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ABSTRACT The capacity of subinhibitory levels of antibiotics to modulate bacterial virulence in vitro has recently been brought
to light, raising concerns over the appropriateness of low-dose therapies, including antibiotic prophylaxis for recurrent urinary
tract infection management. However, the mechanisms involved and their relevance in influencing pathogenesis have not been
investigated. We characterized the ability of antibiotics to modulate virulence in the uropathogens Staphylococcus saprophyticus
and Escherichia coli. Several antibiotics were able to induce the expression of adhesins critical to urothelial colonization, result-
ing in increased biofilm formation, colonization of murine bladders and kidneys, and promotion of intracellular niche forma-
tion. Mice receiving subinhibitory ciprofloxacin treatment were also more susceptible to severe infections and frequent recur-
rences. A ciprofloxacin prophylaxis model revealed this strategy to be ineffective in reducing recurrences and worsened infection
by creating larger intracellular reservoirs at higher frequencies. Our study indicates that certain agents used for antibiotic pro-
phylaxis have the potential to complicate infections.

IMPORTANCE Antibiotics are the mainstay treatment for bacterial infections; however, evidence is emerging that argues these
agents may have off-target effects if sublethal concentrations are present. Most studies have focused on changes occurring in
vitro, leaving questions regarding the clinical relevance in vivo. We utilized a murine urinary tract infection model to explore the
potential impact of low-dose antibiotics on pathogenesis. Using this model, we showed that subinhibitory antibiotics prime uro-
pathogens for adherence and invasion of murine urothelial tissues. These changes in initial colonization promoted the establish-
ment of chronic infection. Furthermore, treatment of chronically infected mice with subtherapeutic ciprofloxacin served to ex-
acerbate infection. A part of these changes was thought to be due to suppression of mucosal immunity, as demonstrated through
reductions in cytokine secretion and migration of leukocytes into the urinary tract. This work identifies novel risk factors associ-
ated with antibiotic therapy when dosing strategies fall below subtherapeutic levels.
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The use of antibiotics to treat and prevent bacterial infections
has made an unprecedented impact on improving human

health. However, recent studies demonstrating the capacity of an-
tibiotics to modify bacterial phenotypes at levels below the MIC
are challenging the paradigm that their effects are benign and have
raised the possibility that they may actually enhance bacterial vir-
ulence. Transcriptional analyses suggest that subinhibitory levels
of antibiotics induce the differential expression of as many as 5 to
10% of the genome, modulated through the activities of both gen-
eral stress responses and specific signaling systems (1–5), includ-
ing the enhancement of toxin and biofilm production by potential

human pathogens (3, 6–14). In addition, antibiotics, including
macrolides and fluoroquinolones, are now recognized for their
capacity to suppress proinflammatory host responses (15, 16).
Thus, we hypothesize that modulation of gene expression in both
the host and the pathogen during prophylactic treatment with a
low dose of an antibiotic could alter the course of bacterial patho-
genesis. Clinical studies have suggested that subinhibitory antibi-
otic therapies and dosing strategies are risk factors for severe com-
plication of infection, risk of breakthrough infection, and future
recurrence episodes (17–21). Although the etiology of therapy
failure in many of these cases remains unknown, we propose that
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inappropriate antibiotic treatment may be a contributing factor.
The objective of our study was to explore this phenomenon in the
context of a subinhibitory dosing regimen, namely, antibiotic pro-
phylactic management for recurrent urinary tract infection
(rUTI).

UTIs are very common, accounting for 10.5 million outpatient
and emergency room visits during 2007 in the United States alone
(22). They are a significant cause of morbidity in women through-
out their life span and in infant boys and older men, with serious
sequelae, including treatment failure, frequent recurrences, pye-
lonephritis with sepsis, and renal damage in young children (23,
24); however, upwards of 44% of women will experience a recur-
rence, with ~10% of these caused by a relapse of the original index
episode strain (25). Such recurrent or persistent infections are
generally managed by using long-term, low-dose prophylactic
regimens. In general, UTIs can be readily treated with short-
course antibiotic therapy (~3 to 7 days). However, following ther-
apy, recurrent or persistent infections may develop that are often
managed using long-term, low-dose prophylactic regimens.
While prophylaxis is usually effective in reducing symptoms dur-
ing its application (26), it does not alter the long-term risk of
recurrence, as infection rates return to pretreatment levels follow-
ing therapy (27) and pathogens become more resistant to future
treatment (28). Thus, it is critical to understand the effectiveness
of antimicrobial prophylaxis in managing recurrent infections
and whether the benefits of such treatments outweigh the risks of
promoting resistance and potential increased virulence.

Uropathogenic Escherichia coli (UPEC) and Staphylococcus
saprophyticus collectively cause ~95% of all uncomplicated UTIs
(23, 29) and are often associated with recurrent and chronic dis-
ease necessitating long-term prophylaxis management. Type 1
fimbriae and uro-adherence factors (Uafs) are critical in establish-
ing UPEC and S. saprophyticus UTIs, respectively (30, 31). In par-
ticular, type 1 fimbriae are important in promoting the invasion of
superficial umbrella cells on the luminal surface of the bladder
epithelium and formation of intracellular bacterial communities,
whereby UPEC rapidly replicates within the cytoplasm during
acute infection to establish a foothold in the bladder (32–37).
While the fate of intracellular S. saprophyticus is unknown, intra-
cellular UPEC proliferation results in the formation of large, mul-
ticellular aggregates, dubbed intracellular bacterial communities
(IBCs) (32). Within this niche, uropathogens are able to subvert
host immune cells and rapidly build up in numbers, thus facilitat-
ing the progression toward chronic infection in mice. In addition,
UPEC has been shown to be able to survive antibiotic therapy by
forming dormant quiescent intracellular reservoirs (QIRs) that
can serve as seeds for recurrent infection (38–41).

We hypothesized that subinhibitory antibiotic-dependent vir-
ulence modulation and immune suppression in vitro would trans-
late to actual changes in disease outcome in vivo. Thus, we inves-
tigated various classes of subinhibitory antibiotics for their
capacity to influence bacterial virulence traits in two uropatho-
genic clinical isolates, S. saprophyticus 15305 and E. coli UTI89. We
also attempted to characterize the signaling networks involved
with these responses in UPEC by using expression analyses.
Changes in virulence and pathogenesis were assessed in vivo by
inoculating ciprofloxacin-primed mice (who had received 1/4 the
minimal inhibitory dose of ciprofloxacin) with S. saprophyticus or
UPEC and determining acute and chronic infection characteris-
tics, including bacterial persistence within the urinary tract and

establishment of intracellular bacterial reservoirs. The effect of
inadequate (with 1/50 the empirical therapeutic dose) ciprofloxa-
cin dosing in chronically infected or resolved mice was also inves-
tigated, in addition to characterizing immune responses in this
host. Lastly, the efficacy of prophylaxis was assessed for its ability
to prevent persistent UTIs and clear UPEC from host urine and
tissues in addition to the intracellular niche.

RESULTS
Subinhibitory antibiotics induce adhesin expression and bio-
film formation in uropathogens. Challenge of both S. saprophy-
ticus and UPEC with subinhibitory ciprofloxacin, ampicillin, or
gentamicin resulted in denser biofilm production (Fig. 1A). In
addition, enhanced planktonic aggregation was observed with
both organisms (see Fig. S1 in the supplemental material). For
UPEC, motility was suppressed (Fig. 1B), as determined in a soft
agar motility assay, and type 1 fimbriation was increased, as deter-
mined via a guinea pig erythrocyte hemagglutination assay
(Fig. 1C). Similarly, subinhibitory antibiotics increased sheep
erythrocyte hemagglutination with S. saprophyticus, suggesting
increased exposure or the presence of adhesin uro-adherence fac-
tor A (UafA) (Fig. 1D). Since capsular polysaccharide can interfere
with UafA-ligand interactions, hemagglutination was also evalu-
ated in an acapsular strain to discern whether our observations
were due to increased UafA expression or decreased capsular poly-
saccharide abundance. We found that subinhibitory antibiotics
also increased hemagglutination in the acapsular strain, indicative
of increased UafA surface exposure (Fig. 1D).

Antibiotic-induced adhesin expression is SOS dependent in
UPEC. RNA sequencing analysis confirmed significant induction
of both a fimH-like adhesin, fmlD (4.84-fold), and the suspected
uropathogenic adhesin/invasin hek (2.47-fold) (Table 1). Interest-
ingly, changes in type 1 fimbrial transcripts were not observed via
RNA sequencing, nor were any changes observed in the propor-
tion of the population that had the invertible fim promoter in the
ON orientation (data not shown). As the SOS-responsive ele-
ments lexA and recA were also highly induced with treatment
(4.08- and 3.37-fold, respectively), we assessed their contributions
to adhesin expression and biofilm formation by using SOS-
deficient E. coli UTI89 strains. These strains demonstrated a mod-
est suppression in biofilm formation (Fig. 2A) and type 1 fimbria-
dependent hemagglutination (Fig. 2B) and did not respond to
subinhibitory ciprofloxacin or gentamicin treatment (Fig. 2C and
D). Expression analysis using quantitative PCR (qPCR) con-
firmed fmlD and hek induction with ciprofloxacin challenge in
wild-type UPEC; however, transcription was not altered in the
recA-deficient strain (Fig. 2E). Ampicillin increased biofilm mass
in all strains tested, but only at concentrations near the MIC
(Fig. 2C and D).

Subinhibitory antibiotics prime uropathogens for urothelial
colonization. Ciprofloxacin priming prior to infection resulted in
higher overall bladder and kidney titers for both S. saprophyticus
15305 and E. coli UTI89 at 24 h postinfection (p.i.) (Fig. 3A).
Almost all murine kidneys inoculated with primed uropathogens
lacked signs of bacterial clearance. Ciprofloxacin priming also re-
sulted in increased risk of severe UTI, manifesting as persistent
bacteriuria, high bacterial bladder titer, and chronic inflamma-
tion, an outcome referred to as chronic cystitis, at 14 days p.i.
(Fig. 3B). Chronic cystitis represents unchecked luminal bacterial
replication and is defined histologically by urothelial hyperplasia
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and submucosal lymphoid aggregates, a histological pattern sim-
ilar to that seen in humans experiencing chronic UTI (33, 42, 43).
The bladder colonization threshold for assessing the risk of
chronic cystitis is the presence of E. coli UTI89 loads of

�104 CFU/ml at 14 days p.i. or later (such data do not exist for
S. saprophyticus) (44). Considering this threshold, priming re-
sulted in 100% of mice presenting with a high risk of chronic E. coli
UTI89 cystitis. Although there are no established infection thresh-

FIG 1 Subinhibitory antibiotics prime uropathogens for colonization. (A) S. saprophyticus 15305 and E. coli UTI89 biofilm formation in the presence of various
antibiotic concentrations at 24 h. (B) Swimming motility of E. coli UTI89 in the presence of subinhibitory antibiotic concentrations. (C) Type 1 fimbria-dependent
hemagglutination of E. coli UTI89 exposed to various subinhibitory concentrations of ciprofloxacin over time. (D) UafA-dependent hemagglutination of S. saprophyticus
15305 and the acapsular C1 strain following exposure to various concentrations of ciprofloxacin. Means from at least three independent experiments are shown.
Significance was determined using a one-way ANOVA and Dunnett’s or Bonferroni’s multiple comparison test. *, P � 0.05; **, P � 0.01; ***, P � 0.001.

TABLE 1 Subinhibitory ciprofloxacin induces urothelium adhesin gene expressiona

Gene Fold change (log2) Median effect size Functional annotation

fmlD 2.275 1.891 Fimbrial, FimH-like protein, mannose binding
Hek 1.304 3.475 Hek adhesin/virulence factor
lexA 2.03 5.635 Repressor of LexA
recA 1.751 3.75 DNA repair, SOS induction
a Significant changes in differentially expressed transcripts of interest in E. coli UTI89 after 4-h exposure to 1/4 MIC ciprofloxacin.
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olds for S. saprophyticus 15305, it is noteworthy that 100% of mice
inoculated with untreated pathogen completely resolved their in-
fection, while 50% maintained low, but measurable, bladder titers
with ciprofloxacin priming. Among primed S. saprophyticus
15305-treated mice, 100% maintained at least some level of infec-
tious kidney titer, while in control groups only 60% exhibited the
same result.

Antibiotic-driven colonization promotes tissue invasion
and IBC formation. Changes in IBC formation during the early
stages of infection were assessed for E. coli UTI89 by staining for
lacZ expression using 5-bromo-4-chloro-3-indolyl-�-D-galacto-
pyranoside (X-Gal). This technique indicated significantly more
IBCs in ciprofloxacin-primed groups, indicative of more numer-
ous urothelial invasion events (Fig. 4A). IBC morphology was
further explored using a green fluorescent protein (GFP)-
expressing E. coli UTI89 strain and confocal microscopy. Appear-

ance of untreated E. coli UTI89 was unremarkable, as IBCs dem-
onstrated characteristic tight, globular clustering (Fig. 4B).
However, examination of ciprofloxacin-primed E. coli UTI89 re-
vealed larger, diffuse IBCs with atypical morphology (Fig. 4C).
Early filamentation was also noted in several of the IBCs belonging
to the ciprofloxacin-treated E. coli UTI89 group (Fig. 4D). Volu-
metric analysis of the IBCs confirmed that ciprofloxacin priming
significantly increased overall size 2.0-fold (Fig. 4E). The ability
for ciprofloxacin to induce filamentation was investigated further,
as this process might contribute to observed early IBC evacuation,
which has been shown to lead to spreading of the infection to
neighboring cells (45). Cultures of E. coli UTI89 were treated with
subinhibitory ciprofloxacin and imaged using transmission elec-
tron microscopy (TEM). Control E. coli UTI89 cells were unre-
markable, appearing to be ~1 to 2 �m in length (see Fig. S2A in the
supplemental material). Most cells in the ciprofloxacin treatment

FIG 2 SOS activation is essential for antibiotic-primed adhesion. (A) Biofilm formation of E. coli UTI89 and SOS-deficient strains after 24 h. (B) Type 1
fimbria-dependent hemagglutination of wild-type and SOS-deficient strains of E. coli UTI89. (C and D) Biofilm formation of E. coli SOS-deficient strains �recA
(C) and lexAT355G (D) after 24 h in the presence of various antibiotics at subinhibitory concentrations. (E) Quantitative real-time PCR analysis of wild-type and
SOS-deficient strains of E. coli UTI89; the reported data are the fold changes in expression of lexA, hek, and fmlD after 4 h of exposure to 1/4 MIC ciprofloxacin.
Means from at least three independent experiments are shown. Significance was determined using a one-way ANOVA and Dunnett’s multiple comparison test.
ns, not significant; *, P � 0.05; **, P � 0.01; ***, P � 0.001.
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group appeared similar in nature; however, ~10% of the overall
population presented with the observed filamenting phenotype,
sometimes increasing to �10 �m in length (see Fig. S2B).

Subtherapeutic ciprofloxacin dosing induces recurrence and
severe infection in mice. The effects of oral subinhibitory cipro-
floxacin therapy were considered in two groups of mice that had
been previously inoculated with E. coli UTI89 and had either (i)
naturally resolved their infection (described as a �104 CFU/ml
bacterial urine load �30 days p.i.) or (ii) maintained chronic
urine titers (described as �104 CFU/ml for �30 days p.i.). Prior to
the initiation of oral antibiotic therapy, the urine titers for all mice
were measured over 3 days in the absence of antibiotics to deter-
mine the baseline bacterial burden. Supplementation of cipro-
floxacin into drinking water at 1/50 the empirical therapeutic con-
centration caused 80% of previously resolved mice to develop
significant infection (�104 CFU/ml) after 3 to 6 days (Fig. 5A).
Although 1/25 the empirical therapeutic dose had no effect, 1/10
the empirical therapeutic dose resulted in retraction of bacterial
urine loads to the limit of detection, suggesting that the observed
antibiotic-dependent increases were not due to the appearance of
resistant mutants (data not shown). In chronically infected mice,
supplementation with 1/50 the empirical therapeutic dose for
3 days significantly increased mean UPEC urine titers by 26-fold
(Fig. 5B). Again, treatment with 1/10 the therapeutic dose was
sufficient to decrease bacteriuria to the limit of detection (data not
shown).

Ciprofloxacin modulates human and murine mucosal im-
mune responses. Luminex profiling demonstrated induction of
the cytokines interleukin-6 (IL-6) and IL-8 in T24 bladder cells
infected with S. saprophyticus 15305, but this induction was sup-
pressed to below baseline levels with the application of subinhibi-
tory ciprofloxacin (Fig. 6A). IL-8 secretion in human 5637 bladder
cells treated with S. saprophyticus 15305 or lipopolysaccharide
(LPS) was also reduced by ciprofloxacin, slightly by gentamicin,
but not affected by ampicillin, as determined in an enzyme-linked
immunosorbent assay (ELISA) (Fig. 6B). Thus, we hypothesized
that these observed immunomodulatory effects suppress the se-
cretion of proinflammatory mediators and decrease immune cell
infiltrate in vivo. Urine sediment polymorpohonuclear leukocytes
(PMNs) taken 3.5 h after UPEC inoculation was reduced in mice
receiving subtherapeutic ciprofloxacin (Fig. 6C). Ciprofloxacin-
dependent modulation of cytokine secretion was assessed using a
Luminex bead-based multiplex assay of extracted bladder tissue
homogenates. A total of seven urinary-relevant cytokines were
assessed and included IL-1�, IL-6, keratinocyte chemoattractant
(KC, also called IL-8), granulocyte colony-stimulating factor (G-
CSF), IL-17, IL-10, and tumor necrosis factor alpha (TNF-�) (46).
All produced reliable profiles with the exception of TNF-� (data
not shown). Changes in IL-17 secretion were unremarkable in
either the control or ciprofloxacin treatment groups (Fig. 6D).
Similarly, KC was not significantly impacted by ciprofloxacin, al-
though there was a trend of reduced secretion when antibiotic was

FIG 3 Antibiotic priming improves uropathogen colonization. S. saprophyticus 15305 and E. coli UTI89 titers in C3H/HeN mouse bladders and kidneys at 24 h
(A) or 14 days (B) postinfection. The dotted line indicates the limit of detection. Means from two independent experiments are shown. Significance was
determined using the Mann-Whitney test (Gaussian approximation). *, P � 0.05.
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present (Fig. 6D). The proinflammatory mediators IL-1� and IL-6
were suppressed, while secretion of the anti-inflammatory cyto-
kine IL-10 was increased (Fig. 6D). In contrast, the proinflamma-
tory cytokine G-CSF was significantly increased in the presence of
ciprofloxacin and E. coli UTI89 infection (Fig. 6D).

Prophylactic intervention is ineffective in curtailing recur-
rence and increases intracellular UPEC burden. The possibility
that low-dose prophylaxis promotes virulence and enhances
pathogenesis was investigated in the C57BL/6J model of rUTI,
where frequent recurrent infections originate from QIRs (33, 39,
47). Following inoculation with nonprimed UPEC, changes in
bacterial urine load were assessed at least every 2 days to track the
course of infection using a novel prophylaxis therapy model. Es-

tablishment of infection after 24 h and response to trimethoprim-
sulfamethoxazole (“co-trimoxazole”) intervention were observed
(see Fig. S3 in the supplemental material). The following 7-day
antibiotic-free period revealed dynamic changes in E. coli UTI89
urine titers, with frequent recurrences observed. Initiation of pro-
phylactic therapy did not appear to improve the frequency of in-
fection resolution over the 7-day treatment period, as 2/20 mice in
this group presented with clinically significant bacteriuria while
3/20 in the untreated group did so at the study’s end (Fig. 7A).
Both bladder and kidneys demonstrated greater bacterial loads in
the prophylaxis group, although this difference was not significant
(Fig. 7B). However, comparison of bladder titers revealed prophy-
laxis significantly increased the presence of low-level bladder CFU

FIG 4 Antibiotic priming increases the invasive capacity of UPEC. (A) E. coli UTI89 IBC quantity at 6 h p.i. of C3H/HeN bladders. (B and C) Representative
confocal images of control (B) and antibiotic-pretreated (C) E. coli UTI89 IBCs in C3H/HeN mouse bladders 6 h p.i. (red, GFP/UTI89; blue, Syto9/nuclei; green,
WGA/cell). (D) Early pathogen evacuation from an IBC via filamentation (arrows) in a ciprofloxacin-pretreated sample. (E) Volumetric analysis of confocal
images is depicted for both control and antibiotic-pretreated IBCs. Means from at least two independent experiments are shown. Significance was determined
using a one-way ANOVA, Dunnett’s multiple comparison test, or the Mann-Whitney test. *, P � 0.05; **, P � 0.01.

FIG 5 Subtherapeutic ciprofloxacin increases bacterial burden and recurrence frequency. (A) The fraction of resolved C3H/HeN mice presenting with clinically
significant (�104 CFU/ml) bacterial urine titers following subtherapeutic ciprofloxacin dosing over time (n � 10 mice). The antibiotic dosing period is indicated
on the upper x axis as fractions of the therapeutic dose. (B) Urine titers of chronically infected mice receiving either no antibiotic or subtherapeutic ciprofloxacin
for 3 days. Means from at least two independent experiments are shown. Significance was determined using a log rank test (panel A; P � 0.0131) or Mann-
Whitney test (panel B; P � 0.0142).
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as determined via ex vivo gentamicin protection; this was likely
indicative of more numerous QIRs (Fig. 7C).

DISCUSSION
Subinhibitory antibiotics promote SOS-dependent virulence
factor expression. We have demonstrated that subinhibitory an-
tibiotics enhance adherence and biofilm production in uropatho-
gens. However, unlike previous studies, which focused on single
pathogen-antibiotic combinations, we found that several agents
targeting distinct cellular processes were capable of similar effects
in unrelated pathogens and that these changes translated to en-
hanced virulence in vivo. Thus, in addition to increasing the risk of
resistant infection, subinhibitory antibiotic therapy may also pose
an additional risk of promoting the expression of virulence fac-
tors. We further characterized the nature of adherence and deter-
mined that adhesins critical to uropathogenesis were induced in
both S. saprophyticus 15305 and E. coli UTI89 by subinhibitory
concentrations of antibiotics. RNA sequencing of subinhibitory
ciprofloxacin-treated UPEC revealed that fmlD and hek induction

coincided with SOS activation. Further phenotypic and qPCR in-
vestigations of strains deficient in SOS revealed the importance of
this stress response system to adhesin gene expression and en-
hanced adherence, as deficient strains no longer responded to
treatment. This finding provides a general mechanism by which
diverse classes of antibiotics might enhance virulence via a system
essentially ubiquitous across bacterial species. Investigations fur-
ther characterizing the poorly established role of the SOS in viru-
lence regulation are warranted (48).

Subinhibitory ciprofloxacin priming enhances pathogenesis
in a murine model of UTI. Previous results have demonstrated
that antibiotics are capable of priming organisms for downstream
colonization, primarily through the upregulation of adhesins (49–
51). In mice, ciprofloxacin treatment prior to infection shifted the
equilibrium toward infection persistence in bladders and kidneys.
This effect was most dramatic in the kidneys, where both uro-
pathogens showed no signs of clearance. The results imply that
infection severity could be worsened by the application of cipro-
floxacin prophylactically, a practice that is widely conducted (52–

FIG 6 Ciprofloxacin suppresses urinary cytokine secretion and PMN infiltration. (A) IL-6 and IL-8 cytokine expression profiles for T24 bladder cells infected
with S. saprophyticus 15305 exposed to various subinhibitory levels of ciprofloxacin. (B) Release of IL-8 from 5637 bladder cells following treatment with either
LPS or S. saprophyticus 15305 in the presence of 1/4 MIC of either ciprofloxacin, ampicillin, or gentamicin, as indicated. (C) PMN counts collected from murine
urine sediments 3.5 h after E. coli UTI89 inoculation. Mice were treated with or without 1/50 the subtherapeutic ciprofloxacin concentration in their drinking
water. (D) Murine bladder cytokine secretion 3.5 h p.i. with E. coli UTI89 in the presence or absence of 1/50 the subtherapeutic ciprofloxacin concentration in
drinking water. Means from at least two independent experiments are shown. Significance was determined using a one-way ANOVA and Bonferroni’s multiple
comparison test. *, P � 0.05; **, P � 0.01; ***, P � 0.001.

Subinhibitory Antibiotics Alter UTI Pathogenesis

March/April 2015 Volume 6 Issue 2 e00356-15 ® mbio.asm.org 7

mbio.asm.org


54). S. saprophyticus 15305 poorly colonized the bladders of mice
but showed a similar infective capacity as E. coli UTI89 in the
kidneys. The absence of UafA ligand in the mouse bladder likely
accounts for this (55–57). C3H/HeN mice inoculated with
107 CFU of E. coli UTI89 and then presenting with �104 CFU/ml
at 14 days p.i. are known to be at very high risk of chronic UTI
(44). The increased titers observed following ciprofloxacin prim-
ing suggested that these organisms were better equipped to colo-
nize the host than were the untreated counterparts. The host-
pathogen interactions during the first 24 h p.i. are thought to play
a significant role in infection establishment or resolution, suggest-
ing that increased titers at this time have some predictive value in
determining the severity of UTI (33). The data obtained at 14 days
p.i. with E. coli UTI89 validated this finding, as ciprofloxacin
priming prior to inoculation was sufficient to increase the fre-
quency of chronic cystitis to 100%, compared to 60% in untreated
groups. While no such data exist that describe the infection
thresholds of S. saprophyticus 15305, it is noteworthy that 100% of
mice resolved infection when inoculated with untreated S. sapro-
phyticus 15305, while 50% of ciprofloxacin-primed inoculated
mice maintained low-grade bladder colonization. Although life-
long infection carriage needs to be evaluated in this model, the
data are highly suggestive that organism virulence is enhanced by
the presence of subinhibitory antibiotic levels, such that there is a
direct impact on persistence within host tissues.

The capacity for ciprofloxacin to promote chronic UPEC in-
fections is likely dependent on its ability to induce invasion of
urothelial cells. Type 1 fimbriae are known to be critical in inter-
nalization and IBC formation (58–60); their expression in re-
sponse to ciprofloxacin and subsequent chronic infection devel-
opment is likely paramount. Although changes in type 1 fimbria
transcript abundance was not observed, posttranscriptional mod-
ification or capsule downregulation and enhanced FimH expo-
sure might contribute to the observed changes in antibiotic-
induced hemagglutination (61, 62). Increased numbers of IBCs
are associated with an increased risk of chronic cystitis (36). The
enhanced IBC-forming capacity observed in ciprofloxacin-
primed E. coli UTI89 indicated that establishment of an intracel-
lular niche is an important step in developing chronic infection in
the C3H/HeN model of chronic cystitis. Ciprofloxacin also altered

the morphology of IBCs, resulting in a dispersed phenotype com-
pared to that of untreated controls. The characteristics of these
IBCs, such as increased numbers of bacterial filaments, are remi-
niscent of those observed during later stages of infection (63),
suggesting that ciprofloxacin priming alters IBC development, re-
sulting in an earlier dispersal and fluxing of the bacteria from the
IBC biomass and their spread to neighboring cells. Ciprofloxacin-
triggered filamentation could thus hasten the spread to distal tis-
sues before exfoliation can occur, promoting the establishment
of quiescent intracellular reservoirs in the bladder that can serve as
seeds for recurrent UTI (39). Thus, ciprofloxacin-induced
changes in E. coli UTI89 might contribute to increased urothelial
adherence, immune evasion, and invasion potential (45, 64).
These processes might further help uropathogens subvert aspects
of early host immunity by rapidly gaining access to the intracellu-
lar environment, and at a higher frequency. Combined, altera-
tions in these pathogenic mechanisms are likely responsible for
driving the dynamics of the host-pathogen equilibrium in favor of
bacterial persistence.

Subtherapeutic ciprofloxacin augments infection severity
and recurrence risk in chronically infected and resolved mice.
Two experimental groups were evaluated for the influence of sub-
therapeutic ciprofloxacin treatment on (i) the worsening of prog-
nosis in chronically infected mice and (ii) the predisposition of
previously inoculated but resolved mice for clinically significant
recurrences. In both cases, subtherapeutic ciprofloxacin was asso-
ciated with increased E. coli UTI89 urine titers. The effects of sub-
therapeutic ciprofloxacin dosing on modulating cytokine expres-
sion could, in part, account for increased pathogen urine load in
chronically infected mice (discussed below). However, the ability
of ciprofloxacin to trigger clinically significant recurrences in re-
solved mice was unexpected and might occur through reemer-
gence of E. coli from QIRs. As fluoroquinolones inhibit phospho-
diesterase activity in mammalian cells (65, 66), a resulting
accumulation of cyclic AMP has been proposed to trigger exocy-
tosis of intracellular UPEC (67). Although chronically infected
mice were housed in separate cages from resolved mice, cross-
infection between mice experiencing recurrences within the same
cage cannot be ruled out. Interestingly, there were mice that never
experienced recurrences with ciprofloxacin therapy, indicating

FIG 7 Low-dose ciprofloxacin therapy increases intracellular UPEC reservoirs. (A and B) E. coli UTI89 titers in C57BL/6 mouse urine (A) or bladders and
kidneys (B) following a 1-week prophylactic treatment regimen with either ciprofloxacin or vehicle. (C) Gentamicin protection assays indicated the presence of
intracellular E. coli reservoirs. The dotted line indicates the limit of detection. Means from at least two independent experiments are shown. Significance was
determined using an unpaired, two-tailed t test. ns, not significant; *, P � 0.0148.
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urinary clearance and providing an argument against cross-
infection. These findings are the first to directly associate sub-
therapeutic antibiotic therapy with increased infection risk in vivo.
If translatable to the clinic, noncompliance with antibiotic pre-
scriptions, or failure to follow strict intraoperative redosing guide-
lines, could contribute to infection complications (19, 20).

Ciprofloxacin modulates aspects of host immunity. Cipro-
floxacin was found to have an immunomodulatory effect in
urothelial tissues, which might account for the changes in bacte-
rial urine titers observed in mice during subtherapeutic treatment.
The effect was noted in both human bladder epithelial cell lines in
addition to murine bladder tissues extracted following infection.
Low doses of ciprofloxacin were sufficient to depress the release of
IL-6 and IL-8 in T24 and 5637 bladder cells, suggesting that resid-
ual levels left over following therapy might predispose to infection
later on. IL-6 and IL-8 are both important proinflammatory me-
diators for host cell immunity during UTIs, and suppression of
either cytokine has important implications on neutrophil che-
motaxis to sites of infection (68–70). This was confirmed in mice,
where there were significantly depressed PMN infiltrates in urine
sediments when animals were treated with subtherapeutic cipro-
floxacin. In addition to IL-6 and IL-8 suppression in vivo, the
proinflammatory mediator IL-1�, produced by activated macro-
phages, is an important early response element to UPEC infection,
and this cytokine was suppressed with ciprofloxacin treatment.
Alternatively, the anti-inflammatory cytokine IL-10 was upregu-
lated with infection and ciprofloxacin presence. IL-10 is impor-
tant in urothelial protection during UTI as it limits macrophage
activation (71–73). Interestingly, ciprofloxacin dramatically in-
creased the expression of G-CSF. This cytokine increases neutro-
phil migration from the bone marrow, and UPEC is known to
trigger its upregulation during UTIs (46). G-CSF presence could
be effective in increasing levels of circulating neutrophils; how-
ever, the local suppression of chemotactic cytokines in the bladder
would diminish the effect at sites of infection. As serum was not
collected from these mice, ciprofloxacin augmentation of sys-
temic responses was not assessed. G-CSF also has immunomodu-
latory effects on macrophages and attenuates IL-1� production,
leading to less efficient bacterial clearance, which further corrob-
orates our findings (66, 74, 75). The capacity for ciprofloxacin to
induce one cytokine and suppress another while having no effect
on others might depend on the augmentation of immune popu-
lations and their activity within the bladder during infection. Fur-
ther characterization of cytological profiles of immune population
changes in response to ciprofloxacin would corroborate this hy-
pothesis.

Ciprofloxacin prophylaxis is not associated with improved
outcome and increases the intracellular bladder reservoir in
mice. We were able to demonstrate therapeutically relevant effects
of ciprofloxacin treatment on UPEC pathogenesis using a murine
model of prophylaxis. The results indicated that the effect of pro-
phylaxis on bacterial urine loads was negligible and not effective in
preventing recurrence risk. Further assessment of sacrificed mice
for augmentation in bladder and kidney E. coli UTI89 loads re-
vealed a trend toward higher titers when ciprofloxacin was pro-
vided. The most important finding from these studies was in re-
vealing the propensity for prophylaxis to enhance UPEC tissue
invasion in bladders. These results mirror clinical observations, in
that while prophylaxis might assist in decreasing UTI symptoms,
they inexorably do not alter the long-term risk of recurrence and

may in fact encourage future episodes by promoting the persis-
tence or accumulation of intracellular reservoirs (28, 52, 76). The
presence of intracellular UPEC has been associated with recur-
rence risk in both humans (77) and mice (36) in the past. Further
studies are warranted to determine the longevity of these
antibiotic-induced bacterial reservoirs and whether they result in
future recurrence episodes.

Clearly, there is a need to reevaluate the effectiveness of pro-
phylactic strategies in patients with highly recurrent UTIs, espe-
cially when treatment length is short or when individuals are non-
compliant. The findings presented herein likely extend beyond
recurrent UTI management, raising important questions regard-
ing the appropriateness of even well-defined antibiotic therapeu-
tic approaches in other disease milieux. For example, empirical
therapy for emergent bacteremia may compromise some patients
when pathogens are resistant and thus exposed to only subinhibi-
tory antibiotic levels. The issues to overcome may include ensur-
ing appropriate Gram-positive and -negative coverage, but also
only using agents which are known to not induce the release of
potentially deadly toxins. This study highlights the need to vali-
date and optimize current regimens and ensure their use is based
upon empirical evidence of efficacy rather than anecdotal obser-
vation, theory, or instinct on what is thought to work.

MATERIALS AND METHODS
Bacterial strains and culture conditions. Organisms were grown in ly-
sogeny broth (LB) supplemented with antibiotics when appropriate. MIC
determinations were performed via the broth microdilution method as
per CLSI protocols. Enumeration of bacterial CFU was performed using
LB agar (Bacto agar; BD) plates prepared as per the manufacturer’s in-
structions and supplemented with antibiotics when required. Cultures
were grown statically unless stated otherwise. If shaking was imple-
mented, it was done so at 200 rpm. The UPEC strain used in this study was
a kanamycin-resistant derivative of the human cystitis isolate UTI89:
attHK022::COM-GFP (E. coli UTI89) (78). S. saprophyticus 15305 was pur-
chased from the American Type Culture Collection (Manassas, VA). SOS-
deficient strains E. coli PAS0209 (�recA) and PAS0211 (lexAT355G; also
referred to as lexAG85D or the Ind� mutant) derived from the UTI89
background were provided by Sheryl Justice (The Research Institute at
Nationwide Children’s Hospital, Columbus, OH). The acapsular S. sap-
rophyticus C1 strain derived from the 15305 background was provided by
Toshiko Ohta (Graduate School of Comprehensive Human Science, Uni-
versity of Tsukuba, Tsukuba, Japan).

Biofilm formation assays. Overnight (24-h) cultures of S. saprophyti-
cus 15305 or E. coli strains UTI89, �recA, and lexAT355G grown in LB were
subcultured 1,000-fold in fresh medium. The wells of a 96-well plate were
prepared by loading various subinhibitory concentrations of either cipro-
floxacin, ampicillin, gentamicin, or vehicle in 100 �l of LB. Organisms
were added at 10 �l per well, and plates were sealed and then incubated for
either 24 or 48 h at 37°C. If incubation periods continued for longer than
24 h, wells were washed and replaced with fresh LB containing the appro-
priate concentration of antibiotic. Following these incubation periods,
wells were washed, stained with crystal violet, and decolorized with 70%
ethanol. Biofilm abundance was determined by measuring the optical
density at 600 nm (OD600).

In vitro human cell line assays. Please refer to the further description
of our methods provided in the supplemental material for details used
regarding our in vitro human cell line assays..

Hemagglutination titers. Alsevers guinea pig red blood cells (RBCs;
Colorado Serum Company, Denver, CO), for E. coli hemagglutination, or
sheep RBCs (Fisher Scientific), for S. saprophyticus hemagglutination,
were prepared as previously described (79, 80). E. coli UTI89, �recA, or
lexAT355G and S. saprophyticus 15305 or C1 were subcultured 1,000-fold
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from overnight (24-h) cultures into fresh LB medium containing 1/4 MIC
of relevant antibiotics or vehicle for 4 h. Bacteria were then pelleted at
6,500 rpm and resuspended in phosphate-buffered saline (PBS) to an
OD600 of 1.0. One milliliter of the resulting suspension was transferred to
a 1.5-ml microcentrifuge tube and centrifuged at 6,500 rpm for 2 min
using a Sorvall Legend Microbiology 21 centrifuge (Thermo Scientific) to
pellet. Supernatants were then aspirated, and pellets were resuspended in
100 �l of PBS. V-bottom, 96-well plates were prepared by transferring
25 �l of PBS into each well. Additionally, 4% (wt/vol) �-methyl-D-�-
mannopyranoside (Sigma) was prepared in a second plate in a similar
manner and served as a measure of mannose-resistant hemagglutination.
In duplicate, 25 �l of each suspension was transferred to the first column
of the plate and serially diluted 2-fold into each subsequent well to create
a dilution gradient of organisms. Twenty-five microliters of the prepared
blood suspension was added per well and mixed by gently tapping the
plate. Plates were then sealed, covered, and placed at 4°C for 2 to 3 h prior
to analysis. Titers were read by determining the last well to display RBC
agglutination.

Soft agar motility assay. Soft agar plates (0.3% agar) were prepared by
loading with either 1/4 MIC levels of antibiotic or vehicle as previously
described (81). E. coli UTI89, �recA, or lexAT355G was subcultured 1,000-
fold in fresh LB without antibiotic, incubated at 30°C with shaking
(200 rpm) for 4 h, and adjusted to an OD600 of 1.0 before being spot plated
onto the surface of antibiotic-loaded or unloaded soft agar plates. Organ-
isms were also pretreated with 1/4 MIC levels of relevant antibiotics for 4 h
prior to plating on unloaded soft agar plates. The radius of the resulting
swimming zone (in millimeters) was measured 24 h postincubation.

Mouse infection protocols. Murine infections models (82) routinely
made use of 6- to 8-week-old female C3H/HeN or C57BL/6 mice obtained
from Harlan (Harlan Sprague Dawley Inc., Indianapolis, IN) or Jackson
(Jackson Laboratory, Bar Harbor, ME), respectively. All animal studies
were conducted in accordance with the Guide for the Care and Use of
Laboratory Animals under Animal Welfare Assurance A3381-01 at the
Washington University School of Medicine, St. Louis, MO. The Washing-
ton University School of Medicine Animal Study Committee approved
animal protocol 20120216 (expiration, 01/11/2016).

E. coli UTI89 and S. saprophyticus 15305 used for infections were in-
oculated into 10 ml LB directly from 80°C freezer stocks, grown statically
overnight at 37°C, subcultured (100-fold) in fresh LB medium with or
without 1/4 MIC ciprofloxacin, and grown for another 4 h at 37°C (83).
These cultures were then centrifuged for 10 min at 3,000 � g, resuspended
in 10 ml of PBS, and diluted to an OD600 of 0.35 (~2.0 � 108 CFU/ml).
Fifty microliters of this suspension (~1 � 107 to 2 � 107 CFU) was used to
inoculate the bladders of mice via transurethral catheterization as previ-
ously described (82). Urine bacterial load (titer) was determined via serial
dilution in PBS and spot plating (10 �l per drop, 50 �l total per dilution,
1 plate per sample) during the course of infection where indicated. At the
indicated times, mice were sacrificed, and bladders and kidneys were asep-
tically removed and processed for microscopy or mechanically homoge-
nized for CFU titration.

The effect of subtherapeutic ciprofloxacin dosing on the murine re-
sponse to UTI was investigated in previously infected mice. The animals
were initially infected with a dose (~108 CFU) of E. coli UTI89 and were
left for at least 30 days to either spontaneously resolve infection or develop
persistent high-titer bacteriuria (�104 CFU/ml for �28 days p.i.), which
is an accurate indicator of the presence of chronic cystitis (44). The urine
titers of mice were additionally monitored for 3 days prior to initiation of
subtherapeutic ciprofloxacin supplementation. The empirical therapeutic
ciprofloxacin dose in mice was estimated based on human data (40 �g/ml
ciprofloxacin administered daily). Ciprofloxacin was supplemented into
the drinking water for ad libitum consumption, and water intake was
monitored and did not differ between antibiotic-supplemented and con-
trol groups, indicating ciprofloxacin was well tolerated and did not alter
palatability (data not shown). Dosing ranges of �1/25 the empirical ther-
apeutic dose were found to not significantly decrease bacterial urine titers

over a 3-day period (data not shown). Following optimization of dosing
parameters, such that UPEC was not negatively influenced by the level of
ciprofloxacin present, 1/50 the empirical ciprofloxacin therapeutic dose
was supplemented into the drinking water and replaced each day for 3 to
6 days. The urine titer of each mouse was monitored daily for changes as
described elsewhere. At either 3 or 6 days, the dose was further increased
to 1/25 the empirical therapeutic dose for another 3- to 6-day period, with
urine titers again determined daily. Lastly, the dose was increased further
to 1/10 the empirical therapeutic dose for 3 days to clear infection and
ensure that spontaneous development of ciprofloxacin-resistant mutants
did not occur.

Evaluation of intracellular bacterial populations within the blad-
ders. E. coli UTI89 IBC enumeration, visualization, and volumetrics were
performed using lacZ staining and confocal microscopy as previously de-
scribed (36, 84). For IBC enumeration, animals were sacrificed 6 h p.i.,
and bladders were excised, bisected longitudinally, and placed onto a sil-
icone bladder pinning pad. They were fixed with 3% paraformaldehyde
(Sigma), washed thrice with 2 mM MgCl2 (Sigma), 0.01% sodium deoxy-
cholate (Sigma), and 0.02% Nonidet P-40 (Roche, Mississauga, ON, Can-
ada) in PBS. Staining was performed using 25 mg/ml X-Gal (Sigma) and a
solution containing 1 mM potassium ferrocyanide and 1 mM potassium
ferricyanide (Sigma). After an incubation period of 16 h at 30°C, bladders
were visualized under an Olympus SZX12 dissecting microscope (Olym-
pus, America, Center Valley, PA).

For IBC visualization, infections and bladder fixation were conducted
as described elsewhere, with the exception that E. coli UTI89 carrying the
GFP-expressing plasmid pANT4 was utilized. Fixed bladders were washed
and counterstained with nuclear ToPro3 (Molecular Probes) and recom-
binant wheat germ agglutinin (r-WGA) to outline superficial umbrella
cells (1:700 dilution for each). Bladders were imaged using a Zeiss LSM
510 Meta laser scanning inverted confocal microscope (Thornwood, NY).
IBCs were rendered in three-dimensions (3D) via reconstructive
z-stacking of images, and volumes were determined by using Volocity 4
image analysis software (PerkinElmer, Waltham, MA).

Murine and human tissue cytokine profiling and urine sediment
analysis. Mice were supplemented with 1/50 the empirical ciprofloxacin
therapeutic dose or vehicle for 3 days, then inoculated with 107 nontreated
E. coli UTI89 and sacrificed at 3.5 h p.i. Bacterial urine load and immune
cell infiltrate were determined at the time of sacrifice, and bladders and
kidneys were excised and snap-frozen in liquid nitrogen for future cyto-
kine profiling. Murine urine immune cell sediment analysis was carried
out using the CytoPro 7620 cytocentrifuge (Wescor, Logan, UT) as per the
manufacturer’s instructions. Stained urine sediments were examined by
light microscopy on an Olympus BX51 light microscope, and the average
number of PMN per 400� magnification field (high-powered field) was
calculated by counting at least five fields and using a semiquantitative
scoring system as previously described (44).

The cytokine expression profiles for murine bladders were determined
using an xMAP fluorescent bead-based technology (Luminex Corpora-
tion, Austin, TX). Cytokines were liberated from tissues by using homog-
enization in extraction buffer containing 20 mM Tris-HCl (pH 7.5;
Sigma), 150 mM NaCl (Sigma), 1-mM phenylmethylsulfonyl fluoride
(PMSF; Sigma), 0.05% Tween 20 (Sigma), and a protease inhibitor cock-
tail (100-fold dilution; Roche). Conversely, supernatants from previous in
vitro human T24 tissue cell line experiments were also extracted and an-
alyzed. Total protein levels were assessed using a bicinchoninic acid
(BCA) kit (Thermo Scientific) as per the manufacturer’s instructions and
diluted when required. Levels of cytokines IL-1�, IL-6, KC, G-CSF, IL-17,
IL-10, and TNF-� were measured using multiplexed immunoassay kits
according to the manufacturer’s instructions (Bio-Rad Laboratories, Inc.,
Hercules, CA). Cytokine levels (in picograms per milliliter) were auto-
matically calculated from standard curves using Bio-Plex Manager soft-
ware (v. 4.1.1; Bio-Rad).

ELISAs were used to determine IL-8 expression levels in human 5637
bladder cells. Infections were carried out as previously described, with the
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exceptions that LPS (Sigma) was added at 5 �g/ml in place of S. saprophy-
ticus 15305 and ampicillin and gentamicin were also tested at 1/4 MIC
levels in addition to ciprofloxacin. Four hours post-5637 cell infection,
supernatants were extracted and cytokines were quantified using the hu-
man CXCL8/IL-8 Quantikine ELISA kit (R&D Systems, Minneapolis,
MN) as per the manufacturer’s instructions.

Model of ciprofloxacin prophylaxis. C57BL/6 mice were inoculated
as previously described with ~107 CFU of nonprimed E. coli UTI89. In-
fections were allowed to develop for 24 h prior to initiation of a 3-day
regimen of normal co-trimoxazole therapy (270 �g/ml replaced daily;
Qualitest Pharmaceuticals, Huntsville, AL) (40). Following therapy cessa-
tion, mice were provided a 7-day rest period prior to initiation of cipro-
floxacin prophylaxis. They then received either a typical prophylactic dose
of ciprofloxacin (1/4 the empirical therapeutic dose; 100 �l of a 1-�g/ml
solution) or vehicle (distilled H2O) daily via oral gavage for 7 days. Fol-
lowing prophylactic therapy, animals were sacrificed, and kidneys and
bladders were excised for determinations of bacterial titers. In some cases,
ex vivo gentamicin protection assays were conducted on bladders for enu-
meration of the intracellular population. Urine was taken at least every
2 days throughout the course of the experiment to allow tracking of in-
fection.

Gene expression analyses. For details on the methods used for the
gene expression analyses, please refer to the supplemental material.

Statistical analyses. Statistical analyses were conducted using Graph-
Pad Prism version 4.00 for Windows (GraphPad Software, San Diego,
CA). Significance was determined using one-way analysis of variance
(ANOVA) and Dunnett’s multiple comparison test or Bonferroni’s mul-
tiple comparison test, a Mann-Whitney test with Gaussian approxima-
tion, a log-rank test, or a two-tailed or unpaired t test. Each test used for
the various experiments is described in detail in the corresponding figure
legend. Statistical analyses for the differential abundance of mapped
mRNA reads from RNA sequencing were conducted by the ALDEx2 R
package version 2.0.6 (85, 86). A log2 median effect size (calculated by
using ALDEx, as the mean ratio of the difference between groups versus
the maximum difference within groups) of at least 1.5 (representing at
least a 2.25-fold-greater difference between groups versus within groups)
was required for genes to be considered differentially expressed. In addi-
tion, a �1% overlap in the distributions between the two conditions was
permitted for inclusion (85, 87). This approach ensures that the within-
group variance is consistently and substantially smaller than the between-
group difference when small sample sizes are used.

SUPPLEMENTAL MATERIAL
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