmentation (Fig. 4). The plant pathogen K. lini CBS 
125.21 was inhibited by tricyclazole on 4 % MEA and CzA. The 
intensity of pigmentation was decreased almost in two times, when 
K. lini CBS 125.21 was grown on CzA with tricyclazole (Fig. 4).

Group 3. The growth of the strains belonging to this group 
was slightly inhibited by tricyclazole both on 4 % MEA and on CzA. 
Tricyclazole affected intensity of pigmentation of A. pullulans VKM 
F-179, VKM F-1125, SPChPhA 2320, A. pullulans var. aubasidani 
VKPM F-448 on CzA. On 4 % MEA an effect was found on 
pigmentation of only A. pullulans var. aubasidani VKPM F-448 (Fig. 
5).

Group 4. Tricyclazole had no apparent effect on growth of the 
strains A. pullulans VKM F-2204, VKM F-370 of this group, both 
on 4 % MEA and on CzA (Fig. 6). The intensity of pigmentation 
of the strains VKM F-2204, VKM F-370 grown on 4 % MEA with 
tricyclazole was almost the same as on 4 % MEA without tricyclazole. 
The strains A. pullulans VKM F-2204, VKM F-2205, VKM F-370 
and Hormonema macrospora VKM F-2452 were yellow or light 
yellow or pinkish, when grown on CzA with or without tricyclazole. 
Hormonema dematioides VKM F-2836 did not grow at all on CzA 
(Fig. 6). Microscopic comparisons indicated that all strains studied 
had their normal morphologies in the presence of tricyclazole.

Identification of DHN-melanin intermediates

Metabolites from ethyl acetate extracts of A. pullulans VKM F-179 
= CBS 105.22, VKM F-370, VKPM F-371 and A. pullulans var. 
aubasidani VKPM F-448 were analysed by TLC to determine if 
DHN-melanin precursors or related metabolites were present. 
Flaviolin/biflaviolin and 2-HJ were detected in the extracts of 14 
ds old cultures of A. pullulans VKM F-370 and A. pullulans VKPM 
F-371 when they were grown with tricyclazole; however, they were 
not found in culture without tricyclazole (Table 3). The TLC results 
indicated that tricyclazole had blocked the DHN-melanin pathway, 
causing the accumulation of 1,3,6,8-tetrahydroxynaphthalene 
(1,3,6,8-THN) and 1,3,8-THN, which were autoxidised to flavolin or 
3,3-biflaviolin and 2-HJ, respectively (Table 3). Strains A. pullulans 
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Fig. 4. The influence of tricyclazole on growth and pigmentation of strains belonging to the second group.
Y-axis: intensity of growth, intensity of pigmentation, %.
X-axis: 4 % MEA = 4 % malt extract agar; 4 % MEA +TR = 4 % malt extract agar with 20 μL/mL tricyclazole; CzA = Czapek agar; CzA + TR = Czapek agar with 20 μL/mL 
tricyclazole.

Fig. 5. The influence of tricyclazole on growth and pigmentation of strains belonging to the third group.
Y-axis: intensity of growth, intensity of pigmentation, %.
X-axis: 4 % MEA = 4 % malt extract agar; 4 % MEA +TR = 4 % malt extract agar with 20 μL/mL tricyclazole; CzA = Czapek agar; CzA + TR = Czapek agar with 20 μL/
mLtricyclazole.
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Fig. 6. The influence of tricyclazole on growth and pigmentation of strains belonging to the fourth group. 
Y-axis: intensity of growth, intensity of pigmentation, %.
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tricyclazole.

VKM F-179 and A. pullulans var. aubasidani VKPM F-448 did not 
secrete 2-HJ and flaviolin both in the presence of tricyclazole and 
without tricyclazole (Table 3). 

DISCUSSION

Three out of four black yeast genera analysed (Aureobasidium, 
Hormonema and Kabatiella) (Table 1) belong to the ascomycetous 
order Dothideales, while Exophiala is an anamorph of 
Chaetothyriales (de Hoog et al. 1999). Many authors (Siehr 1981, 
Taylor et al. 1987, Butler & Day 1998, Butler et al. 2004, Kogej 
et al. 2004) indicated that both types of fungi synthesise a DHN-
type melanin. Details of the DHN-type melanin pathway have 
been elucidated using a number of different fungi. Much of what is 
known about the pathway and its enzymes has come from the use 
of melanin-deficient strains and compounds, such as tricyclazole, 
which inhibit specific enzymes in the pathway (Bell & Wheeler 
1986, Butler & Day 1998). 

The systemic fungicide tricyclazole [5-methyl-1,2,4-
thiazolo(3,4,b)-benzothiazile] (TR) is an inhibitor of biosynthesis of 
melanins, which form via the pentaketide pathway (Bell & Wheeler 
1986). For example, it is known to strongly inhibit the enzymatic 
reduction (reductase enzymes) of 1,3,8-trihydroxynaphthalene 

(1,3,8-THN) to vermelone. Tricyclazole has also been shown to 
weakly inhibit the reduction of 1,3,6,8-tetrahydroxynaphthalene 
(1,3,6,8-THN) to scytalone (Wheeler & Greenblatt 1988). 

Flaviolin and 2-hydroxyjuglone (2-HJ) are known as autoxidative 
products of 1,3,6,8-THN and 1,3,8-THN, respectively (Fig. 7). The 
presence of flaviolin and 2-HJ in fungal cultures, treated with 
tricyclazole, is usually accepted as proof that 1,3,6,8-THN and 
1,3,8-THN were involved in the synthesis of DHN-melanin (Butler 
& Day 1998). Once produced, 1,3,8-DHN is reduced to vermelone, 
which in turn is dehydrated to 1,8-dihydroxynaphthalene (DHN) 
(Bell & Wheeler 1986, Taylor et al. 1987) (Fig. 7). In most cases, 
these two reactions are carried out by the same reductase and 
dehydratase enzymes that produce 1,3,8-THN from 1,3,6,8-THN. 
DHN appears to be polymerised to melanin via a laccase (Butler 
& Day 1998). 

In the present investigation we demonstrated, that the DHN-
melanin inhibitor, tricyclazole, inhibited melanin biosynthesis only in 
some black yeast strains. Four groups were distinguished, differing 
by their ability to produce pigment with o- and p-diphenoloxidase 
substrates and to be inhibited by tricyclazole (Table 4). 

The effect of tricyclazole on pigment production proved to be 
more pronounced when strains were grown on CzA. On this medium 
53.3 % of the strains were inhibited by tricyclazole, whereas only 
26.6 % of the strains decreased their intensity of pigmentation 
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Table 3. Melanin metabolites analysed by TLC in control cultures and in tricyclazole-inhibited cultures of  
A. pullulans VKM F-179, VKM F-370, VKPM F-371 and A. pullulans var. aubasidani VKPM F-448.

Accession no. Tricyclazole1 Metabolites2

2-HJ flaviolin 3,3’-biflaviolin
VKM F-179 − − − −

+ − − −
VKM F-370 − − − −

+ + + −
VKPM F-371 − − − −

+ + − +
VKPM F-448 − − − −

+ − − −
1Tricyclazole concentration in the medium was 0 μg mL-1 (−) or 20 μg mL-1 (+).
2 “+ “ = metabolite was observed; “− “ = metabolite was not observed.
VKM/VKPM = Russian Collection of microorganisms, Puschuno, Russia.

Table 4. Subdivision of the strains into pigmentation groups.
Strains Pigmentation on substrates of Influence of tricyclazole on intensity of 

o-diphenoloxidases p-diphenoloxidases pigmentation growth

4 % MEA CzA 4 % MEA CzA
Group 1 (12/12)1

Exophiala nigra VKM F-2137 + + - + - -
Exophiala. prototropha CBS 534.94 + + + + - -
Group 2 (8-10/12)2

A. pullulans SPChPhA 129(11) + + - - - +
K. lini CBS 125.21 + + - + + +

Group 3 (5-7/12)3

A. pullulans VKPM F-371 + + - - + -
A. pullulans CBS 105.22 + + - + + -
A. pullulans VKM F-1125 + + - + - -
A. pullulans var. aubasidani VKPM F-448 + + + + - -
A. pullulans SPChPhA 2320 + + - + - -
Group 4 (1-3/12)4

A. pullulans VKM F-2204 + + - - - -
A. pullulans VKM F-2205 + + - - + -
A. pullulans VKM F-370 - + + - - -

H. dematioides VKM F-2836 - + - * + *
H. macrosporum VKM F-2452 + + + - + +
* H. dematioides F-2836 did not grow at all on CzA.

Abbreviations used: “+ “ = characteristic was observed; “− “ = characteristic was not observed.
1Strains produced black pigments when they were cultivated on all 12 aromatic substrates used: both on o-diphenoloxidases and on p-diphenoloxidases substrates;
2Strains produced dark pigments when they were cultivated on 8–10 aromatic substrates from 12 used: both on o-diphenoloxidases and on p-diphenoloxidases substrates;
3Strains produced dark pigments when cultivated on 5–7 aromatic substrates from 12 used: both on o-diphenoloxidase and p-diphenoloxidase substrates;
4Strains produced dark pigments when cultivated on 1–3 aromatic substrates from 12 used: both on o-diphenoloxidases and on p-diphenoloxidases substrates.

when they were cultivated on 4 % MEA with tricyclazole (Table 
4). Metabolites from ethyl acetate extracts of biomass from A. 
pullulans VKM F-179 = CBS 105.22, VKM F-370, VKPM F-371 and 
A. pullulans var. aubasidani VKPM F-448 were analysed by thin-
layer chromatography to determine if DHN-melanin precursors or 
related metabolites were present. Flaviolin and 2-HJ were detected 
only in the extracts of 14-d-old cultures of A. pullulans VKM F-370, 

A. pullulans VKPM F-371, when they were grown on CzA with 10 
and 20 μg/mL tricyclazole. However, flaviolin and 2-HJ were not 
found in acetone extracts of biomasses of these strains, when 
they were grown in CzA without tricyclazole (Table 3). Strains A. 
pullulans VKM F-179, A. pullulans var. aubasidani VKPM F-448 
did not secrete 2-HJ and flaviolin, neither in the presence of nor 
without tricyclazole (TR) (Table 3) and even when they were 
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cultivated in media with high (30−50 µg/mL) concentrations of 
tricyclazole. The halophilic ascomycetous black yeasts Hortaea 
werneckii, Phaeotheca triangularis and Trimmatostroma salinum 
accumulated 4,8-dihydroxytetralone (4,8-DHT) in cultures non-
inhibited by TR (Kogej et al. 2004) (Fig. 7). Small amounts of 
4-hydroxyscytalone (4-HS) (Fig. 7) have been reported in wild-type 
cultures of Curvularia lunata non-inhibited by TR (Rižner & Wheeler 
2003), as well as of scytalone in Thielaviopsis basicola (Wheeler & 
Stipanovic 1979) and Sporothrix schenckii (Romero-Martinez et al. 
2000). This means that products which are typical for cultures of 
black yeasts inhibited by tricyclazole (TR) were also found in non-
inhibited cultures.

In our earlier investigations (Yurlova & Sindeeva 1996) we proved 
the presence of intracellular and extracellular laccase activity of 14 
above mentioned strains of black yeasts. Tricyclazole decreased 
laccase activity (Yurlova & Sindeeva 1995). Tyrosinase, which 
oxidises tyrosine, was not found in any of the strains investigated 
(Table 1) (Yurlova & Sindeeva 1995). On the basis of the present 
data we hypothesise that black yeasts contain a multipotent 
polyphenoloxidase able to oxidise substrates characteristic 
for o-diphenoloxidases and p-diphenoloxidases. Such kind of 
multipotent polyphenoloxidase has previously been observed in 

the marine bacterium Marinomonas mediterranea (Fernandez et 
al. 1999). The melanisation process might involve other enzymes 
and more substrates than those commonly recognised. The 
mechanism of biosynthesis of black yeast melanins remains to be 
further elucidated.

ACKNOWLEDGEMENTS

We are grateful to Drs N.N. Stepanichenko and L.N. Ten, Tashkent State University, 
Uzbekistan, for assistance in obtaining TLC data.

REFERENCES 

Bell AA, Wheeler MH (1986). Biosynthesis and function of fungal melanins. Annual 
Reviews in Phytopathology 24: 41–451.

Butler MJ, Day AW (1998). Fungal melanins: a review. Canadian Journal of 
Microbiology 44: 1115–1136.

Blinova MI, Yudintzeva NM, Kalmykova NV, Kuzminykh EV, Yurlova NA, 
Ovchinnikova OA, Potokin IA (2003). Effects of melanins from black yeast 
fungi on proliferation and differentiation of cultivated human keratinocytes and 
fibroblasts. International Journal of Cell Biology 27: 135–146. 

Butler MJ, Gardiner RB, Day AW (2004). Use of the black yeast Phaeococcomyces 

Fig. 7. Biosynthetic pathway of DHN-melanin and related pentaketide metabolites, from the scheme shown by Bell & Wheeler (1986). The first known product of the pathway 
is I.3.6.8-THN. This metabolite is reduced lo scytalone, which is then dehydrated to 1,3.8-THN. Next, 1.3.8-THN is reduced to vermelone, which is then dehydrated to DHN. 
The enzyme(s) that catalyze the final polymerization reaction, oxidation of DHN to melanin, have not yet been adequately studied but it appears to be a laccase. Tricyclazole 
(Tr) inhibits the reduction of 1.3.6,8-THN and 1.3.8-THN to scytalone and vermelone, respectively. Its strongest inhibitory effect is on the reduction of 1.3.8-THN. This results in the 
accumulation of flaviolin, 2-HJ, and their re lated shunt products, 1.2.4.5.7-pentahydroxynaphthalene (1.2.4.5.7-PHN), 1.2.4.5-tetrahydroxynaphthalene (1.2.4.5-THN), and 1.4.5-
trihydroxynaphthalene (1.4.5-THN) are extremely unstable and have not been isolated from fungi.

OH OH

OHHO

1,3,6,8-THN

OH

HO OH

O

Scytalone

-H2O(H)

(H)

(H)

(H)

(O)

(O)

OH OH

HO

DHN

OHO

O
HO

Vermelone

2-HJ

OHO

HO

OH OH

-H2O(H) (H)
Tr

1,3,8-THN

(O)

(O)

OH OH

HO

OH

1,2,4,5-THN

OH OH

HO

OH

OH

1,2,4,5 ,7-PHN

-H2O

(O)

OH

OH
HO

O

3,4,8-THT

(H)

(H)

OH

OH

OH

HO

O

4-HS

Tr

OH OH

OH

1,4,5-THN

OH

HO
OH

OH

O

5-HS

-H2O

OHO

O

OHO

O

HO

(O)

(H)

3-HJJuglone

OH

OH

O

O
HO

Flaviolin

(O)

OH

OH

O

4,8-DHT

(H)

MelaninAcetate

HO

HO

O

O
OH

2

3,3'-Biflaviolin

(o)



49www.studiesinmycology.org

PigMent forMation in black yeaSt-like fungi

fungal melanin model system for preparation of 1,3,6,8-tetrahydroxynaphthalene 
and the other component of the DHN fungal melanin pathway. International 
Journal of Plant Science 165: 787–793. 

Della-Cioppa G, Garger SJ, Sverlow GG, Turpen TH, Grill LK (1990). Melanin 
production in Escherichia coli from a cloned tyrosinase gene. Biotechnology 
8: 634–638.

Deshpande MS, Rale VB, Lynch JM (1992). Aureobasidium pullulans in applied 
microbiology: a status report. Enzyme Microbiology and Technology 14: 514–
527. 

Fernandez E, Sanchez-Amat A, Solano F (1999). Location and catalic characteristics 
of a multipotent bacterial polyphenol oxidase. Pigment Cell Research 12: 331–
339.

Hoog GS de, Guarro J, Gené J, Figueras MJ (2000). Atlas of Clinical Fungi. 2nd 
edition. CBS. Utrecht, The Netherlands. Universitat Rovira i Virgili. Reus, 
Spain.

Hoog GS de, Matos T, Sudhadham M, Luijsterburg KF, Haase G (2005). Intestinal 
prevalence of the neurotopic black yeast Exophiala (Wangiella) dermatitidis in 
healthy and impaired individuals. Mycoses 48: 142–145.

Hoog GS de, Zalar P, Urzί C, Leo F de, Yurlova NA, Sterflinger K (1999). Relationships 
of dothideaceous black yeasts and meristematic fungi based on 5.8S and ITS2 
rDNA sequence comparison. Studies in Mycology 43: 31–37.

Kogej T, Wheeler MH, Rižner TL, Gunde-Cimerman N (2004). Evidence for 
1,8-dihydroxynaphthalene melanin in three halophilic black yeasts grown under 
saline and non-saline conditions. FEMS Microbiology Letters 232: 203–209.

Latgé JP, Bouziane H, Diaquin M (1988). Ultrastructure and composition of 
the conidial wall of Cladosporium cladosporioides. Canadian Journal of 
Microbiolology 34: 1325–1329.

Lyakh SP (1981). Microbial Melaninogenesis and its Function. Moscow: Science. 
274 pp. 

Rižner TL, Wheeler MH (2003). Melanin biosynthesis in the fungus Culvularia lunata 
(teleomorph: Cochliobolus lunatus). Canadian Journal of Microbiolology 49: 
110–119. 

Romero-Martinez R, Wheeler MH, Guerrero-Plata A, Pico G, Torres-Guerrero H 
(2000). Biosynthesis and function of melanin in Sporothrix schenckii. Infection 
and Immunity 68: 3696–3703.

Siehr DJ (1981). Melanin biosynthesis in Aureobasidium pullulans. Journal of 
Coating Technology 53: 23–25.

Sterflinger K, Krumbein WE (1995). Multiple stress factors affecting growth of rock 
inhabiting black fungi. Botanica Acta 108: 467–538.

Sterflinger K, Krumbein WE (1997). Dematiaceous fungi as a major agent for 
biopitting on Mediterranean marbles and limestones. Geomicrobiology Journal 
14: 219–230.

Taylor BE, Wheeler MH, Szaniszlo PJ (1987). Evidence for pentaketide melanin 
biosynthesis in dematiaceous human pathogenic fungi. Mycologia 79: 320–
322. 

Turkovskii II, Yurlova NA (2002). The photochemical and surface-active properties 
of melanins isolated from some black yeast fungi. Mikrobiologiya (Russian) 
71: 482–490.

Vitale RG, Hoog GS de (2002). Molecular diversity, new species and antifungal 
susceptibilities in the Exophiala spinifera clade. Medical Mycology 40: 545–
556. 

Wheeler MH (1983). Comparisons of fungal melanin biosynthesis in ascomycetous, 
imperfect and basidiomycetous fungi. Transactions of the British Mycological 
Society 81: 29–36.

Wheeler MH, Greenblatt GA (1988). The inhibition of melanin biosynthesis reactions 
in Pyricularia oryzae by compounds the prevent rice blast disease. Experimental 
Mycology 12:151–160.

Wheeler MH, Stipanovic RD (1979). Melanin biosynthesis in Thielaviopsis basicola. 
Experimental Mycology 3: 340–350.

Yurlova NA (2001). Applied aspects of dothideaceous black yeasts: melanins. 
21st International specialized symposium on yeasts “Biochemistry, genetics, 
biotechnology and ecology of non-yeasts (NCY)”. Lviv, Ukraine: 123.

Yurlova NA, Hoog GS de (1997). A new variety of Aureobasidium pullulans 
characterized by exopolysaccharide structure, nutritional physiology and 
molecular features. Antonie van Leeuwenhoek 72: 141–147.

Yurlova NA, Sindeeva LV (1996). Production of phenoloxidases by black yeasts as 
an indicator of their biodeteriorative activity. Papers of the 10th International 
Biodeterioration and Biodegradation Symposium, Hamburg, Dechema: 169–
175. 

Zhdanova NM, Vasylevskaya AI, Tugay TI, Artyshkova, LV, Nakonechnaya LT, 
Dighton J (2007). Results of 20 yr monitoring of soil mycobiota within the 10-
km alienation zone of the Chernobyl nuclear power plant. Abstr. XV Congress 
of European Mycologists. Saint Petersburg, Russia: 108.

Zhdanova NM, Zakharchenko VO, Vasylevskaya AI, Shkol’nyi OT, Nakonechnaya 
LT, Artyshkova LV (1994). Peculiarities of soil mycobiota composition in 
Chernobyl NPP. Ukrainian Botanical Zhurnal 51: 134–143.


