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Simple Summary: Bovine mastitis is an inflammatory disease of the mammary glands that causes
serious harm to cow health and huge economic losses. Susceptibility or resistance to mastitis in
individual cows is mainly determined by genetic factors, including coding genes and non-coding
genes. Long non-coding RNAs (lncRNAs) are non-coding RNA molecules with a length of more than
200 nucleotides (nt) that have recently been discovered. They can regulate a variety of diseases of
humans and animals, especially the immune response and inflammatory disease process. This paper
reviews the role of long non-coding RNA (lncRNA) in inflammatory diseases, emphasizes on the latest
research progress of lncRNA expression and the molecular regulatory mechanism in bovine mastitis,
and looks forward to the research and application prospect of lncRNA in bovine mastitis, intending to
provide a reference for scientific researchers to systematically understand this research field.

Abstract: Bovine mastitis is an inflammatory disease caused by pathogenic microbial infection,
trauma, or other factors. Its morbidity is high, and it is difficult to cure, causing great harm to the
health of cows and the safety of dairy products. Susceptibility or resistance to mastitis in individual
cows is mainly determined by genetic factors, including coding genes and non-coding genes. Long
non-coding RNAs (lncRNAs) are a class of endogenous non-coding RNA molecules with a length of
more than 200 nucleotides (nt) that have recently been discovered. They can regulate the immune
response of humans and animals on three levels (transcription, epigenetic modification, and post-
transcription), and are widely involved in the pathological process of inflammatory diseases. Over
the past few years, extensive findings revealed basic roles of lncRNAs in inflammation, especially
bovine mastitis. This paper reviews the expression pattern and mechanism of long non-coding
RNA (lncRNA) in inflammatory diseases, emphasizes on the latest research progress of the lncRNA
expression pattern and molecular regulatory mechanism in bovine mastitis, analyzes the molecular
regulatory network of differentially expressed lncRNAs, and looks forward to the research and
application prospect of lncRNA in bovine mastitis, laying a foundation for molecular breeding and
the biological therapy of bovine mastitis.

Keywords: lncRNA; cow; mastitis; expression pattern; regulatory mechanism

1. Introduction

Bovine mastitis is an inflammatory disease of the mammary glands caused by pathogenic
microbial infections, trauma, or other stimuli. Its morbidity is high and difficult to cure,
causing serious harm to cow health and dairy product safety [1]. Every year, the disease
causes huge economic losses worldwide due to factors such as treatment costs, labor,
veterinary services, a reduction in milk production, and the need to discard inferior milk [2].
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Therefore, bovine mastitis is an urgent problem to be solved. It is necessary to further study
the roles and molecular mechanisms of bovine mastitis.

Long non-coding RNA (lncRNA) is an endogenous non-coding RNA molecule with a
length of more than 200 nucleotides (nt) [3] that plays an important role in the transcriptional
and epigenetic regulation of human and animal genes [4,5], and has become a research focus
of gene expression regulation in recent years. In the organism’s immune response, long
non-coding RNAs (lncRNAs) regulate the occurrence and development progress of various
inflammatory diseases, including bovine mastitis. In this paper, we review the expression
patterns and mechanisms of action of lncRNAs, with emphasis on the latest research on the
role of lncRNAs in bovine mastitis. The main objective of this review is to better understand
bovine mastitis from the perspective of lncRNAs, and to explain the classification, expression,
and potential role of lncRNAs in regulating bovine mastitis.

2. Classification of LncRNA

In 2002, scientists first proposed the concept of lncRNA after the large-scale sequencing
of a full-length mouse complementary DNA (cDNA) library [6]. At present, scholars have
a clearer understanding of the origin, size, and conservative characteristics of lncRNAs [7].
However, there is still no unified standard for their classification. Currently, the more
commonly used method is to classify lncRNAs according to the relative position of the
lncRNA and the encoding gene [8]. According to this method, lncRNAs can be divided into
four types, including long intergenic lncRNAs (lincRNAs), enhancer lncRNAs (elncRNAs),
intronic lncRNAs, and antisense lncRNA (Table 1, Figure 1). This reflects the function of
lncRNAs to some extent, and can also help researchers to intuitively understand lncRNAs.

Table 1. Classification of lncRNAs.

Category Definition References Examples

long intergenic
lncRNA

(lincRNA)

LincRNAs are the longest RNA
transcripts, are located between

annotated protein-coding genes, and
are at least 1 kb away from the
nearest protein-coding genes

[9] lincRNA
BCILN25 [10]

enhancer lncRNA
(elncRNA)

ElncRNAs are closely related to
enhancer–promoter interactions near

the coding gene regulation
[11] CRED9 [12]

intronic lncRNA Intronic lncRNAs are located in the
intron of the coding gene [13] intronic lncRNA

ANRASSF1 [14]

antisense lncRNA
Antisense lncRNAs are transcribed

from the antisense strand and
overlap part of the sense strand

[15] lncRNA
FOXC2-AS1 [16]
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3. Mechanism of Action of LncRNAs

The mechanism of action of lncRNAs is complex and diverse, involving multiple
biological processes, such as messenger RNA (mRNA) synthesis, mRNA processing, and
protein expression [17]. Furthermore, the special structure and subcellular localization of
lncRNAs enable them to interact with a variety of molecules [18–20] and to play a biological
role through transcription regulation, epigenetic modification, and post-transcriptional
levels (Figure 2) [21–23].
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3.1. Role of LncRNAs at the Transcriptional Level

Studies have shown that lncRNAs can act as both cis-acting and trans-acting regulators
of gene expression [24,25]. For example, lincRNA-Cox2 can regulate the expression of its ad-
jacent gene prostaglandin-endoperoxide synthase (Ptgs2) through an elncRNA mechanism,
and can also regulate the expression of innate immune genes interleukin-5 (IL-5), leukemia
inhibitory factor (LIF), and interleukin-17 (IL-17) by a trans-acting mechanism, thereby
affecting the immune process [26–29]. As transcriptional regulators of adjacent genes,
the elncRNAs have a strong function in regulating gene expression [30–32]. In addition,
lncRNAs can exert signal transduction and induction functions. For example, lncRNA X
inactive specific transcript (XIST) can be transcribed and wrapped on the inactivated X
chromosome, thereby inhibiting the gene expression level of the entire chromosome [33].
Moreover, lncRNAs can serve as a scaffold or bridge for chromatin modifications to play a
regulatory role, such as linc-RAM, which, when directly bound to myogenic differentia-
tion (MyoD), promotes the assembly of a MyoD-Baf60c-Brg1 complex, thereby enhancing
myogenic differentiation [34].

3.2. Role of LncRNAs in Epigenetic Modification

The biological processes in the body cannot be fully understood from a genetic per-
spective alone, but are affected by both genetic and environmental factors. Thus, epigenetic
modifications affect growth and development, metabolism, and disease states through DNA
methylation, chromatin remodeling, or histone modification, without changing the DNA
sequence [35–37]. XIST, the first discovered lncRNA, can recruit chromatin remodeling com-
plexes PRC2 and participate in the amino acid methylation modification of histone H3, which
eventually results in the inactivation of the X chromosome and mediates gender-related
diseases [38]. In addition, lncRNA ecCEBPA has been found to act on the transferase DNA
methyltransferase 1 (DNMT1), thereby changing the methylation of the CCAAT/enhancer
binding protein alpha (CEBPA) gene and increasing its expression level, which may make
DNA methylation modification a novel therapeutic target for human diseases [39].
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3.3. Post-Transcriptional Regulation through LncRNAs

LncRNAs can affect the initiation and elongation cycle of protein translation, leading to
either the stimulation or inhibition of mRNA translation. Studies have shown that lncRNAs
can form double-stranded RNA complexes with target mRNA through complementary
base pairing, thereby affecting the splicing, translation, and degradation of mRNAs [28].
LncRNA-p21 can inhibit mRNA translation by stimulating the translation suppressor Rck
to complementarily bind to the target mRNA [40]. In addition, lncRNA can also serve as a
molecular sponge for miRNAs, competitively adsorbing miRNAs to prevent them from
binding to and inhibiting the translation of their target mRNAs, thereby promoting the
expression of target genes [41–43]. For instance, studies have shown that lncRNA MEG3
plays an anti-inflammatory role in ankylosing spondylitis by inhibiting the expression of
inflammatory factors through the sponge adsorption of miR-146a [43].

4. Research Progress on the Role of LncRNAs in Bovine Mastitis

The genetic factors and environmental factors jointly affect the occurrence and devel-
opment of bovine mastitis [44]. Among them, genetic factors are directly related to the
susceptibility and disease resistance of mastitis. Therefore, an in-depth analysis of the molec-
ular mechanism of bovine mastitis on a genetic level can lay the foundation for the breeding
of new lines of cows that will be resistant to mastitis. LncRNAs are novel regulators discov-
ered in recent years that play a role in regulating the body’s immune system. As mentioned
above, the differential expression of lncRNAs can regulate the inflammatory disease process
in humans and model animals. However, the conservation of lncRNA sequences between
different species is low, and the sequence of target genes for regulation also varies among
different species, which makes the results of the research on model animals and humans
difficult to apply directly to cows [23,45]. Therefore, an in-depth study of the mechanism
of action of lncRNAs in bovine mastitis is still needed. Compared with humans or model
animals, such as mice and rats, studies on lncRNAs related to mastitis in cows have been
lagging behind. So far, these concern only the screening of differentially expressed lncRNAs
and the study of the molecular mechanism of action of a few specific lncRNAs.

4.1. Screening of Differentially Expressed LncRNAs in Bovine Mastitis

High-throughput sequencing technology has revealed a high correlation between
lncRNA expression and various diseases, including mastitis, which has opened up new
avenues to analyze the pathogenic and disease-resistant mechanisms of bovine mastitis.
In recent years, in general, lncRNAs with differential expression (including specific ex-
pression) or elevated expression in inflammatory diseases were selected as the targets of
research into the molecular mechanism of disease. At present, only a few studies have
reported the screening of differentially expressed lncRNAs for bovine mastitis using RNA-
seq technology. Tong et al. [46] found four up-regulated and five down-regulated lncRNAs
in milk exosomes from cows before and after infection with S. aureus. It is worth mention-
ing that these differentially expressed lncRNAs are closely associated with the S. aureus
invasion of mammary epithelial cells, and may be related to the way cells communicate
with each other and the defense mechanisms or pathways involved in inflammatory re-
sponses [46]. In addition, 184 lncRNAs were identified from five RNA-seq datasets from
bovine mammary glands, of which, TCONS_00071212 was located in the clinical mastitis
quantitative trait locus region [47]. In addition, another TCONS_0007853 could be involved
in the development of the bovine mammary gland via the Rap1 signaling pathway and
MAPK signaling pathway [47]. Wang et al. [48] identified 53 differentially expressed
lncRNAs in primary bovine mammary alveolar cells (MAC-T) induced by E. coli and
S. aureus using high-throughput sequencing, of which, four lncRNAs, i.e., TCONS_00048953,
TCONS_00048966, TCONS_00049002, and TCONS_00025496, were located in the clinical
mastitis-related quantitative trait locus region. Again, Ozdemir and Altun [49] identi-
fied 392 novel lncRNAs in bovine mammary gland tissues. Furthermore, 57 lncRNAs (of
which, 19 were novel lncRNAs) were differentially expressed between normal mammary
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gland tissues and mammary gland tissues infected by Mycoplasma bovis, and these were
involved in the regulation of important biological pathways, including PI3K-Akt, NF-κB,
and mTOR [49], implying functions in cancer, immunity, and apoptosis. In addition, 21
differentially expressed lncRNAs (including 13 up-regulated and 8 down-regulated) were
found in S. aureus-infected MAC-T cells, and a bioinformatics analysis revealed that the
above differentially expressed lncRNAs might be involve in NF-κB and TNF signaling
pathways [50]. More recently, in the transcriptional profiling of exosomes, Chen et al. [51]
found 19 differentially expressed lncRNAs from S. aureus-treated and untreated MAC-T
cells, and these lncRNAs participated in inflammation-related signal pathways (i.e., the
Notch, TNF, and NF-κB signal pathway). At the same time, Wang et al. [52] also found 112
differentially expressed lncRNAs in lipopolysaccharides (LPS)-treated bovine mammary
epithelial cells (bMECs) after 0, 6, and 12 hours that might be involved in the regulation of
Notch, NF-κB, mTOR, MAPK, PI3K-Ak, and other inflammation-related signal pathways.
In brief, a comprehensive comparison of the differential expression of lncRNAs in the
literature revealed that the differential expression levels of various lncRNAs in different
studies were not the same, speculating that lncRNAs may be sensitive regulators of bovine
mastitis, and that their expression levels may be related to the individual status of the
cow, the type of infectious bacteria, the infective dose, and the time of infection. At the
same time, different types of lncRNAs may be differentially expressed at different stages
of infection by pathogenic microorganisms in order to participate in the regulation of the
entire range and intensity of the immunological defense mechanisms.

4.2. Molecular Function of LncRNAs in Bovine Mastitis

Compared with the current research on the regulation of human and mouse inflam-
matory diseases by lncRNAs, the studies on the regulatory mechanism of bovine mastitis
by lncRNAs are still lagging behind. So far, only a few lncRNAs (including lncRNA H19,
lncRNA TUB, lncRNA XIST, and LRRC75A-AS1) have been studied with respect to their
role in bovine mastitis.

4.2.1. LncRNA H19

LncRNA H19 is a previously discovered lncRNA [53] whose biological functions
include roles in cardiovascular diseases [54] and abdominal aortic aneurysms [55], as well as
other human diseases [56,57]. In the mammary gland inflammation of cows, Yang et al. [58]
found that the expression levels of H19 in bovine mammary gland tissue with mastitis
and lipoteichoic acid (LTA) or LPS-induced MAC-T cells were up-regulated. In addition, it
has been shown that the overexpression of TGF-β1 in MAC-T cells caused up-regulation
of the expression of lncRNA H19 through the PI3K-AKT signal pathway. Subsequently,
an increased expression of H19 can induce epithelial–mesenchymal transition (EMT),
which would result in a decreased milk production in dairy cows (Figure 3) [58]. During
chronic inflammation, bovine mammary epithelial cells undergo EMT and turn into muscle
fiber cells, thereby secreting a large amount of the extracellular matrix (ECM), causing its
excessive accumulation [59]. At the same time, the continuous secretion of cytokines and
chemokines by inflammatory cells deepens the inflammatory infiltration, leading to the
formation of fibrosis [60]. These studies revealed the regulatory mechanism of H19 in the
process of bovine mammary fibrosis. It will be interesting to see whether research analyzing
the molecular mechanism of bovine mastitis and the relationship between mastitis and
fibrosis will lead to a breakthrough in its treatment. In addition, Li et al. [61] found that
lncRNA H19 can promote the proliferation of MAC-T cells and the expression of β-casein
and tight junction (TJ)-related proteins (claudin-1, occludin, and ZO-1). Moreover, lncRNA
H19 can also inhibit the adhesion of S. aureus to cells, which is critical in blocking infection
by these pathogenic bacteria and in promoting the effective recovery of mammary gland
tissues of diseased cows. At the same time, the overexpression of lncRNA H19 results in the
activation of NF-κB inflammatory pathways in MAC-T cells and the release of inflammatory
factors, including TNF-α, IL-6, CXCL2, and CCL5. This results in a rapid clearing of the
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pathogenic factors and promotes the return of the body to a steady state [61]. In summary,
lncRNA H19 plays an active role in inhibiting bacterial infection and restoring the normal
function of inflamed tissue.
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4.2.2. LncRNA-TUB

Bovine mastitis often causes a series of pathological changes in the body. Similar to
H19, lncRNA-TUB can also promote EMT in MAC-T cells. Wang et al. [48] identified a new
type of lncRNA from an E. coli and S. aureus-induced MAC-T cell inflammatory model,
named lncRNA-TUB. That study found that lncRNA-TUB was up-regulated in the above
mastitis cell model [48]. The knock-out of lncRNA-TUB resulted in a reduction in the
proliferation and migration ability of MAC-T cells and in the secretion of β-casein, and
resulted in the up-regulation of IL-1β and IL-8 and down-regulation of TNF-α and IL-6 [48].
In addition, the deletion of lncRNA-TUB resulted in the down-regulation of its target
gene TUBA1C and the up-regulation of TGF-β1, causing EMT in MAC-T cells [48]. It is
worth noticing that the increased secretion of TGF-β1 activated the TGF-β1/Smad pathway
and promoted EMT (Figure 3) [62]. As mentioned above, mastitis caused MAC-T cells to
undergo EMT and to display ECM accumulation, and excessive ECM will aggravate
the inflammatory response, which, in turn, induces the secretion of chemokines and
inflammatory factors, further aggravating EMT in a vicious cycle, then ultimately causing
fibrosis of mammary tissue [60]. Therefore, the discovery of lncRNA-TUB can provide a
useful reference for studying bovine mastitis and fibrosis caused by mastitis.

4.2.3. LncRNA XIST

XIST is a 17 kb lncRNA transcribed from the inactivated X chromosome that has been
studied widely [63,64]. XIST is involved in the regulation of cancer and gender-related
diseases, although its molecular mechanism is very complex [33,64]. Ma et al. [65] have
shown that an S. aureus or E. coli-induced inflammatory response in MAC-T cells resulted
in the rapid activation of the intracellular NF-κB signaling pathway, thereby promoting
the production of NLRP3 inflammasome and pro-inflammatory cytokines. However, the
activated NF-κB pathway also promoted a significant increase in the expression of lncRNA
XIST. The highly expressed lncRNA XIST inhibited the activation of the NF-κB inflammatory
pathway by a negative feedback mechanism, which, in turn, inhibited the formation of the
NLRP3 inflammasome and the secretion of pro-inflammatory cells factors (TNF-α, IL-1β,
and IL-6), resulting in the alleviation of the cellular inflammatory response (Figure 4) [65]. In
addition, it was also found that, under inflammatory conditions, lncRNA XIST can regulate
the NF-κB inflammation pathway through negative feedback to inhibit apoptosis, promote
cell proliferation, and maintain cell viability (Figure 4) [65]. Thus, XIST can mediate the
inflammatory process of bovine MAC-T cells through the NF-κB/NLRP3 inflammasome
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axis. Bovine mastitis is a defense response of the body against foreign pathogens that can
lead to the up-regulation or down-regulation of lncRNA expression. However, excessive
inflammation can cause damage to the body. Therefore, some lncRNAs positively or
negatively regulate the inflammatory process to maintain the body’s homeostasis [66–68].
Moreover, lncRNA MALAT1 has been found to produce a similar regulatory mechanism in
the inflammatory response of human monocyte macrophages [69].
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4.2.4. LRRC75A-AS1

Studies have shown that E. coli or LPS-induced MAC-T cells can activate the NF-κB
pathway and produce inflammatory factors. A large number of inflammatory factors can
destroy the structure of tight junctions (TJs), and can promote the infectious ability of
pathogenic microorganisms, thus aggravating the cellular inflammatory response, forming
a positive feedback loop [70]. LRRC75A-AS1 is a lncRNA of approximately 4kb, transcribed
from the antisense strand of leucine-rich repeat-containing protein 75A (LRRC75A), which
can bind to the coding sequence of LRRC75A mRNA to protect LRRC75A from nucle-
ase degradation [71]. It has been shown that the expression levels of LRRC75A-AS1 in
E. coli-treated MAC-T cells, E. coli-treated primary mammary epithelial cells, LPS-treated
MAC-T cells, and mammary tissue with mastitis were all significantly decreased compared
with control groups [71]. The down-regulation of LRRC75A-AS1 resulted in a decrease
in the expression level of LRRC75A, which, in turn, increased the expression levels of
TJ structure-related proteins (claudin-1, occludin, and ZO-1), thereby protecting the TJ
structure from destruction. As a result, the cell monolayer permeability was reduced,
which ultimately reduced the adhesion and invasion of S. aureus (Figure 5) [71]. At the
same time, knocking out LRRC75A-AS1 results in a decrease in the expression of nuclear
phosphorylated p65, alleviating the inflammation induced by E. coli [71]. Therefore, it
was speculated that, during the onset of bovine mastitis caused by E. coli or S. aureus, the
mammary tissue is protected from excessive inflammatory damage by the down-regulation
of LRRC75A-AS1 expression.



Animals 2022, 12, 1059 8 of 11Animals 2022, 12, x 8 of 11 
 

 
Figure 5. Hypothesis that LRRC75A-AS1 regulates the immune response of MAC-T cells. 

4.2.5. Other LncRNAs 
In recent years, a small number of lncRNAs have been discovered that can regulate 

the proliferation and vitality of bMECs [61,65]. Studies have shown that NON-
BTAT017009.2 is a key molecule in the miR-21-3p regulatory network that can specifically 
bind to miR-21-3p and indirectly regulate the expression of insulin-like growth-factor-
binding protein 5 (IGFBP5), resulting in a decreased vitality and proliferation of bMECs 
and reduced lactation performance of dairy cows [72]. Yang et al. [73] found that two 
lncRNAs (TCONS_00000352 and TCONS_00040268) had significant inhibitory effects on 
the proliferation and viability of bMECs. At the same time, they also found that two other 
lncRNAs (TCONS_00015196 and TCONS_00087966) could improve the proliferation and 
vitality of bMECs through the sponge adsorption of miR-221. Moreover, it was found that, 
after interfering with these four lncRNAs, the expression of cell-proliferation-related 
genes (cyclin D1 (CCND1), cyclin B1 (CCNB1), cyclin-dependent kinase inhibitor 1A 
(CDKN1A), cyclin-dependent kinase inhibitor 1B (CDKN1B), cyclin E1 (CCNE1), and cy-
clin-dependent kinase 2 (CDK2)) had changed in varying degrees [73]. The above studies 
explored the regulatory role of lncRNAs in bovine mammary gland development and the 
lactation cycle. However, whether these lncRNAs were involved in bovine mastitis or in 
the repair of mammary tissue damage in dairy cows remains to be determined. 

Additionally, of most interest was the regulatory network of lncRNA and target 
genes in bovine mastitis. Tucker et al. [74] found that certain lncRNAs (including NON-
BTAT027932.1 and XR_003029725.1) participated in the lipopolysaccharide-mediated sig-
naling pathway to regulate bovine mastitis, which may act as biomarkers for molecular 
breeding and biotherapy. 

5. Conclusions and Future Perspectives 
Bovine mastitis is difficult to cure since the molecular mechanism of its pathogenesis 

and development is very complex. As key regulators of the expression of immune-related 
genes, lncRNAs have been shown to play an important role in mastitis in cows. In recent 
years, high-throughput sequencing and other related technologies have been used to 
screen and identify a large number of lncRNAs implicated in bovine mastitis. In other 
words, scientific research on the role of lncRNAs in the susceptibility and resistance to 
bovine mastitis shows huge potential. However, studies on the molecular mechanism of 
the regulation of the inflammation of bovine mammary glands by lncRNAs have been 
highly lacking. So far only a few (less than 4%) of differentially expressed lncRNAs, such 
as lncRNA H19, lncRNA-TUB, lncRNA XIST, and LRRC75A-AS1, have been functionally 
studied, and the regulation mechanisms of many more differentially expressed lncRNAs 
on their target genes and mammary inflammation need to be further investigated, which 

Figure 5. Hypothesis that LRRC75A-AS1 regulates the immune response of MAC-T cells.

4.2.5. Other LncRNAs

In recent years, a small number of lncRNAs have been discovered that can regulate the
proliferation and vitality of bMECs [61,65]. Studies have shown that NONBTAT017009.2 is a
key molecule in the miR-21-3p regulatory network that can specifically bind to miR-21-3p and
indirectly regulate the expression of insulin-like growth-factor-binding protein 5 (IGFBP5),
resulting in a decreased vitality and proliferation of bMECs and reduced lactation perfor-
mance of dairy cows [72]. Yang et al. [73] found that two lncRNAs (TCONS_00000352 and
TCONS_00040268) had significant inhibitory effects on the proliferation and viability of
bMECs. At the same time, they also found that two other lncRNAs (TCONS_00015196
and TCONS_00087966) could improve the proliferation and vitality of bMECs through the
sponge adsorption of miR-221. Moreover, it was found that, after interfering with these four
lncRNAs, the expression of cell-proliferation-related genes (cyclin D1 (CCND1), cyclin B1
(CCNB1), cyclin-dependent kinase inhibitor 1A (CDKN1A), cyclin-dependent kinase inhibitor
1B (CDKN1B), cyclin E1 (CCNE1), and cyclin-dependent kinase 2 (CDK2)) had changed in
varying degrees [73]. The above studies explored the regulatory role of lncRNAs in bovine
mammary gland development and the lactation cycle. However, whether these lncRNAs
were involved in bovine mastitis or in the repair of mammary tissue damage in dairy cows
remains to be determined.

Additionally, of most interest was the regulatory network of lncRNA and target genes in
bovine mastitis. Tucker et al. [74] found that certain lncRNAs (including NONBTAT027932.1
and XR_003029725.1) participated in the lipopolysaccharide-mediated signaling pathway to
regulate bovine mastitis, which may act as biomarkers for molecular breeding and biotherapy.

5. Conclusions and Future Perspectives

Bovine mastitis is difficult to cure since the molecular mechanism of its pathogenesis
and development is very complex. As key regulators of the expression of immune-related
genes, lncRNAs have been shown to play an important role in mastitis in cows. In re-
cent years, high-throughput sequencing and other related technologies have been used
to screen and identify a large number of lncRNAs implicated in bovine mastitis. In other
words, scientific research on the role of lncRNAs in the susceptibility and resistance to
bovine mastitis shows huge potential. However, studies on the molecular mechanism of
the regulation of the inflammation of bovine mammary glands by lncRNAs have been
highly lacking. So far only a few (less than 4%) of differentially expressed lncRNAs, such
as lncRNA H19, lncRNA-TUB, lncRNA XIST, and LRRC75A-AS1, have been functionally
studied, and the regulation mechanisms of many more differentially expressed lncRNAs
on their target genes and mammary inflammation need to be further investigated, which
can help to clarify the molecular regulatory network of lncRNA in bovine mastitis. System-
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atically elucidating the molecular network of differentially expressed lncRNAs implicated
in bovine mastitis can provide new research thoughts for the development of molecular
diagnosis and treatment technology for bovine mastitis and molecular breeding of dairy
cows resistant to mastitis.
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