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Background: The prevalence of revision surgery due to aseptic loosening and periprosthetic joint infection (PJI) following
total hip and knee arthroplasty is growing. Strategies to prevent the need for revision surgery and its associated health-
care costs and patient morbidity are needed. Therapies that modulate the gut microbiota to influence bone health and
systemic inflammation are a novel area of research.

Methods: A literature review of preclinical and clinical peer-reviewed articles relating to the role of the gut microbiota in
bone health and PJI was performed.

Results: There is evidence that the gut microbiota plays a role in maintaining bone mineral density, which can contribute
to osseointegration, osteolysis, aseptic loosening, and periprosthetic fractures. Similarly, the gut microbiota influences
gut permeability and the potential for bacterial translocation to the bloodstream, increasing susceptibility to PJI.

Conclusions: Emerging evidence supports the role of the gutmicrobiota in the development of complications such as aseptic
loosening and PJI after total hip or knee arthroplasty. There is a potential for microbial therapies such as probiotics or fecal
microbial transplantation to moderate the risk of developing these complications. However, further investigation is required.

Clinical Relevance: Modulation of the gut microbiota may influence patient outcomes following total joint arthroplasty.

T
he number of total knee arthroplasty (TKA) and total hip
arthroplasty (THA) procedures in the United States is
projected to surpass 1 million annually by 20301,2. The

economic cost of osteoarthritis is estimated to be up to 2.5% of
the gross domestic product (GDP) of high-income countries2-4.
Revision surgery, with aseptic loosening of implants and peri-
prosthetic joint infections (PJIs) as the leading causes, accounts
for 10% of these costs2,5. Implant failures requiring revision cause
pain and require hospital stays for patients1,6,7. Consequently,
strategies to reduce aseptic loosening and PJIs are needed.

One of the most fascinating developments in science and
medicine over the past 2 decades has been the study of the gut
microbiota.With the numbers of microbes dwarfing the totality of
cells in the human body they inhabit, this ecosystem of microbes
populating our gastrointestinal tract has been implicated in an
array of conditions, including metabolic disorders such as diabetes
and obesity, cancers, and depression8,9. Treating diseases via the
manipulation of the gut microbiota has thus gained tremendous
interest.

In the past decade, the so-called “gut-bone axis” has been
hailed as a key mediator in bone health10. Healthy host bones are
needed for implant osseointegration and to avoid aseptic loos-
ening and periprosthetic fractures following THA and TKA11.
Emerging research has also implicated the gut microbiota in
PJIs12. Therefore, this review will focus on the potential for in-
terventional microbial therapies that may one day reduce the
need for revision surgery following THA and TKA.

The Gut-Bone Axis: A Brief Overview

Bone metabolism is primarily mediated by osteoclasts and
osteoblasts, which resorb and install new bone matrix, re-

spectively. The contribution of the gut microbiota to this process is
complex (Fig. 1). Germ-free mice were found to have increased
bonemass, due to a reduced number of osteoclasts, compared with
conventionally raised mice13. Disruption of the microbiota via
antibiotics reduces bone quality and strength14. Additionally, the
microbiota is a key mediator of bone metabolism in fracture
healing, osteoporosis, inflammatory bowel disease, and rheumatoid
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arthritis. The gut microbiota communicates with distant sites of
bone metabolism through immune mediators, regulation of hor-
mones, extracellular vesicles, short-chain fatty acids (SCFAs),
vitamins, and aromatic amino acids, among othermechanisms15-19.

An example of the role of the microbiota is the important
contribution made by the segmented filamentous bacteria (SFB)
in the gut to fracture healing20. Fracture healing requires an
inflammatory phase, and the SFB induce the production of the
proinflammatory cytokines tumor necrosis factor (TNF)-a and
interleukin (IL)-17 from Th (T helper) 17 cells, aiding in this
healing process. Accordingly, the administration of broad-
spectrum antibiotics disrupts this pathway and severely blunts
the bone healing response20,21. SFB and their downstream
proinflammatory cytokines also stimulate osteoclast activity,
contributing to osteoporosis. Inflammatory bowel disease (IBD),
characterized by an increased profile of proinflammatory bacteria
and gut dysbiosis, elevates osteoporosis fracture risk by 40%, with

the prevalence of osteopenia and osteoporosis being up to 77% in
patients with IBD22-24.

SCFAs, which are the byproducts of indigestible carbohy-
drates metabolized by microbes, improve bone mineral density
(BMD) by promoting osteoblast numbers25. Production by mi-
crobes or delivery of SCFAs to parts of the digestive tract promote
beneficial bacteria such as Akkermansia muciniphila26. Such orga-
nisms have been shown to be critical inmetabolism,weight control,
and response to immunotherapies in oncology27-32. Extracellular
vesicles from A. muciniphila improve bone strength and mass in
osteoporotic mice19. The production of vitamins and other im-
portant nutrients by the gut microbiota also likely plays an
important role in bone health. The absorption of vitamin D,
important for bone health due to its role in calcium acquisition and
storage, can be increased with the administration of the probiotic
bacteria Limosilactobacillus reuteri33. Vitamin K2 is produced by
the gut microbiota and inhibits osteoclast differentiation while

Fig. 1

Microbial involvement in bone homeostasis. Well-knownmediators of the gut-bone axis involve the immune system, microbial metabolites such as SCFAs

and vitamins, and hormones.
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stimulating osteoblast activity and numbers34-37. Parathyroid
hormone (PTH)-induced bone loss is also microbiota-dependent,
with germ-freemice and antibiotic-treatedmice protected from the
effects of the hormone38. Bone health depends on gut barrier
integrity aswell, and bacteriawithin theClostridium, Enterococcus,
and Streptococcus genera have been implicated in the metabolism
of vitamin A, which is known to improve barrier function18. Finally,
proinflammatory bacteria such as Streptococcus species are pos-
tulated to contribute to joint pain by the secretion of immunologic
factors that pass from the gut into the circulation39.

Given the intimate involvement of the gut microbiota
with bone health, manipulating the gut microbiota to achieve
better outcomes prior to and following joint arthroplasty is an
exciting possibility.

Aseptic Loosening

Aseptic loosening of implants is one of the most common
reasons for revision total joint arthroplasty40. The production

of wear debris at the joint interface causes inflammation41-43.
Wear debris stimulates macrophages to produce proinflammatory
cytokines, which increase osteoclast numbers and activity, caus-

ing osteolysis (Fig. 2)44. Manipulation of macrophages to an anti-
inflammatory state may reduce osteolysis and improve implant
longevity45. Suboptimal osseointegration predisposes patients to
aseptic loosening46. Low BMD delays osseointegration and reduces
the initial stability of the implants46. Poor bone quality also in-
creases implant migration and heightens the risk of revision sur-
gery47,48. This decreases patient satisfaction and slows recovery after
the surgery11,49. While use of bisphosphonates such as zoledronic
acid reduces implant migration, it is associated with many side
effects50-53. Poor bone quality and osteolysis also increase the risk of
periprosthetic fractures and are a common cause of revision sur-
gery54,55. Mortality rates following periprosthetic femoral fractures
have been reported to be 15.8% (at 18 months) and 16.5% (at
12 months), respectively, with enduring pain and decreased
ambulatory function several years after revision surgery54,56-58.While
poor surgical technique and the use of cementless implants increase
the risk of periprosthetic fractures, implant loosening is a very
common cause of these fractures, with up to 66% of patients
presenting with implant loosening at the time of their fracture59,60.

Altering the gut microbiota could affect osseointegration
and the risk of aseptic loosening and periprosthetic fracture.

Fig. 2

Mechanism of wear particle-induced osteolysis. Pathophysiology includes debris (pictured as green circular particles) causing macrophage recruitment and

inflammation, and concurrent osteolysis (the red lesion in the bone).
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The gut microbiota influences the inflammatory capacity of the
immune system, which is a keymediator of wear particle-induced
osteolysis61-65. The gut microbiota of rats with wear particle-
induced osteolysis had an increased Firmicutes-to-Bacteroidetes
ratio and a reduced abundance of SCFA-producing bacteria, both
of which are associated with an increased inflammatory profile61.
The administration of the probiotic Lacticaseibacillus casei, known
for its immunomodulatory and anti-inflammatory properties,
protected mice from wear particle-induced osteolysis while also
reducing inflammatory markers and osteoclast number62,63.
SCFAs such as propionate and butyrate also inhibited wear
particle-induced osteolysis in a mouse calvarium via multiple
mechanisms, one being the negative regulation of osteoclast
differentiation64. The probiotic Lactobacillus reuteri prevented
bone loss in estrogen-depleted mice66, likely by increasing 25-
hydroxyvitamin D levels to aid in the absorption of calcium
necessary for bone growth33. The treatment of 75 to 80-year-old
women presenting with low BMD with the same strain of L.
reuteri decreased tibial bone loss over a span of 12 months67. In
contrast, supplementation with a multispecies probiotic for-
mulation that included various Lactobacillus and Bifidobacte-
rium species had no effect on the hip and spine BMD of patients
50 to 72 years of age with osteopenia; however, outcomes were
measured only at 6 months68. The levels of the inflammatory
cytokine TNF-a and of osteoclast-inducing PTH were signifi-
cantly reduced in the serum, indicating that the multispecies
probiotic might play a positive role in bone quality in the long
term68. While 4 species of Lactobacillus were used, L. reuteri was
not part of the formulation, suggesting that treatment effec-
tiveness could depend on the species and strains of probiotics.

Use of anti-inflammatory probiotics should be evaluated
for its potential to protect against osteolysis and aid in increasing
BMD, allowing for proper osseointegration and the avoidance of
aseptic loosening. Longitudinal clinical trials studying the preva-
lence of aseptic loosening in patients given probiotics containing
the Lactobacillus and Bifidobacterium species before, during, and
after arthroplasty are indicated. Fecal microbial transplantation
(FMT) may also be considered as an intensive option to protect
high-risk patients, given its ability to produce persistent changes
in the gutmicrobiota69. Preclinical animal data show that FMT can
help treat osteoporosis, but data on its efficacy and concurrent
risks are still lacking70,71. Even with the advent of oral capsules,
which are more easily administered than an enema or nasal
gastric delivery, FMT remains unpopular for patients without
life-threatening conditions, given its expense and required
screening of both the donor and the recipient69,72,73.

Periprosthetic Joint Infections

Although its prevalence is <2%, the impact of PJI on the
individual patient is severe, with a 5-fold increase in

mortality, a higher risk of morbidity, and a reduced quality of
life due to repeat surgical procedures and loss of ambulatory
capacity74. Treatment of PJI entails a combination of antibiotic
therapy and surgery, but up to 35% of these interventions fail75,76.
Bacteria can adhere to and colonize the implant, forming a bio-
film that is challenging to disrupt via conventional antibiotic

courses77,78. While bacterial colonization and subsequent PJI were
previously thought to occur solely due to contamination from
skin during the initial surgical procedure, recent work has revealed
the presence of microbes in the joints of patients even prior to
surgery12. This section of the reviewwill focus on the lesser-known
sources of microbes within joint spaces: the oral and gut micro-
biota (Fig. 3)12,79-82.

It was postulated that 6% to 13% of PJIs are caused by
bacteria resident in the oral cavity and saliva83. The oral bacterial
species Fusobacterium nucleatum and Peptostreptococcus have
been reported to cause PJI in patients following dental sur-
gery84,85. Oral bacteria such as Prevotella intermedia and Por-
phyromonas gingivalis have been found in both the subgingival
dental plaques and the synovial fluid of patients with both
rheumatoid arthritis and periodontal disease81. Additionally,
identical clones of the oral bacterial species F. nucleatum and
Serratia proteamaculans were found in both dental plaques
and synovial fluid of patients with both rheumatoid arthritis and
periodontal disease82. The 2 diseases are thought to have similar
pathophysiological mechanisms, and since rheumatoid arthritis
has been associated with an increased risk of PJI, the identifi-
cation of oral microbiota constituents in these joints causes
considerable concern86,87. Despite this, no association between
antibiotic prophylaxis and the incidence of PJI following dental
procedures has been found88,89. The American Academy of
Orthopaedic Surgeons recommends antibiotic prophylaxis only
in immunocompromised patients, patients with poor glycemic
control, those who have had an arthroplasty within the past year,
and those with a history of PJI90.

Similarly, enteric pathogens from the gut can spread to joint
spaces via the hematogenous route to seed and infect implant
sites. This is thought to be themechanism of the increased PJI risk
in patients with IBD91,92. The dysregulated and inflamed intestinal
microbiota paves the way to a disrupted gut barrier, leading to
bacterial translocation into the bloodstream. Since only a small
amount of bacteria is required to establish a PJI, this phenomenon
puts patients at high risk for implant failure93. Patients with IBD
are often on immunosuppressive therapies, which may also in-
crease their risk of PJI. While the most recent guidelines for
prophylactic antibiotic therapy provide recommendations for
immunocompromised patients and those who have obesity, liver
cirrhosis, type-2 diabetes, and other conditions associated with
gut dysbiosis must also be considered in the decision whether to
administer such therapy8,9,94-96. Prophylactic antibiotic therapy in
patients with those conditions may contribute to dysbiosis and
worsen the risk of PJI in immunocompetent patients with gut
dysbiosis. The duration of treatment also matters, as the long-
term use of antibiotics in women >60 years of age was shown to
significantly increase the risk of all-cause mortality, while treat-
ment for <2 months did not97. Persistent changes in the mi-
crobiota have been documented following even short-term
antibiotic use98. For example, a 7-day course of clindamycin
caused reductions in the Bacteroides species that persisted for 2
years, while a 10-day course reduced Bifidobacterium to levels
that could not be restored until 1 year post-treatment99-101.
Although the link has yet to be explored, such profound
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disturbances in the enteric microbiota might predispose patients
with comorbidities to altered gut microbial homeostasis, further
compromised barrier function, and a subsequently increased
risk of PJI. Comorbidities such as congestive heart failure, dia-
betes, obesity, renal disease, rheumatoid arthritis, and liver cir-
rhosis are just some of themany risk factors for the development
of PJI102-104. Many of these comorbidities are also associated with
gut microbiota perturbation that may increase these patients’
susceptibility for PJI39,94.

Use of probiotics to alter gut microbiota composition, im-
proving the gut barrier and decreasing bacterial translocation to the
bloodstream, is an area requiring further research. For example,
obesity is strongly associated with an increased abundance of
the Firmicutes phylum at the expense of Bacteroidetes within
the gut of patients, with this shift reversed by weight loss95. Mice
with this shift in their microbiota composition after antibiotic
therapy are more vulnerable to PJI than mice with normal
microbiota78. Likewise, patients with IBD are at a higher risk
for PJI. However, their microbiota has the opposite shift: an
increased abundance of Bacteroidetes compared with Firmi-
cutes91,105. As such, use of specific probiotics to restore a healthy
Firmicutes-to-Bacteroidetes balance for patients at higher risk
for PJI could be explored.

Limitations in the Field

Although an ample number of studies indicate a strong pos-
sibility of microbial therapies in the future of orthopaedics,

presently this field does have some limitations. Most microbial
therapeutic modalities such as FMT, prebiotics, and fermented
food remain greatly understudied regarding their direct impact on
human bone health70,106,107. Moreover, the long-term efficacy of
probiotics in functionally altering the gut microbiota remains
controversial, with most studies demonstrating no substantial
changes in overall microbial diversity following probiotic supple-
mentation in humans108. Since PJIs can occur anytime during the
life of an arthroplasty recipient, the therapy’s inability to be effi-
cacious over a patient’s lifespan could be a limitation108-110. If pro-
biotics fail, FMTor other microbial therapeutics (prebiotic, phage,
defined microbial consortia, fermented food, and fermentation
products) may be explored as an alternative; FMT has been shown
to produce persistent changes in the recipient microbial signa-
ture69. However, since it remains unknownwhether FMTwill help
or worsen the incidence of aseptic loosening and PJI, exploration
of probiotics continues to be the preferred route.

It is also possible for probiotic therapies to have func-
tional effects without creating major alterations in the microbial
ecosystem, making their mechanism of action challenging to

Fig. 3

Three sources of bacteria in periprosthetic joint infections and risk factors.
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study105,106,111. Consequently, the reliability of probiotic treatment
in humans with differing basal microbial signatures can become
hard to predict105,106,111. The present literature also has scant
information on the appropriate dosages of microbial therapies
for the bone health of humans. This is primarily because studies
in this developing field have largely employed preclinical animal
models, indicating the need for future studies in humans106.

Conclusions

The involvement of the gut microbiota in the body’s physi-
ology and pathophysiology has made it a target in the

treatment of various diseases. Its effect on bone and joint con-
ditions, especially with respect to its control of systemic in-
flammation, should not be ignored. Probiotics are presently
being investigated to treat a wide range of conditions, ranging
from bloating and traveler’s diarrhea to atopic dermatitis and
clinical depression112,113. Presently popular and available probi-
otic formulations include the Lactobacillus and Bifidobacterium
genera of bacteria, and emerging research shows that various
other bacteria such as A. muciniphila and other species could be
promising, with multifarious health effects19,112-114. Given the
contributions of the gut microbiota to bone health, probiotics
are a potential future therapeutic option in populations of
patients requiring or living with hip and knee implants. How-

ever, dosages and therapeutic timelines are far from being elu-
cidated, and the ability of probiotic interventions to cause long-
term changes in the gutmicrobiota remains controversial108-110,113.
Finally, nonspecific probiotic treatment may worsen gut health
in certain circumstances, highlighting the need for personalized
therapies in the future115. Still, with preclinical and clinical
studies strongly suggesting that the manipulation of the gut
microbiota may reduce the incidence of aseptic loosening and
potentially even PJIs, further investigation of probiotic supple-
mentation in this patient population is supported. n
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