
Mapping information-rich genotype-phenotype landscapes with 
genome-scale Perturb-seq

Joseph M. Replogle1,2,3,4,5,14, Reuben A. Saunders2,3,4,5,14, Angela N. Pogson3,4,5, Jeffrey 
A. Hussmann3,4,5, Alexander Lenail4,5, Alina Guna5, Lauren Mascibroda6, Eric J. Wagner6,7, 
Karen Adelman8, Gila Lithwick-Yanai9, Nika Iremadze9, Florian Oberstrass9, Doron 
Lipson9, Jessica L. Bonnar3,4,5, Marco Jost3,10, Thomas M. Norman11,*, Jonathan S. 
Weissman3,4,5,12,13,15,*

1Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 
94158, USA

2Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, 
USA

3Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 
San Francisco, CA 94158, USA

4Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, 
USA

5Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, 
MA 02142, USA

6Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch at 
Galveston, Galveston, TX 77555, USA

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
*Correspondence: normantm@mskcc.org (T.M.N.), weissman@wi.mit.edu (J.S.W.).
AUTHOR CONTRIBUTIONS
J.M.R., R.A.S., T.M.N., and J.S.W. were responsible for the conception, design, and interpretation of the experiments and wrote 
the manuscript. J.M.R. led the Perturb-seq screens. J.M.R. and T.M.N. led the Perturb-seq data analysis. R.A.S. led the functional 
studies. A.N.P. generated the CRISPRi RPE1 cell line and optimized Perturb-seq protocols. J.A.H. assisted with data analysis. A.L. 
designed the interactive web visualization. A.G. produced preliminary data. E.J.W. and L.M. performed and supervised Drosophila 
Integrator biochemistry. K.A. supervised PRO-seq library preparation. G.L.-Y., N.I., F.O., and D.L. sequenced libraries on the Ultima 
Genomics platform. J.L.B. and M.J. cloned pJB108 and validated the ZIM3 KRAB domain. J.M.R. and R.A.S. helped obtain funding 
for experiments. All authors provided feedback on the manuscript.

SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.1016/j.cell.2022.05.013.

DECLARATION OF INTERESTS
J.M.R. consults for Maze Therapeutics and is a consultant for and equity holder in Waypoint Bio. R.A.S. consults for Maze 
Therapeutics. K.A. is a consultant for Syros Pharmaceuticals, is on the SAB of CAMP4 Therapeutics, and received research funding 
from Novartis not related to this work. G.L.-Y., N.I., F.O., and D.L. are employees and shareholders of Ultima Genomics. M.J. 
consults for Maze Therapeutics and Gate Bioscience. T.M.N. consults for Maze Therapeutics. J.S.W. declares outside interest in 5AM 
Ventures, Amgen, Chroma Medicine, KSQ Therapeutics, Maze Therapeutics, Tenaya Therapeutics, Tessera Therapeutics, and Third 
Rock Ventures. The Regents of the University of California with R.A.S., T.M.N., M.J., and J.S.W. as inventors have filed patent 
applications related to CRISPRi/a screening and Perturb-seq.

INCLUSION AND DIVERSITY
One or more of the authors of this paper self-identifies as a member of the LGBTQ+ community.

HHS Public Access
Author manuscript
Cell. Author manuscript; available in PMC 2022 August 16.

Published in final edited form as:
Cell. 2022 July 07; 185(14): 2559–2575.e28. doi:10.1016/j.cell.2022.05.013.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by/4.0/


7Department of Biochemistry & Biophysics, University of Rochester School of Medicine and 
Dentistry, Rochester, NY 14642, USA

8Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard 
Medical School, Boston, MA 02115, USA

9Ultima Genomics, Newark, CA 94560, USA

10Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA

11Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan 
Kettering Cancer Center, New York, NY 10065, USA

12David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 
Cambridge, MA 02142, USA

13Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA

14These authors contributed equally

15Lead contact

SUMMARY

A central goal of genetics is to define the relationships between genotypes and phenotypes. 

High-content phenotypic screens such as Perturb-seq (CRISPR-based screens with single-cell 

RNA-sequencing readouts) enable massively parallel functional genomic mapping but, to date, 

have been used at limited scales. Here, we perform genome-scale Perturb-seq targeting all 

expressed genes with CRISPR interference (CRISPRi) across >2.5 million human cells. We use 

transcriptional phenotypes to predict the function of poorly characterized genes, uncovering new 

regulators of ribosome biogenesis (including CCDC86, ZNF236, and SPATA5L1), transcription 

(C7orf26), and mitochondrial respiration (TMEM242). In addition to assigning gene function, 

single-cell transcriptional phenotypes allow for in-depth dissection of complex cellular phenomena

—from RNA processing to differentiation. We leverage this ability to systematically identify 

genetic drivers and consequences of aneuploidy and to discover an unanticipated layer of stress-

specific regulation of the mitochondrial genome. Our information-rich genotype-phenotype map 

reveals a multidimensional portrait of gene and cellular function.

Graphical abstract
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In brief

Unbiased, genome-scaling profiling of genetic perturbations via single-cell RNA sequencing 

enables systematic assignment of function to genes and indepth study of complex cellular 

phenotypes such as aneuploidy and stress-specific regulation of the mitochondrial genome.

INTRODUCTION

Mapping the relationship between genetic changes and their phenotypic consequence is 

critical to understanding gene and cellular function. This mapping is traditionally carried 

out in one of two ways: a phenotype-centric, ‘‘forward genetic’’ approach that reveals the 

genetic changes that drive a phenotype of interest or a gene-centric, ‘‘reverse genetic’’ 

approach that catalogs the diverse phenotypes caused by a defined genetic change.

Recent technological developments have advanced both forward and reverse genetic efforts 

(Camp et al., 2019). CRISPR tools now enable the deletion, mutation, repression, or 

activation of genes with ease (Doench, 2018). In forward genetic screens, CRISPR-Cas 

systems can be used to generate pools of cells with diverse genetic perturbations, which 

can then be subjected to selection followed by sequencing to assign phenotypes to 

genetic perturbations. Forward genetic screens are powerful tools for the identification of 

cancer dependencies, essential cellular machinery, differentiation factors, and suppressors 

of genetic diseases (Kramer et al., 2018; Tsherniak et al., 2017; Wang et al., 2021, 2015). 

In parallel, dramatic improvements in molecular phenotyping now allow for single-cell 
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readouts of epigenetic, transcriptomic, proteomic, and imaging information (Stuart and 

Satija, 2019). Applied to reverse genetics, single-cell profiling can refine the understanding 

of how select genetic perturbations affect cell types and cell states.

However, both phenotype-centric and gene-centric approaches suffer conceptual and 

technical limitations. Pooled forward genetic screens typically use low-dimensional 

phenotypes such as growth or marker expression for selection. The use of simple phenotypes 

can conflate genes acting via different mechanisms, requiring extensive follow-up studies 

to disentangle genetic pathways (Przybyla and Gilbert, 2021). Additionally, in forward 

genetics, serendipitous discovery is constrained by the prerequisite of selecting phenotypes 

prior to screening. On the other hand, reverse genetic approaches enable the study of 

multidimensional and complex phenotypes but have typically been restricted in scale to 

rationally chosen targets, limiting systematic comparisons.

As a solution to these problems, single-cell CRISPR screens simultaneously read out the 

genetic perturbation and high-dimensional phenotype of individual cells in a pooled format, 

thus combining the throughput of forward genetics with the rich phenotypes of reverse 

genetics. Although these approaches initially focused on transcriptomic phenotypes (e.g., 

Perturb-seq, CROP-seq) (Adamson et al., 2016; Datlinger et al., 2017; Dixit et al., 2016; 

Jaitin et al., 2016; Replogle et al., 2020), technical advances have enabled their application 

to epigenetic (Rubin et al., 2019), imaging (Feldman et al., 2019), or multimodal phenotypes 

(Mimitou et al., 2019). From these rich data, it is possible to identify genetic perturbations 

that cause a specific behavior as well as to catalog the spectrum of phenotypes associated 

with each genetic perturbation. Despite the promise of single-cell CRISPR screens, their use 

has generally been limited to studying at most a few hundred genetic perturbations chosen to 

address predefined biological questions.

We reasoned that there would be unique value to genome-scale single-cell CRISPR screens. 

For example, although the number of perturbations scales linearly with experimental cost, 

the number of pairwise comparisons in a screen—and thus its utility for unsupervised 

classification of gene function—scales quadratically. Similarly, in large-scale screens, the 

diversity of perturbations allows exploration of the range of cell states that can be revealed 

by rich phenotypes. Additionally, as many human genes are well characterized, these 

genes serve as natural controls to anchor interpretation of comprehensive datasets. Finally, 

genome-scale experiments could help address fundamental questions, such as what fraction 

of genetic changes elicit transcriptional phenotypes and how transcriptional responses differ 

between cell types, with implications for understanding organizing principles of cells.

Here, we report results from the first genome-scale Perturb-seq screens. We use a compact, 

multiplexed CRISPR interference (CRISPRi) library to assay thousands of loss-of-function 

genetic perturbations with single-cell RNA sequencing (scRNA-seq) in chronic myeloid 

leukemia (CML) (K562) and retinal pigment epithelial (RPE1) cell lines. Leveraging 

the scale and diversity of these perturbations, we show that Perturb-seq can be used to 

study numerous complex cellular phenotypes—from RNA splicing to differentiation to 

chromosomal instability (CIN)—and discover gene functions. We then invert our analysis 

to focus on regulatory networks and uncover unanticipated stress-specific regulation of the 
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mitochondrial genome. In sum, we use Perturb-seq to reveal a multidimensional portrait of 

cellular behavior, gene function, and regulatory networks that advances the goal of creating 

comprehensive genotype-phenotype maps.

RESULTS

A multiplexed CRISPRi strategy for genome-scale Perturb-seq

Perturb-seq uses scRNA-seq to concurrently read out the CRISPR single-guide RNAs 

(sgRNAs) (i.e., genetic perturbation) and transcriptome (i.e., high-dimensional phenotype) 

of single cells in a pooled format (Figure 1A). We sought to exploit and understand the 

rich information content of transcriptomic phenotypes by studying a comprehensive set 

of genetic perturbations in a given cell type. To enable genome-scale Perturb-seq, we 

considered key parameters that would increase scalability and data quality, such as the 

genetic perturbation modality and sgRNA library.

Perturb-seq is compatible with a range of CRISPR-based perturbations. We elected to use 

CRISPRi for several reasons: (1) Compared with gain-of-function perturbations, a higher 

proportion of loss-of-function perturbations yield phenotypes in growth and chemical-

genetic screens, especially for members of protein complexes (Gilbert et al., 2014; Horlbeck 

et al., 2016). (2) CRISPRi allows direct measurement of the efficacy of genetic perturbation

—knockdown—by scRNA-seq. Exploiting this feature allowed us to target each gene 

in our library with a single element and empirically exclude unperturbed genes from 

downstream analysis. (3) CRISPRi tends to yield more homogeneous perturbation than 

CRISPR knockout, which can generate active in-frame indels (Smits et al., 2019). The 

relative homogeneity of CRISPRi reduces selection for unperturbed cells, especially when 

studying essential genes. (4) Unlike CRISPR knockout, CRISPRi does not lead to activation 

of the DNA damage response which can alter transcriptional signatures (Haapaniemi et al., 

2018).

We first optimized our CRISPRi sgRNA libraries for scalability. To maximize CRISPRi 

efficacy, we used multiplexed CRISPRi libraries in which each element contains two 

distinct sgRNAs targeting the same gene (Table S1; Replogle et al., 2020). To avoid 

low representation of sgRNAs targeting essential genes, we performed growth screens 

and, during oligonucleotide library synthesis, overrepresented constructs that caused strong 

growth defects (Figures S1A–S1D).

Next, we devised a three-pronged Perturb-seq screening approach encompassing multiple 

time points and cell types (Figure 1A). As a principal cell line, we studied CML K562 cells 

engineered to express the CRISPRi effector dCas9-KRAB (Gilbert et al., 2014). In this cell 

line, we performed two Perturb-seq screens: one targeting all expressed genes sampled 8 

days after lentiviral transduction (n = 9,866 genes) and another targeting common essential 

genes sampled 6 days after transduction (n = 2,057 genes). As a secondary cell line, we used 

RPE1 cells engineered to express dCas9 fused to a ZIM3-derived KRAB domain, which 

was recently shown to improve CRISPRi transcriptional repression (Alerasool et al., 2020), 

sampled 7 days after transduction. In contrast to K562 cells, RPE1 cells are a non-cancerous, 

hTERT-immortalized, near-euploid, adherent, and p53-positive cell line.
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We conducted all screens with 10x Genomics droplet-based 3′ scRNA-seq and direct 

sgRNA capture (Replogle et al., 2020). After excluding cells bearing sgRNAs targeting 

different genes, which are an expected byproduct of lentiviral recombination between 

sgRNA cassette or doublet encapsulation during scRNA-seq, we retained >2.5 million 

high-quality cells with a median coverage of >100 cells per perturbation (Figures S1E–S1G; 

Table S2). We observed a median target knockdown of 85.5% in K562 cells and 91.6% in 

RPE1 cells (Figure 1B), confirming the efficacy of our CRISPRi libraries and the fidelity of 

sgRNA assignment.

A robust computational framework to detect transcriptional phenotypes

The scale of our experiment provided a unique opportunity to ask what fraction of genetic 

perturbations cause a transcriptional phenotype. Significant transcriptional phenotypes can 

take many forms, ranging from altered occupancy of cell states to focused changes in the 

expression of a small number of target genes. To contend with this diversity, we created a 

robust framework capable of detecting transcriptional changes. Our experimental design 

included many control cells bearing diverse non-targeting sgRNAs. These allowed for 

internal z-normalization of expression measurements to correct for batch effects resulting 

that resulted from parallelized scRNA-seq and sequencing (Data S1 [Figure i]). As Perturb-

seq captures single-cell genetic perturbation identities in a pooled format, we can use 

statistical approaches that treat cells as independent samples. In general, we chose to use 

conservative, nonparametric statistical tests to detect transcriptional changes rather than 

making specific assumptions about the underlying distribution of gene expression levels.

First, we examined global transcriptional changes using a permuted energy distance test (see 

STAR Methods). We compared cells bearing each genetic perturbation with control cells 

at the level of principal components (approximating global features like cell state and gene 

expression programs) to test whether cells carrying a given genetic perturbation could have 

been drawn from the control population. By this metric, 2,987 of 9,608 genetic perturbations 

targeting a primary transcript (31.1%) compared with 11 of 585 controls (1.9%) caused a 

significant transcriptional phenotype in K562 cells.

Although sensitive, the energy distance test assays global shifts in expression without 

providing insight into which specific transcripts are altered. To detect individual 

differentially expressed genes (DEGs), we applied the Anderson-Darling (AD) test that is 

sensitive to transcriptional changes in a subset of cells, enabling us to find differences even 

with incomplete penetrance. By the AD test, 2,935 of 9,608 genetic perturbations targeting 

a primary transcript (30.5%) compared with 12 of 585 controls (2.1%) caused >10 DEGs in 

K562 cells. These results were well-correlated between time points and cell types (Figures 

S2A and S2B; Tables S2) and concordant with the energy distance test (78.7% concordance 

by Jaccard index).

We then explored features of genetic perturbations that predict the likelihood of causing a 

transcriptional phenotype. The strength of transcriptional response was correlated with the 

growth phenotype (Spearman’s ρ = −0.51) with 86.6% of essential genetic perturbations 

leading to a significant transcriptional response (Figure 1C; Figures S2C and S2D). 

Nonetheless, a substantial number of genetic perturbations that cause a transcriptional 
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phenotype have a negligible growth phenotype (n = 771; Figure S2E), indicating that 

many genetic perturbations influence cell state but not growth or survival. Genes whose 

knockdown caused strong transcriptional phenotypes were more likely to be highly 

expressed, to have an annotated subcellular localization, and to be components of core 

protein complexes (Figures S2F–S2L).

As some of our genetic perturbations did not yield strong on-target knockdown, our 

estimate of the fraction of genetic perturbations that cause a transcriptional phenotype is 

likely a lower bound. Although some phenotypes may result from off-target effects, Perturb-

seq allows direct detection of off-target activities such as neighboring gene knockdown. 

Consistent with earlier studies (Rosenbluh et al., 2017), ~7.5% of perturbations caused 

knockdown of a neighboring gene, but neighbor gene knockdown was not enriched in 

perturbations with a negligible growth defect that produced a transcriptional phenotype 

(Figure S3).

Annotating gene function from transcriptional phenotypes

Previous Perturb-seq screens focused on targeted sets of perturbations, such as genes 

identified in forward genetic screens. Our screen targeting all expressed genes in K562 

cells presented an opportunity to assess how well transcriptional phenotypes can resolve 

gene function when used in an unbiased manner.

We focused on a subset of 1,973 perturbations that had strong transcriptional phenotypes 

(Figure 2A). Because related perturbations could have different magnitudes of effect, 

we used the correlation between mean expression profiles as a scale-invariant metric of 

similarity. To assess the extent to which correlated expression profiles between genetic 

perturbations indicated common function, we compared our results with two curated sources 

of biological relationships. First, among the 1,973 targeted genes, there were 327 protein 

complexes from CORUM3.0 with at least two thirds of the complex members present, 

representing 14,165 confirmed protein-protein interactions (Giurgiu et al., 2019). The 

corresponding expression profile correlations were stronger (median r = 0.61) than the 

background distribution of all possible gene pairs (median r = 0.10) (Figure 2B). Second, 

high correlation between expression profiles was strongly associated with high STRING 

protein-protein interaction confidence scores (Figure 2C; Szklarczyk et al., 2019).

We next performed an unbiased clustering of similar perturbations within the dataset. 

We identified 64 discrete clusters and annotated their function using CORUM, STRING, 

and manual searches. To visualize the dataset, we constructed a minimum distortion 

embedding that places genes with correlated expression profiles nearby (Figure 2D). The 

clusters and embedding showed clear organization by biological function spanning an array 

of processes including: chromatin modification; transcription; mRNA splicing, capping, 

polyadenylation, and turnover; nonsense-mediated decay; translation; posttranslational 

modification, trafficking, and degradation of proteins; central metabolism; mitochondrial 

transcription and translation; DNA replication; cell division; microRNA biogenesis; and 

major signaling pathways (Table S3).
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Next, we compared the similarity of transcriptional phenotypes between all three Perturb-seq 

datasets. For K562 cells sampled at day 8 versus day 6, both the relationships between 

perturbations (cophenetic correlation = 0.82) and phenotypes (median r = 0.50) were highly 

similar (Figures S4A and S4B). By contrast, the K562 and RPE1 datasets had more 

divergent relationships (cophenetic correlation = 0.37) and phenotypes (median r = 0.23) 

(Figures S4B–S4E).

In our dataset, perturbation of many poorly annotated genes led to similar transcriptional 

responses to genes of known function, naturally predicting a role for these uncharacterized 

genes. To test these predictions, we selected ten poorly annotated genes whose perturbation 

response correlated with subunits and biogenesis factors of either the large or small subunit 

of the cytosolic ribosome (Figure S4F). This included genes that had no previous association 

with ribosome biogenesis (CCDC86, CINP, SPATA5L1, ZNF236, and C1orf131) as well 

as genes that had not been associated with functional defects in a particular subunit 

(SPOUT1, TMA16, NOPCHAP1, ABCF1, and NEPRO). CRISPRi-mediated depletion of 

nine of the ten candidate factors led to substantial defects in ribosome biogenesis, with 

the exception of ABCF1, as assessed by the ratio of 28S to 18S rRNA (Figure 2E). In 

every case, the affected ribosomal subunit corresponded to the Perturb-seq clustering across 

two independent sgRNAs. Although this study was in progress, another group identified 

C1orf131 as a structural component of the pre-A1 small subunit processome by cryo-EM, 

complementing our functional work (Singh et al., 2021). This validation suggests that many 

poorly characterized genes can be assigned functional roles through Perturb-seq, although a 

subset of these relationships may be explained by off-target effects (Figure S4G and S4H).

Delineating functional modules of the Integrator complex

In general, perturbations to members of known protein complexes produced similar 

transcriptional phenotypes in our data. Therefore, we were surprised that knockdown of 

the 14 core subunits of Integrator, a metazoan-specific essential nuclear complex with roles 

in small nuclear RNA (snRNA) biogenesis and transcription termination, led to variable 

responses (Figure 3A; Kirstein et al., 2021). INTS1, INTS2, INTS5, INTS7, and INTS8 
formed a tight cluster that weakly correlated with INTS6 and INTS12 (Figure 3B; Data 

S2 [Figure i]). Separately, INTS3, INTS4, INTS9, and INTS11 clustered together alongside 

splicing regulators. Finally, INTS10, INTS13, and INTS14 formed a discrete cluster together 

with C7orf26, an uncharacterized gene.

These functional modules mirror the architecture observed in recent structures (Fianu et al., 

2021; Zheng et al., 2020). The INTS1-2-5-7-8 module contained the subunits identified as 

the structural shoulder and backbone. The INTS3-4-9-11 module contained the structural 

cleavage subunits. Although INTS10, INTS13, and INTS14 were not resolved in recent 

cryo-EM Integrator structures, these subunits have been identified as a stable biochemical 

subcomplex (Pfleiderer and Galej, 2021; Sabath et al., 2020).

Integrator is well studied; hence, we were intrigued by the clustering of the uncharacterized 

gene C7orf26 with Integrator subunits 10, 13, and 14. To explore this, we tested whether 

loss of C7orf26 impacted Integrator subunit abundance. CRISPRi-mediated depletion of 

C7orf26 destabilized INTS10 (Figure 3C). Pulldown of His-INTS10 from cell lysates 
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recovered endogenous C7orf26 alongside INTS13 and INTS14 (Figure 3D), indicative of 

a biochemical interaction consistent with previous reports (Boeing et al., 2016; Malovannaya 

et al., 2010). Overexpression of C7orf26 with INTS10, INTS13, and INTS14 enabled the 

purification of a stable INTS10-13-14-C7orf26 complex by size-exclusion chromatography 

(Figure 3E; Data S2 [Figures i and ii]). We also detected an interaction between the 

Drosophila C7orf26 ortholog and fly Integrator and observed co-essentiality between 

C7orf26 and INTS10, INTS13, and INTS14 in the Cancer Dependency Map (Data S2 

[Figure iii]) (Pan et al., 2022; Wainberg et al., 2021). These results suggest that C7orf26 is a 

core subunit of an INTS10-13-14-C7orf26 Integrator module.

We sought to better understand the distinct transcriptional phenotypes induced by loss 

of Integrator modules. As comparison of DEGs between modules did not reveal function 

(Data S2 [Figure i]), we next explored the canonical role of Integrator using changes in 

splicing as a proxy for snRNA biogenesis defects. We examined splicing by comparing 

the ratio of unspliced with spliced reads for each gene in our Perturb-seq data. Validating 

our approach, depletion of known splicing factors as well as subunits of the cleavage and 

shoulder/backbone modules led to gross splicing defects (Figure 3F). By contrast, depletion 

of subunits of the INTS10-13-14-C7orf26 module did not cause a substantial splicing defect. 

To directly test the effect of the INTS10-13-14-C7orf26 module on snRNA biogenesis, we 

used precision run-on sequencing (PRO-seq) to probe active RNA-polymerase positioning 

and confirmed that extended knockdown of the cleavage and backbone/shoulder modules, 

but not INTS10, INTS13, or C7orf26, caused a dramatic increase in transcriptional 

readthrough past the 3′ cleavage site of snRNAs (Figure 3G; Data S2 [Figure i]).

Thus, INTS10-13-14-C7orf26 represents a functionally and biochemically distinct module 

of Integrator, consistent with concurrent studies (Figure 3H; Funk et al., 2021; Pan et al., 

2022; Wainberg et al., 2021). Although Integrator has been subjected to extensive structural 

analyses, it has been difficult to resolve the INTS10-13-14 components in relation to the rest 

of the complex, and inclusion of C7orf26 may facilitate future structural efforts. We propose 

that C7orf26 be renamed INTS15.

Data-driven definition of transcriptional programs

Although clustering can organize genetic perturbations into pathways or complexes, it 

does not reveal the functional consequences of perturbations. To summarize the genotype-

phenotype relationships in our data, we (1) clustered genes into expression programs based 

on their co-regulation, (2) clustered perturbations based on their transcriptional profiles, 

and (3) computed the average activity of each gene expression program within each 

perturbation cluster (Figures 4A and 4B; Figure S5A; Table S3; see STAR Methods). This 

map uncovered many known expression programs associated with perturbations, including 

upregulation of proteasomal subunits due to proteasome dysfunction (Radhakrishnan et al., 

2010), activation of NF-κB signaling upon loss of ESCRT proteins (Mamińska et al., 2016), 

and upregulation of cholesterol biosynthesis in response to defects in vesicular trafficking 

(Luo et al., 2020). Our analysis also delineated the canonical branches of the cellular stress 

response into the unfolded protein response (UPR), activated by the loss of ER-resident 

chaperones and translocation machinery, and integrated stress response (ISR), activated 
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by loss of mitochondrial proteins, aminoacyl-tRNA synthetases, and translation initiation 

factors (Figure 4C; Adamson et al., 2016).

Interestingly, our clustering uncovered many perturbations that drove the expression of 

markers of erythroid or myeloid differentiation, consistent with the multilineage potential 

of K562 cells (Figure 4D; Leary etal., 1987). As expected, loss of central regulators 

of erythropoiesis (GATA1, LDB1, LMO2, and KDM1A) caused myeloid differentiation, 

whereas knockdown of BCR-ABL and its adaptor GAB2 induced erythroid differentiation 

(Orkin and Zon, 2008). Next, we investigated the differentiation effect of selectively 

essential genes, which could be promising targets for differentiation therapy, analogous 

to KDM1A (Maes et al., 2018; Yu et al., 2021). We observed that loss of PTPN1, a 

tyrosine phosphatase selectively essential in K562 cells, drove myeloid differentiation. In 

targeted experiments, we found that combined knockdown of PTPN1 and KDM1A caused a 

substantial increase in differentiation and growth defect compared with knockdown of either 

gene individually, suggesting that these targets act via different cellular mechanisms (Figure 

4E; Figure S5B). These results highlight the utility of rich phenotypes for understanding 

differentiation as well as nominating therapeutic targets.

Hypothesis-driven study of composite phenotypes

Our scRNA-seq readout also allows us to study ‘‘composite phenotypes’’ that integrate data 

from across the transcriptome, such as total cellular RNA content and the fraction of RNA 

derived from transposable elements (TEs). We found numerous composite phenotypes under 

strong genetic control, with reproducible effects across replicates and cell types (Figure 4F).

In the case of TE regulation, two classes of perturbations increased the fraction of TE RNA 

by affecting broad classes of elements including Alu, L1, and MIR (Figure 4G; Figure S5C). 

First, loss of exosome subunits increased the fraction of TE RNA, suggesting that transcripts 

deriving from TEs might be preferentially degraded. Second, loss of the CPSF and Integrator 

complexes produced a similar phenotype, suggesting that TE RNAs may derive from failure 

of normal transcription termination.

Turning to total RNA content, we found that loss of regulators of S-phase and mitosis 

increased the RNA content of cells (Figure 4H). This is consistent with the observation that 

cells tend to increase their size and thus their RNA content, as they progress through the 

cell cycle (Figure S5D). By contrast, loss of transcriptional machinery, including general 

transcription factors, Mediator, and transcription elongation factors, decreased total RNA 

content. In sum, these analyses show that Perturb-seq enables hypothesis-driven exploration 

of complex cellular features.

Exploring genetic drivers and consequences of aneuploidy in single cells

We next reasoned that exploring sources of single-cell heterogeneity could reveal insights 

that are missed in bulk or averaged measurements. To assess the penetrance of perturbation-

induced phenotypes, we applied SVD-based leverage scores as a metric of single-cell 

phenotypic magnitude (see STAR Methods). Leverage scores quantify how outlying each 

perturbed cell’s transcriptome is relative to control cells without assuming that perturbations 

drive a single axis of variation. Supporting this approach, mean leverage scores for each 

Replogle et al. Page 10

Cell. Author manuscript; available in PMC 2022 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



genetic perturbation were correlated with the number of DEGs (Figure S6A, Spearman’s 

ρ = 0.71) and reproducible across experiments (Figure S6B, Spearman’s ρ = 0.79). We 

then scored perturbations by the variation in single-cell leverage scores (Figure 5A). 

Comparing leverage scores across complex subunits revealed evidence for both biological 

(e.g., subcomplex function or dosage imbalance) and technical (e.g., selection to escape 

toxic perturbations) sources of phenotypic heterogeneity (Figures S6C–S6F).

Intriguingly, many genes implicated in chromosome segregation were among the top drivers 

of heterogeneity, including TTK, SPC25, and DSN1 (Figure 5B; Musacchio and Salmon, 

2007). We hypothesized that the extreme transcriptional variability caused by these genetic 

perturbations might result from acute changes in the copy number of chromosomes due 

to mitotic mis-segregation. To explore this, we used inferCNV (Patel et al., 2014) to 

estimate single-cell DNA copy number along the genome. Consistent with our hypothesis, 

knockdown of TTK, a core component of the spindle assembly checkpoint (Jelluma et 

al., 2008), led to dramatic changes in chromosome copy number in both intrinsically 

aneuploid K562 and near-euploid RPE1 cells (Figure 5C; Figure S7A). In RPE1 cells, 

we found that 61/80 (76%) of TTK knockdown cells had karyotypic changes compared 

with 274/13,140 (2%) of unperturbed cells. Notably, TTK knockdown cells bore highly 

variable karyotypes due to the stochastic gain or loss of chromosomes, accounting for their 

phenotypic heterogeneity (Figure 5C).

Perturb-seq further allows us to dissect relationships between cellular phenotypes. We 

were curious how CIN would affect cell-cycle progression in p53-positive RPE1 cells 

versus p53-deficient K562 cells. Considering all cells in our experiment independent of 

genetic perturbation, RPE1 cells with abnormal karyotypes tended to arrest in G1 or G0 

of the cell cycle (G1 or G0 fraction 0.68 for abnormal karyotype versus 0.44 for stable 

karyotype), whereas K562 cells with altered karyotypes had less significant shifts in cell-

cycle occupancy (Figures 5D and 5E). Within the population of RPE1 cells bearing a 

chromosome loss, the likelihood of cell cycle arrest directly depended on the magnitude of 

karyotypic abnormality (Figure S7B). Additionally, cells with the most severe karyotypic 

changes—those bearing both chromosome gains and losses—had marked upregulation of 

the ISR (Figures 5F and S7C). These results are consistent with models in which cell-cycle 

checkpoints are activated by the secondary consequences of aneuploidy (e.g., DNA damage 

or proteostatic stress) rather than changes in chromosome number per se (Santaguida and 

Amon, 2015; Santaguida et al., 2017).

Finally, to systematically identify drivers of CIN, we assigned a score to each perturbation 

based on the average magnitude of induced karyotypic abnormalities. CIN scores were 

strongly correlated across K562 and RPE1 cell lines (r = 0.69) and identified many 

known regulators of chromosome segregation (Figure 5G). Remarkably, we uncovered 

CIN regulators with diverse cellular roles, from cytoskeletal components to DNA repair 

machinery (Figure 5H; Table S2). This analysis also shows the potential of single-cell 

CRISPR screens to dissect phenotypes that were not predefined endpoints of the experiment.
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Discovery of stress-specific regulation of the mitochondrial genome

Mitochondria arose from the engulfment and endosymbiotic evolution of an ancestral 

alphaproteobacterium (Friedman and Nunnari, 2014). Although the majority (~99%) of 

mitochondrially localized proteins are encoded in the nuclear genome, mitochondria contain 

a small (~16.6 kb) remnant of their ancestral genome encoding 2 rRNAs, 22 tRNAs, and 

13 protein-coding genes in humans. An open question is how expression of the nuclear 

and mitochondrial genomes is coordinated to cope with mitochondrial stress (Quirós et 

al., 2016). The scale of our experiment provided a unique opportunity to investigate this 

question.

We began by comparing the nuclear transcriptional responses with CRISPRi-based depletion 

of nuclear-encoded mitochondrial genes (i.e., mitochondrial perturbations). Mitochondrial 

perturbations elicited relatively homogeneous nuclear transcriptional responses (Figures 

6A and S8A). Although there was some variation in magnitude (e.g., proteostatic injury 

drove especially strong ISR activation), nuclear transcriptional responses generally did not 

discriminate perturbations by function, consistent with recent literature that has highlighted 

the role of the ISR in mitochondrial stress (Fessler et al., 2020; Guo et al., 2020; Mick et al., 

2020; Münch and Harper, 2016; Quirós et al., 2017).

In contrast to the nuclear transcriptional response, the expression of mitochondrially 

encoded genes was highly variable between different mitochondrial perturbations (Figure 

6B; Figures S8B–S8D). When we clustered mitochondrial perturbations based solely 

on expression of the 13 mitochondrially encoded genes, a pattern emerged: the 

clustering separated perturbations to complex I, complex IV, complex III, complex V, 

the mitochondrial large ribosomal subunit, the mitochondrial small ribosomal subunit, 

chaperones/import machinery, and RNA processing factors (Figure 6C; Figure S8E). In 

quantitative support of this observation, the mitochondrial transcriptome was far more 

predictive than the nuclear transcriptome in a random forest classifier trained to distinguish 

perturbations to different mitochondrial complexes (mitochondrial accuracy 0.64; nuclear 

accuracy: 0.25) (Figure S8F). We then visualized the expression signatures of a subset of 

representative perturbations (Figure 6D). The co-regulation of mitochondrial genes tended to 

reflect function, with the exception of the bicistronic mRNAs ND4L/ND4 and ATP8/ATP6 
(Mercer et al., 2011). Although previous studies have described distinct regulation of the 

mitochondrial genome in response to specific perturbations (Richter-Dennerlein et al., 2016; 

Salvatori et al., 2020), our data generalize this phenomenon to a comprehensive set of 

stressors.

Next, we wanted to shed light on the mechanistic basis for the complexity of mitochondrial 

genome responses. The mitochondrial genome is expressed by unique processes (Figure 

7A; Kummer and Ban, 2021): mitochondrially encoded genes are transcribed as part of 

three polycistronic transcripts punctuated by tRNAs. These transcripts are then processed 

into rRNAs and mRNAs by tRNA excision, and individual mRNAs can be polyadenylated, 

translated, or degraded. This system limits the potential for transcriptional control but 

presents multiple opportunities for post-transcriptional regulation. To identify modes of 

perturbation-elicited differential expression, we examined the distribution of scRNA-seq 

reads along the mitochondrial genome (Figure 7B). To validate the utility of this position-
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based analysis, we confirmed that knockdown of known regulators of mitochondrial 

transcription (TEFM) and RNA degradation (PNPT1) led to major shifts in the position 

of reads along the mitochondrial genome. By contrast, many of the perturbations in our 

study appeared to cause shifts in the relative abundance of mRNAs rather than gross shifts in 

positional alignments. To determine whether the observed mitochondrial genome responses 

reflected regulation of the total level of mitochondrial mRNAs or specific regulation of 

mRNA polyadenylation, we performed bulk RNA sequencing without poly-A selection. 

We observed perturbation-specific changes in the level of total RNA similar to those 

measured by scRNA-seq (cophenetic correlation = 0.79; Figure 7C). Given the complexity 

of the observed responses, we propose that there are likely to be multiple mechanisms that 

impact the levels of the various mitochondrially encoded transcripts in response to different 

stressors.

Finally, we asked whether we could use the clustering produced by the mitochondrial 

genome to predict gene function. Knockdown of an unannotated gene, TMEM242, produced 

a signature resembling loss of ATP synthase (Figure 7D; Figure S8G). Supporting this 

relationship, the top five co-essential genes with TMEM242 were components of ATP 

synthase in the Cancer Dependency Map, and in a Seahorse assay, basal respiration was 

decreased upon TMEM242 knockdown (Figure 7E). Although this work was in progress, 

another group used a biochemical approach to show that TMEM242 regulates ATP synthase 

complex assembly (Carroll et al., 2021). Together, these experiments highlight a novel factor 

required for ATP synthase activity.

DISCUSSION

Single-cell CRISPR screens represent an emerging tool to generate rich genotype-phenotype 

maps. However, to date, their use has been limited to the study of preselected genes focused 

on predefined biological questions. Here, we perform genome-scale single-cell CRISPR 

screens and demonstrate how these screens enable data-driven dissection of a breadth 

of biological phenomena. Reflecting on this study, we highlight key insights and derive 

principles to guide future discoveries from rich genotype-phenotype maps.

A primary aim of large-scale functional screens is to organize genes into pathways or 

complexes. To this end, our Perturb-seq data recapitulated thousands of known relationships 

while also assigning new roles to genes involved in ribosome biogenesis, transcription, 

and respiration. However, other large-scale experimental techniques, such as protein-protein 

interaction mapping, genetic interaction mapping, and co-essentiality analysis, similarly 

group genes or proteins by function. How then are single-cell CRISPR screens distinct?

We argue that these screens are particularly powerful because of the intrinsic interpretability 

of comprehensive genotype-phenotype maps, enabling in-depth dissection of the functional 

consequences of genetic perturbations that impinge on many distinct aspects of cell biology. 

Of particular note is the ability to use the information-rich readouts to study complex, 

composite phenotypes, which are difficult to measure by other modalities. These composite 

phenotypes can be created in a data-driven (e.g., deriving transcriptional programs) or 

hypothesis-driven manner (e.g., measuring intron/exon ratios to study splicing), resulting in 
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an enormous breadth of measured phenotypes. In the case of scRNA-seq, we show that it 

measures not only differential gene expression and the activity of critical transcriptional 

programs but also RNA splicing and processing, expression of TEs, differentiation, 

transcriptional heterogeneity, cell-cycle progression, and CIN. Once a phenotype is defined, 

the genotype-phenotype map can be used to explore its genetic underpinnings, in a 

manner analogous to a forward genetic screen, as well as its relationship to other cellular 

phenotypes.

An illustrative example of this process is our study of CIN. In a hypothesis-driven manner, 

we used our rich phenotypic data to discover a large collection of perturbations—which 

were only loosely connected by clustering on average transcriptional phenotypes—that 

promote CIN. Importantly, the single-cell nature of our data also allowed us to explore 

the relationship between karyotypic changes and other phenotypes, including cell-cycle 

progression and stress induction. Although aneuploidy is an important hallmark of cancer, 

it has been challenging to study with traditional genetic screens as it requires a single-

cell, multivariate readout. In future work, this platform could be used to investigate 

interactions between genetic perturbations and specific karyotypes, karyotype-dependent 

stress responses, or the temporal evolution of karyotypes (Ben-David and Amon, 2020).

Because composite phenotypes can be generated and explored computationally without 

being preregistered at the time of data collection, rich genotype-phenotype maps provide 

a powerful resource for the discovery of new cellular behaviors. Using this ability, we 

discovered remarkable stress-specific changes in the expression of mitochondrially encoded 

transcripts. This discovery suggests a framework to explain how cells cope with diverse 

mitochondrial insults: a general nuclear response is layered over perturbation-specific 

changes in mitochondrial genome regulation (Figure 7F). Understanding how and in 

what contexts this regulation is adaptive may have important implications for diseases 

associated with mitochondrial stress. An intriguing additional question is whether individual 

mitochondria are able to regulate their expression autonomously. Combined with the 

nuanced responses observed here, this would support and extend the ‘‘co-location for 

redox regulation’’ (CoRR) hypothesis which holds that the mitochondrial genome has been 

retained through evolution to enable localized gene expression regulation (Allen, 2017).

A final theme emerging from our work is that single-cell CRISPR screens require only a 

fraction of the number of cells used by other approaches and thus are well suited to the 

study of iPSC-derived cells and in vivo samples. As technologies for single-cell, multimodal 

phenotyping advance, single-cell screens will continue to become more powerful. At 

present, the major limitation of single-cell CRISPR screens is cost. Careful experimental 

designs, such as multiplexed libraries, together with advances in single-cell phenotyping 

and DNA sequencing promise to greatly increase the scale of these experiments. To this 

point, we concluded our work by sequencing our genome-scale K562 libraries on a lower-

cost, ultra-high throughput sequencing platform developed by Ultima Genomics, generating 

results equivalent to those sequenced on Illumina instruments (Data S1 [Figure ii]).

In sum, our study presents a blueprint for the construction and analysis of rich genotype-

phenotype maps to serve as a driving force for the systematic exploration of genetic and 
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cellular function. Our data are available in raw, processed, and interactive formats at http://

gwps.wi.mit.edu.

Limitations of the study

Technical aspects of our experimental design limit some conclusions of our study. (1) 

Perturb-seq is constrained by the cost of generating and sequencing scRNA-seq libraries. 

To minimize reagent use, we targeted most genes with a single library element, preventing 

comparison between independent sgRNAs. (2) We sampled a limited number of cells per 

perturbation. Greater cell numbers or sequencing depth would increase power. (3) Although 

3′ scRNA-seq is an information-rich phenotype, other modalities including 5′ or full-length 

RNA-seq, protein-level readouts, or imaging have advantages for understanding certain 

processes. (4) We sampled at a limited number of time points and cell types. Sampling cells 

at a wider range of time points or cell types will undoubtedly uncover additional effects.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Jonathan Weissman 

(weissman@wi.mit.edu).

Materials availability—Plasmids and CRISPRi sgRNA libraries generated in this study 

have been deposited to Addgene.

Data and code availability

• Raw sequencing data are deposited on SRA under BioProject PRJNA831566. 

key resources table An interactive data browser including processed, 

downloadable single-cell and pseudobulk populations is available at http://

gwps.wi.mit.edu.

• Our codebase for Perturb-seq analysis is available at https://github.com/

thomasmaxwellnorman/Perturbseq_GI and https://github.com/josephreplogle/

guide_calling.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture and lentiviral production—K562 cells were grown in RPMI-1640 with 

25 mM HEPES, 2.0 g/l NaHCO3, and 0.3 g/l L-glutamine supplemented with 10% FBS, 2 

mM glutamine, 100 units/ml penicillin, and 100 μg/ml streptomycin. hTERT-immortalized 

RPE1 cells (ATCC, CRL-4000) were grown in DMEM:F12 supplemented with 10% FBS, 

0.01 mg/ml hygromycin B, 100 units/ml penicillin, and 100 μg/ml streptomycin. HEK293T 

cells were used for generation of lentivirus, and grown in DMEM supplemented with 10% 

FBS, 100 units/ml penicillin and 100 μg/ml streptomycin. Lentivirus was produced by 
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co-transfecting HEK293T cells with transfer plasmids and standard packaging vectors using 

TransIT-LTI Transfection Reagent (Mirus, MIR 2306).

Cell line generation—CRISPRi K562 cells expressing dCas9-BFP-KRAB (KOX1-

derived) were obtained from Gilbert et al. (2014). CRISPRi RPE1 cells expressing dCas9-

BFP-KRAB (KOX1-derived) were obtained from Jost et al. (2017) and only used for growth 

screens. CRISPRi RPE1 cells were generated by stably transducing RPE1 cells (ATCC, 

CRL-4000) with lentivirus expressing ZIM3 KRAB-dCas9-P2A-BFP from a UCOE-SFFV 

promoter (pJB108) and sorting for BFP+ cells stably expressing the construct using 

fluorescence activated cell sorting. Cell lines were verified by monitoring BFP fluorescence 

over several generations to confirm stable integration and confirming knockdown of select 

surface markers by flow cytometry.

METHOD DETAILS

Library design and cloning—A distinct set of genes was targeted for each of the three 

large-scale Perturb-seq experiments. For the K562 day 8 genome-scale experiment, we 

targeted (i) genes expressed in K562 cells (ii) transcription factors as detailed in Lambert 

et al. (2018) (iii) Cancer Dependency Map common essential genes as defined in 20Q1 (iv) 

non-targeting control sgRNAs accounting for 5% of the total library. To define expressed 

genes in K562 cells, we used a combination of bulk RNA-seq data from ENCODE (https://

www.encodeproject.org/files/ENCFF717EVE/) and 10x Genomics 3’ single-cell RNA-seq 

data (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE146194), selecting a set of 

genes accounting for ~99% of aligned reads in both datasets. For the K562 day 6 essential-

scale experiment, we targeted (i) Cancer Dependency Map common essential genes as 

defined in 20Q1 (ii) non-targeting control sgRNAs accounting for 5% of the total library. 

For the RPE1 day 7 essential-scale experiment, we targeted (i) 20Q1 Cancer Dependency 

Map common essential genes (https://depmap.org/portal/download/) (ii) a number of hand-

selected genes with interesting phenotypes in the K562 genome-wide Perturb-seq dataset 

(iii) non-targeting control sgRNAs accounting for 5% of the total library. To define control 

perturbations, we randomly sampled non-targeting control perturbations from Horlbeck et al. 

(2016). A small number of genes were lost in this pipeline due to changes in gene annotation 

between datasets.

To minimize library size while maximizing knockdown, multiplexed CRISPRi libraries were 

constructed which targeted each gene with two unique sgRNAs expressed from tandem U6 

expression cassettes in a single lentiviral vector, as previously described in Replogle et al. 

(2020). The Horlbeck et al. (2016) CRISPRi sgRNA libraries were used as a source of 

sgRNAs targeting each gene, with the optimal sgRNA pair targeting each gene selected 

based on a balance of empirical data with computational predictions. For strong essential 

genes (defined by a p-value<0.001 and gamma<-0.2 in the Horlbeck et al. [2016] CRISPRi 

growth screen), sgRNAs were ranked by growth. Then, for genes that produced a significant 

phenotype in previous CRISPRi screens, sgRNAs were ranked by a discriminant score 

multiplying the negative log10 p-value by the effect size. Finally, for genes without any 

empirical evidence, sgRNAs were ranked according to the Horlbeck et al. (2016) hCRISPRi 
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v2.1 algorithm. The full sgRNA content of the K562 day 8 genome-scale library, K562 day 

6 essential-wide library, and RPE1 day 7 essential-wide library can be found in Table S1.

We adapted the protocol previously described in Replogle et al. (2020) to clone libraries 

with capture sequences for 3’ direct capture Perturb-seq. Briefly, an sgRNA lentiviral 

expression vector (pRS275/pJR101) was derived from the parental pJR85 (Addgene 

#140095), modified to incorporate a GFP fluorescent marker to avoid spectral overlap with 

BFP+ CRISPRi constructs and a UCOE element upstream of the EF1alpha promoter to 

prevent silencing (Table S4). A two-step restriction enzyme digestion and ligation cloning 

of oligos into pRS275/pJR101 was performed to maintain coupling of sgRNAs targeting the 

same gene. Oligos encoding the targeting regions of dual-sgRNA pairs were synthesized 

as an oligonucleotide pool (Twist Bioscences) with the structure: 5’- PCR adapter - 

CCACCTTGTTG – targeting region A - gtttcagagcgagacgtgcctgcaggatacgtctcagaaacatg – 

targeting region B - GTTTAAGAGCTAAGCTG - PCR adapter-3’. When ordering oligos, 

the representation of essential genes was increased to compensate for growth phenotypes 

(see below). Oligo pools were amplified, digested with BstXI/BlpI, and ligated into pRS275/

pJR101. To add an sgRNA constant region and U6 promoter to the vector, pJR89 (Addgene 

#140096) was BsmBI-digested and ligated into the intermediate library.

K562 and RPE1 growth screens—Pooled sgRNA growth screens in K562 cells were 

used to quantify growth phenotypes of sgRNA pairs targeting expressed genes. CRISPRi 

K562 cells expressing dCas9-BFP-KRAB were transduced with lentiviral particles encoding 

the dual-sgRNA library by spinfection (1000g) with polybrene (8 ug/ml) to obtain an 

infection rate of~25%-35%. Screens were performed in biological replicate with the aim 

of maintaining 1000 cells per library element for the duration of the screen. Between day 

2 and day 6 post-transduction, cells were selected for lentiviral infection using 1 ug/mL 

puromycin, replenished every 24 hours. On day 7 post-transduction, an aliquot of cells was 

harvested as an initial time point) The rest of the cell population was passaged for 10 more 

days and collected at final time point.

Pooled sgRNA growth screens in RPE1 cells were used to quantify growth phenotypes of 

sgRNA pairs targeting common essential genes. The CRISPRi RPE1 cell line expressing 

dCas9-BFP-KRAB was used for growth screens which took place before the publication 

of the next-generation ZIM3 KRAB domain. Cells were transduced in biological replicate 

with lentiviral particles encoding the dual-sgRNA library by replating cells into virus-laden 

media with polybrene (8 ug/ml) to obtain an infection rate of ~45%. Because RPE1 cells are 

puromycin resistant, we performed the screen without selection for sgRNA-infected cells, 

nonetheless maintaining an infection rate-corrected 1000 cells per library element for the 

duration of the screen. On day 6 post-transduction, an aliquot of cells was harvested as an 

final time point for direct comparison to the abundances in the plasmid library.

For both K562 and RPE1 growth screens, DNA libraries of the initial and final samples 

were prepared for deep sequencing by genomic DNA isolation and PCR amplification 

of dual-sgRNA amplicons as described previously (Nuñez et al., 2021; Replogle et 

al., 2020). First, a NucleoSpin Blood XL kit (Macherey–Nagel) was used to extract 

genomic DNA (gDNA) from cells. Then, isolated gDNA or plasmid DNA was amplified 
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by 22 cycles (gDNA) or 13 cycles (plasmid DNA) of PCR using NEBNext Ultra II 

Q5 PCR MasterMix (NEB), appending Illumina adaptors and sample indices (oJR234 

forward primer: 5’-AATGATACGGCGACCACCGAGATCTACACCGCGGTCTGTA 

TCCCTTGGAGAACCACCT-3’; index primers 

5’-CAAGCAGAAGACGGCATACGAGATnnnnnGCGGCCGGCTGTTTCCA 

GCTTAGCTCTTAAA-3’). Amplicons were isolated by a 0.5–0.65X SPRI bead 

selection (SPRIselect Beckman Coulter #B23318). Sequencing was performed on 

a NovaSeq 6000 (Illumina) using a 19 bp read 1, 19 bp read 2, and 5 

bp index read 1 with custom sequencing primers oJR326 (custom read 1, 5’- 

CGCGGTCTGTATCCCTTGGAGAACCACCTTGTTGG-3’), oJR328 (custom read 2, 5’- 

GCGGCCGGC TGTTTCCAGCTTAGCTCTTAAAC-3’), and oJR327 (custom index read 1, 

5’- GTTTAAGAGCTAAGCTGGAAACAGCCGGCCGC-3’).

Perturb-seq experiments—The selection of time points for our experiments is based 

on a combination of previously published CRISPR screens, Perturb-seq experiments, and 

the goals of our experiment. The constraints on the design of CRISPR growth screens 

differ significantly from Perturb-seq experiments. In growth screens, an amplification of 

signal occurs over time as cells drop out of the population, so experiments often compare 

representation between an early time point (~3–5 days post-transduction) and a much later 

final timepoint (~14–28 days post-transduction). In contrast, in Perturb-seq screens, the 

phenotype is measured directly from the perturbed cells that are sampled on the day of 

scRNA-seq. Relatively earlier timepoints may then be advantageous because:

i. libraries remain more balanced, especially when studying perturbations targeting 

essential genes that are prone to dropping out over time at the representation 

levels typically used in scRNA-seq experiments; and

ii. more ‘‘direct’’ phenotypic consequences of the genetic perturbation are observed 

(i.e., the transcriptomes reflect the cellular response to perturbation rather than 

later indirect consequences like cell death).

In contrast, the possible advantages of sampling cells at later timepoints are:

i. time is required to allow for CRISPR machinery to be expressed, the genetic 

perturbation to occur (in this case CRISPRi), and finally protein depletion to 

occur; and

ii. for some perturbations, longer time points might be required in order to observe 

a phenotype (e.g., perturbations that result in buildup of cellular metabolites).

In designing our experiment, we wanted to ensure that we would sample the phenotypic 

consequences of perturbing essential genes which would quickly deplete from our library. 

We thus chose to sample at two time points in K562 cells as the phenotypic effects of 

different genetic perturbations can manifest at variable time points based on technical and 

biological factors. While each gene depletes and causes a cellular phenotype based on 

unique characteristics, the majority of genes are widely accepted to have phenotypes in 

between approximately day 6 to day 8 of the screen.
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To perform our K562 day 8 genome-scale Perturb-seq experiment, library lentivirus was 

packaged into lentivirus in 293T cells and empirically measured in K562 cells to obtain 

viral titers. CRISPRi K562 cells were transduced via spinfection (1000g) with polybrene (8 

ug/ml) with the target of obtaining an infection rate of ~10%. Cells were maintained at a 

viability of >90%, a coverage of 1000 cells per library element, and a density of 250,000 

to 1,000,000 cells/ml for the course of the experiment. Three days post-transduction, 

an infection rate of 14% was measured, and cells were sorted to near purity by FACS 

(FACSAria2, BD Biosciences), using GFP as a marker for sgRNA vector transduction. Eight 

days post infection, the cells were measured to be 97% GFP+ (LSR2, BD Biosciences), 

>90% viable, and at a concentration of ~800,000 cells/ml (Countess II, ThermoFisher). 

Cells were prepared for single-cell RNA-sequencing by resuspension in 1X PBS with 0.04% 

BSA as detailed in the 10x Genomics Single Cell Protocols Cell Preparation Guide (10x 

Genomics, CG00053 Rev C). Cells were then separated into droplet emulsions using the 

Chromium Controller (10x Genomics) with Chromium Single-Cell 3° Gel Beads v3 (10x 

Genomics, PN-1000075 and PN-1000153) across 273 ‘‘lanes’’/’’GEM groups’’ following 

the 10x Genomics Chromium Single Cell 3ʹ Reagent Kits v3 User Guide with Feature 

Barcode technology for CRISPR Screening (CG000184 Rev C) with the goal of recovering 

~15,000 cells per GEM group before filtering. Because the formation of droplet emulsions 

occurred in batches of 8 GEM groups over several hours, fresh populations of cells were 

obtained every hour to prevent alterations in single-cell transcriptomes.

To perform our K562 day 6 essential-scale Perturb-seq experiment, library lentivirus was 

packaged into lentivirus in 293T cells and empirically measured in K562 cells to obtain 

viral titers. CRISPRi K562 cells were transduced via spinfection (1000g) with polybrene (8 

ug/ml) with the target of obtaining an infection rate of ~10% with maintenance of cells as 

described above. Three days post-transduction, an infection rate of 15% was measured, and 

cells were sorted to near purity by FACS (FACSAria2, BD Biosciences), using GFP as a 

marker for sgRNA vector transduction. Six days post infection, the cells were measured to 

be 93% GFP+ (LSR2, BD Biosciences), >90% viable, and at a concentration of ~600,000 

cells/ml (Countess II, ThermoFisher). Cells were prepared for single-cell RNA-sequencing 

by resuspension in 1X PBS with 0.04% BSA as detailed in the 10x Genomics Single 

Cell Protocols Cell Preparation Guide (10x Genomics, CG00053 Rev C). Cells were then 

separated into droplet emulsions using the Chromium Controller (10x Genomics) with 

Chromium Single-Cell 3′ Gel Beads v3 (10x Genomics, PN-1000075 and PN-1000153) 

across 48 ‘‘lanes’’/’’GEM groups’’ following the 10x Genomics Chromium Single Cell 

3ʹ Reagent Kits v3 User Guide with Feature Barcode technology for CRISPR Screening 

(CG000184 Rev C) with the goal of recovering ~15,000 cells per GEM group before 

filtering.

To perform our RPE1 day 7 essential-scale Perturb-seq experiment, library lentivirus was 

packaged into lentivirus in 293T cells and empirically measured in RPE1 cells to obtain viral 

titers. CRISPRi RPE1 cells expressing ZIM3 KRAB-dCas9-P2A-BFP were transduced via 

replating into virus-laden media with polybrene (8 ug/ml) with the target of obtaining an 

infection rate of ~10%. Three days post-transduction, an infection rate of 7% was measured, 

and cells were sorted to near purity by FACS (FACSAria2, BD Biosciences), using GFP as a 

marker for sgRNA vector transduction. Seven days post infection, the cells were measured to 
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be 86% GFP+ (LSR2, BD Biosciences) and >95% viable (Countess II, ThermoFisher). After 

trypsin dissociation, cells were prepared for single-cell RNA-sequencing by resuspension 

in 1X PBS with 0.04% BSA as detailed in the 10x Genomics Single Cell Protocols Cell 

Preparation Guide (10x Genomics, CG00053 Rev C). Cells were then separated into droplet 

emulsions using the Chromium Controller (10x Genomics) with Chromium Single-Cell 3′ 
Gel Beads v3 (10x Genomics, PN-1000075 and PN-1000153) across 56 ‘‘lanes’’/’’GEM 

groups’’ following the 10x Genomics Chromium Single Cell 3ʹ Reagent Kits v3 User Guide 

with Feature Barcode technology for CRISPR Screening (CG000184 Rev C) with the goal 

of recovering ~15,000 cells per GEM group before filtering.

Perturb-seq library preparation and sequencing—For preparation of gene 

expression and sgRNA libraries, samples were processed according to 10x Genomics 

Chromium Single Cell 3ʹ Reagent Kits v3 User Guide with Feature Barcode technology for 

CRISPR Screening (CG000184 Rev C). To allow for parallel library preparation, samples 

were arranged in 96-well plates with magnetic selections conducted on an Alpaqua Catalyst 

96 plate (#A000550). For sequencing, mRNA and sgRNA libraries were pooled to avoid 

index collisions at a 10:1 ratio. Libraries were sequenced on both (i) a NovaSeq 6000 

(Illumina) according to the 10x Genomics User Guide and (ii) the Ultima Genomics ultra-

high throughput sequencing platform.

For sequencing on the Ultima Genomics (UG) platform, final 10x libraries were converted 

using conversion primers that anneal to the R1 and R2 regions of the 10X library and 

contain a UG-specific adapter sequence overhang and sample index. 8 PCR cycles were 

used for conversion. Converted libraries were bead purified and quantified. After pooling 

libraries, pools were seeded and clonally amplified on UG sequencing beads and sequenced 

on a UG prototype Sequencer. Single reads were generated from the 10x 3’ libraries, 

reading the 10X cell barcode, unique molecular identifier (UMI), and 3’ end of the cDNA 

transcript. A specific sequencing protocol including a high volume of dT nucleotides was 

used to accommodate the high nucleotide consumption in the poly (dT) stretch of the 

cDNA. Following sequencing, the single reads were quality-trimmed and split into two 

sub-sequences corresponding to Read1 (10X cell barcode and UMI) and Read2 (cDNA), 

which were used as input to Cell Ranger for alignment.

rRNA analyses—K562s expressing Zim3-dCas9-2A-BFP were spinfected in biological 

duplicate (targeting sgRNAs) or quadruplicate (non-targeting sgRNAs) with lentivirus 

expressing GFP and an sgRNA. Two days after spinfection, the cells were sorted for GFP+ 

on a BD ARIA II. Sort purity was generally >95%. After the sort, cells were maintained in 

media supplemented with 4 ug/ml puromycin for four days and then recovered for two days. 

Cells were counted, collected by centrifugation, and harvested by vigorous vortexing in Tri 

Reagent (ThermoFisher AM9738).

RNA was extracted with chloroform according to the manufacturer’s instructions, quantified 

by nanodrop, and snap frozen. Small samples were diluted to 200 ng/ul and run 

on Bioanalyzer RNA nano chips (Agilent 5067-1511) according to the manufacturer’s 

instructions. Runs were aligned to the 18s peak and signal intensity was normalized to 

total RNA area.
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Integrator co-depletion—K562s expressing Zim3-dCas9-2A-BFP were spinfected with 

lentivirus expressing GFP and an sgRNA. Two days after spinfection, the cells were sorted 

for GFP+ on a BD ARIA II. Sort purity was generally >95%. After the sort, cells were 

maintained in media supplemented with 4 ug/ml puromycin for four days and then recovered 

for two days. Cells were counted, washed twice with DPBS, and collected as pellets. The 

pellets were resuspended in SDS lysis buffer (100 mM Tris pH 8.0, 1% SDS), thermomixed 

at 95°/1500 RPM for thirty minutes, aliquoted, and snap-frozen.

Quantification for western blots: An equal amount of material was loaded, as assessed by 

lysate A280.

Integrator co-immunoprecipitation—Human expression plasmids encoding codon-

optimized INTS10 or His8-INTS10 were synthesized (Twist Bioscience) and transfected 

into HEK 293T/17 cells (ATCC CRL-11268) with FuGene HD (Promega E2311) according 

to the manufacturer’s protocol. Two days later, the cells were washed twice with DPBS and 

harvested with IP lysis buffer (25 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 

1% NP-40, 5% glycerol; ThermoFisher 87787) supplemented with protease inhibitors 

(ThermoFisher A32965). Lysates were nutated at 4° for 30 mins, clarified by centrifugation 

at 12,000xg for 10 minutes, and snap-frozen. Concentrations were measured with the BCA 

assay (ThermoFisher 23225).

Lysates were thawed on ice, supplemented with imidazole to 10 mM, and nutated at 4° for 

30 minutes with cobalt magnetic beads (ThermoFisher 10103D) pre-equilibrated in IP lysis 

buffer + 10 mM imidazole. The beads were separated on a magnet, washed twice with lysis 

buffer + 10 mM imidazole, and eluted with lysis buffer + 300 mM imidazole.

Quantification for western blots: For input samples, an equal amount of material was 

loaded, as assessed by BCA. For IP samples, an equal volume of eluate was loaded.

Integrator purification—Human expression plasmids encoding codon-optimized HIS-

INTS10, INTS13, INTS14, and C7orf26 were synthesized (Twist Bioscience) and 

co-transfected with ExpiFectamine 293 (ThermoFisher A14524) into Expi293 cells 

(ThermoFisher A14527) maintained in Expi293 medium (ThermoFisher A1435101) 

according to the manufacturer’s instructions. The cells were harvested after four days and 

snap frozen.

The pellets were resuspended in CHAPS Lysis Buffer (50 mM HEPES pH 8.0, 300 mM 

NaCl, 0.2% CHAPS, 10% glycerol, 1 mM TCEP, 1 mM EDTA, 0.5 mM PMSF, 1x protease 

inhibitors, 0.002% benzonase) and stirred at 4° for 30 minutes. The lysates were clarified 

at 120,000xg for 30 minutes, supplemented with 15 mM imidazole, and nutated for an 

hour with Ni-NTA agarose beads (ThermoFisher 25215) pre-equilibrated in CHAPS lysis 

buffer + 15 mM imidazole. The beads were loaded into a gravity column, washed with 

>10 volumes of wash buffer (50 mM HEPES pH 8.0, 300 mM NaCl, 10% glycerol, 1 mM 

TCEP, 1 mM EDTA, 15 mM imidazole), and eluted with wash buffer supplemented with 

250 mM imidazole. The eluate was concentrated and buffer exchanged into SEC buffer (50 
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mM HEPES pH 8.0, 150 mM KCl, 10% glycerol, 1 mM EDTA) by ultrafiltration, and snap 

frozen.

The eluate was thawed on ice, passed through a 0.2 μM PES filter, and loaded onto an 

Superdex 200 Increase 10/300 GL column pre-equilibrated with SEC buffer. Fractions were 

collected and flash frozen.

Quantification for gels and western blots: An equal volume of sample from each SEC 

fraction was loaded. Less Ni-NTA eluate was loaded to account for the dilution over SEC.

Drosophila Integrator biochemistry

Stable cell lines and nuclear extract preparation: Relevant Drosophila cDNAs were 

cloned into a pMT-3xFLAG-puro plasmid (Elrod et al., 2019; Huang et al., 2020) following 

the metallothionein promotor and 3x-FLAG tag. 2x106 Drosophila DL1 cells were plated 

in Schneider’s media supplemented with 10% FBS in a 6-well plate overnight and 2 μg 

of plasmid was transfected using Fugene HD (Promega, Madison WI, #E2311). Plasmid 

DNA was mixed with 8 μL Fugene and 100 μL media and incubated at room temperature 

for 15 minutes before being added to cells. After 24 hours, 2.5 μg/mL puromycin was 

added to the media to select and maintain the cell population. Cells were transitioned to 

SFX media without serum for large scale growth. Protein expression for nuclear extract was 

induced by adding 500 mM copper sulfate for 48 hours to 1 liter of each cell line grown to 

approximately 1x107 cells/mL.

Cells were collected and washed in cold PBS and then pelleted by centrifugation. Cells were 

then resuspended in five times the cell pellet volume of Buffer A (10mM Tris pH8, 1.5 mM 

MgCl2, 10 mM KCl, 0.5mM DTT, and 0.2mM PMSF). Resuspended cells were allowed to 

swell during a 15-minute rotation at 4°C. After pelleting down at 1,000g for 10 minutes, 

two volumes of the original cell pellet of Buffer A were added and cells were homogenized 

with a dounce pestle B for 20 strokes on ice. Nuclear and cytosolic fractions were then 

separated by centrifugation at 2,000g for 10 minutes. To attain a nuclear fraction, the pellet 

was washed once with Buffer A before resuspending in an equal amount of the original cell 

pellet volume of Buffer C (20 mM Tris pH8, 420mM NaCl, 1.5 mM MgCl2, 25% glycerol, 

0.2 mM EDTA, 0.5 mM PMSF, and 0.5 mM DTT). The sample was then homogenized with 

a dounce pestle B for 20 strokes on ice and rotated for 30 minutes at 4°C before centrifuging 

at 15,000g for 30 minutes at 4°C. Finally, supernatants were collected and subjected to 

dialysis in Buffer D (20 mM HEPES, 100 mM KCl, 0.2 mM EDTA, 0.5 mM DTT, and 

20% glycerol) overnight at 4°C. Prior to any downstream applications, nuclear extracts were 

centrifuged again at 15,000g for 3 minutes at 4°C to remove any precipitate.

Anti-FLAG affinity purification and western blotting: To purify FLAG-tagged Integrator 

complexes for mass spectrometry, generally between 8 and 10 mg of DL1 nuclear extract 

(approximately 1.9 mL of extract depending on the concentration) was mixed with 100 μL 

anti-Flag M2 affinity agarose slurry (Sigma-Aldrich, #A2220) washed with 0.1 M glycine 

then equilibrated in binding buffer (20 mM HEPES pH7.4, 150 mM KCl, 10% Glycerol, 

0.1% NP-40). This mixture was rotated for four hours at 4°C. Following the four-hour 

incubation/rotation, five sequential washes were carried out in binding buffer with a 10-
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minute rotation at 4°C followed by a 1,000g centrifugation at 4°C. After a final wash with 

20 mM HEPES buffer, the supernatant was removed using a pipette and the beads were kept 

cold and submitted to the mass spectrometry core where the protein complexes were eluted 

by digestion (described below). For immunoprecipitation samples intended for western blot, 

a similar protocol was used. 25 μL of bead slurry and 200 μL of extract sample were rotated 

for two hours at 4°C. After the fifth wash with binding buffer, protein complexes were 

eluted from the anti-FLAG resin by adding 50 μL of 2X SDS loading buffer and boiled 

at 95°C for five minutes. For western blots, input samples were generated by adding equal 

volume of 2X SDS loading buffer to nuclear extract and 1/10 of the immunoprecipitation 

was loaded as estimated by protein mass. Total protein was resolved on SDS polyacrylamide 

gels (Bio-Rad) with DTT, followed by transfer onto polyvinylidene difluoride (PVDF) 

membranes (ThermoFisher). Blots were probed as previously described using Drosophila-

specific antibodies raised against recombinant GST fusion proteins expressed in E. coli 

(Huang et al., 2020).

Mass spectrometry sample digestion: The samples were prepared in a similar manner 

as described previously (Anderson et al., 2020). Briefly, the agarose bead-bound proteins 

were washed several times with 50 mM Triethylammonium bicarbonate (TEAB) pH 7.1, 

before being solubilized with 40 μL of 5% SDS, 50 mM TEAB, pH 7.55 followed by 

a room temperature incubation for 30 minutes. The supernatant containing the proteins 

of interest was then transferred to a new tube, reduced by making the solution 10 mM 

Tris(2-carboxyethyl)phosphine (TCEP) (Thermo, #77720), and further incubated at 65°C 

for 10 minutes. The sample was then cooled to room temperature and 1 μL of 1M 

iodoacetamide acid was added and allowed to react for 20 minutes in the dark. Then, 5 

μL of 12% phosphoric acid was added to the 50 μL protein solution followed by 350 μL 

of binding buffer (90% Methanol, 100 mM TEAB final; pH 7.1). The resulting solution 

was administered to an S-Trap spin column (Protifi, Farmingdale NY) and passed through 

the column using a bench top centrifuge (30 second spin at 4,000g). The spin column was 

then washed three times with 400 μL of binding buffer and centrifuged (1200 rpm, 1 min). 

Trypsin (Promega, #V5280) was then added to the protein mixture in a ratio of 1:25 in 50 

mM TEAB, pH=8, and incubated at 37°C for 4 hours. Peptides were eluted with 80 μL of 50 

mM TEAB, followed by 80 μL of 0.2% formic acid, and finally 80 μL of 50% acetonitrile, 

0.2% formic acid. The combined peptide solution was then dried in a speed vacuum (room 

temperature, 1.5 hours) and resuspended in 2% acetonitrile, 0.1% formic acid, 97.9% water 

and aliquoted into an autosampler vial.

NanoLC MS/MS Analysis: Peptide mixtures were analyzed by nanoflow liquid 

chromatography-tandem mass spectrometry (nanoLC-MS/MS) using a nano-LC 

chromatography system (UltiMate 3000 RSLCnano, Dionex, Thermo Fisher Scientific, San 

Jose, CA). The nano-LC-MS/MS system was coupled on-line to a Thermo Orbitrap Fusion 

mass spectrometer (Thermo Fisher Scientific, San Jose, CA) through a nanospray ion source 

(Thermo Scientific). A trap and elute method was used to desalt and concentrate the sample, 

while preserving the analytical column. The trap column (Thermo Scientific) was a C18 

PepMap100 (300 μm X 5 mm, 5 μm particle size) while the analytical column was an 

Acclaim PepMap 100 (75 mm X 25 cm) (Thermo Scientific). After equilibrating the column 
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in 98% solvent A (0.1% formic acid in water) and 2% solvent B (0.1% formic acid in 

acetonitrile (ACN)), the samples (2 μL in solvent A) were injected onto the trap column 

and subsequently eluted (400 nL/min) by gradient elution onto the C18 column as follows: 

isocratic at 2% B, 0–5 min; 2% to 32% B, 5–39 min; 32% to 70% B, 39–49 min; 70% to 

90% B, 49–50 min; isocratic at 90% B, 50–54 min; 90% to 2%, 54–55 min; and isocratic at 

2% B, until the 65 minute mark.

All LC-MS/MS data were acquired using XCalibur, version 2.1.0 (Thermo Fisher Scientific) 

in positive ion mode using a top speed data-dependent acquisition (DDA) method with a 

3 second cycle time. The survey scans (m/z 350-1500) were acquired in the Orbitrap at 

120,000 resolution (at m/z = 400) in profile mode, with a maximum injection time of 100 

m s and an AGC target of 400,000 ions. The S-lens RF level was set to 60. Isolation was 

performed in the quadrupole with a 1.6 Da isolation window, and CID MS/MS acquisition 

was performed in profile mode using rapid scan rate with detection in the ion-trap using the 

following settings: parent threshold = 5,000; collision energy = 32%; maximum injection 

time 56 msec; AGC target 500,000 ions. Monoisotopic precursor selection (MIPS) and 

charge state filtering were on, with charge states 2–6 included. Dynamic exclusion was used 

to remove selected precursor ions, with a +/− 10 ppm mass tolerance, for 15 seconds after 

acquisition of one MS/MS spectrum.

Database Searching: Tandem mass spectra were extracted and charge state deconvoluted 

using Proteome Discoverer (Thermo Fisher, version 2.2.0388). Deisotoping was not 

performed. All MS/MS spectra were searched against the Uniprot Drosophila database 

(version 04-04-2018), using Sequest. Searches were performed with a parent ion tolerance 

of 5 ppm and a fragment ion tolerance of 0.60 Da. Trypsin was specified as the 

enzyme, allowing for two missed cleavages. Fixed modification of carbamidomethyl (C) 

and variable modifications of oxidation (M) and deamidation were specified in Sequest. 

Heatmaps in Figure S9A were made using Morpheus from the Broad Institute, https://

software.broadinstitute.org/morpheus. Volcano plots in Figure S9B were generated using 

average number of peptide counts quantified using mass spectrometry for three independent 

measurements of purifications, which also was the basis for adjusted p-values. These values 

were all calculated and plotted using GraphPad Prism software.

Integrator PRO-seq—Pro-seq was conducted largely according to published protocols 

with slight modifications (Reimer et al., 2021). K562s expressing dCas9-BFP-KRAB were 

spinfected with lentivirus expressing GFP and an sgRNA. Two days after spinfection, the 

cells were sorted for GFP+ on a BD ARIA II. Sort purity was generally >95%. After the 

sort, cells were maintained in media supplemented with 4 ug/ml puromycin for three days 

and then recovered for two days.

Cells were counted, harvested by centrifugation, and washed with cold DPBS. All 

subsequent steps took place at 4° or on ice. All solutions were made with RNase-free 

reagents and were 0.2 μm filtered and chilled before use. 12 million cells were pelleted by 

centrifugation, resuspended in 250ul of buffer W (10 mM Tris pH 8.0, 10 mM KCl, 250 

mM sucrose, 5 mM MgCl2, 1 mM EGTA, 0.5 mM DTT, 10% glycerol, 1x protease inhibitor 

[ThermoFisher A32965], and 0.02% v/v SUPERase-In RNase inhibitor [AM2694], strained, 
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and transferred to conical tubes that had been coated with 1% BSA in PBS overnight. The 

cells were permeabilized by dilution in 10 ml of buffer P (buffer W + 0.1% v/v Igepal 

CA-630 + 0.05% v/v Tween-20) and incubated for 5 minutes. The permeabilized cells were 

harvested by centrifugation at 400xg for 5 minutes, resuspended in 10 mL of buffer W, 

harvested by centrifugation at 400xg for 5 minutes, and resuspended in 250 ul buffer F (50 

mM Tris pH 8.0, 40% v/v glycerol, 5 mM MgCl2, 1.1 mM EDTA, 0.5 mM DTT, 0.02% 

v/v SUPERase-In RNase inhibitor). ≥97% permeabilization efficiency was confirmed on a 

NucleoCounter NC-202 and permeabilized cells were snap frozen.

PRO-seq libraries were generated and sequenced by the Nascent Transcriptomics 

Core at Harvard Medical School according to their standard protocol. PRO-seq 

data were aligned and quantified using STAR (version 2.7.9a) with parameters 

alignEndsType=Local, outFilterMultimapNmax=20, outFilterScoreMinOverLread=0.3, and 

outFilterMatchNminOverLread=0.3. For comparison of gene-level expression profiles, 

gene counts were normalized for sequencing depth (reads per million), log-transformed, 

and subset to well-expressed genes (n=758 genes with >3000 rpm). Then, Spearman’s 

correlation was used to compare the similarity of expression profiles.

SDS-PAGE and western blotting—Samples were mixed with sample loading buffer 

(Licor 928-40004) supplemented with DTT and incubated at 95° for 5 minutes. SDS-PAGE 

was performed with pre-cast 4–12% gradient gels (ThermoFisher NW04127BOX) in MOPS 

(ThermoFisher B000102) according to the manufacturer’s instructions.

For Coomassie staining, gels were washed thoroughly in water, incubated with ReadyBlue 

Protein Gel Stain (Sigma RSB-1L) overnight, and destained in water. For western 

blots, proteins were transferred to nitrocellulose membranes by semi-dry transfer (Biorad 

1704158) according to the manufacturer’s instructions. Membranes were rinsed in water and 

stained with Revert 700 Total Protein Stain according to the manufacturer’s instructions. 

The membranes were then rinsed in TBS, rocked with Everyblot Blocking Buffer (Biorad 

12010020) at room temperature for > 30 minutes, and rocked with primary antibody 

overnight at 4°. The membranes were washed with TBST, and rocked with IR800CW-

labeled secondary antibodies for 30–60 minutes, washed with TBST, and imaged on a Licor 

Odyssey CLx.

CD11b cell surface staining—K562s expressing dCas9-BFP-KRAB were co-spinfected 

with lentiviruses expressing GFP-sgKDM1A and mCherry-sgPTPN1. Eight days after 

spinfection, the cells were counted and harvested by centrifugation. Cells were washed with 

PBE buffer (DPBS + 0.5% BSA + 2 mM EDTA) and resuspended with α-CD11b-AF647 

antibody diluted 1:50 in PBE. Cells were incubated at 4° in the dark for 30 minutes, 

washed twice with PBE, and analyzed on a BD LSRFortessa. The populations were 

gated from a single sample as sgKDM1A (GFP+,mCherry-), sgPTPN1 (GFP-, mCherry+), 

and sgKDM1A/sgPTPN1 (GFP+, mCherry+). Unstained K562s expressing either GFP or 

mCherry were used as single color compensation controls. AF647 was compensated with 

UltraComp eBeads Plus (Thermo 01-3333-42) labeled with α-CD11b-AF647.
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Internally controlled growth assays—K562s expressing Zim3-dCas9-2A-BFP were 

co-spinfected in triplicate with lentiviruses expressing GFP-sgKDM1A and mCherry-

sgPTPN1, or with lentivirus expressing GFP and a non-targeting sgRNA. Every two 

days, cells were analyzed for BFP, GFP, and mCherry on an Attune flow cytometer. 

Enrichment was calculated as sgKDM1A (BFP+, GFP+, mCherry-), sgPTPN1 (BFP+, 

GFP-, mCherry+), and sgKDM1A/sgPTPN1 (BFP+, GFP+, mCherry+) vs uninfected 

(BFP+, GFP-, mCherry-).

Bulk RNA-seq—K562s expressing dCas9-BFP-KRAB were spinfected in biological 

duplicate with lentivirus expressing GFP and an sgRNA. Two days after spinfection, the 

cells were sorted for GFP+ on a BD ARIA II. Sort purity was generally >95%. After 

the sort, cells were maintained in media supplemented with 4 ug/ml puromycin for four 

days and then recovered for two days. Cells were counted, collected by centrifugation, and 

harvested by vigorous vortexing in Qiazol (Qiagen 79306).

Total RNA was extracted with miRNeasy Mini columns (Qiagen 217004) according to the 

manufacturer’s instructions and sequencing libraries were prepared with TruSeq Stranded 

Total RNA Library Prep Human/Mouse/Rat kits (Illumina 20020596) according to the 

manufacturer’s instructions. Libraries were sequenced 2x150 on a NovaSeq (Illumina).

Bulk RNA-seq data were aligned and quantified using STAR (version 2.7.9a) with 

parameters alignEndsType=Local and outFilter-MultimapNmax=20. For comparison of 

gene-level expression profiles, gene counts were corrected for sequencing depth (reads per 

million), and the log2 fold-change for each gene was calculated relative to within-replicate 

non-targeting control expression. The two replicates for each genetic perturbation were 

averaged in order to produce the final data.

Seahorse experiment—K562s expressing dCas9-BFP-KRAB were spinfected with 

lentivirus expressing GFP and an sgRNA. Two days after spinfection, the cells were sorted 

for GFP+ on a BD ARIA II. Sort purity was generally >95%. After the sort, cells were 

maintained in media supplemented with 4 ug/ml puromycin for four days and then recovered 

for three days. On the 9th day post spinfection, seahorse assay were plates were treated 

with Cell-Tak (Corning 354240) according to the manufacturer’s instructions. Cells were 

counted, collected by centrifugation, and resuspended in supplemented Seahorse XF RPMI 

(Agilent 103576-100). 150,000 cells were added to the Seahorse assay plate and attached via 

centrifugation at 200xg for 1 minute with no brake. After 30 minutes of recovery at 37°, the 

cells were subjected to a Mito Stress Test on a Seahorse XFe96 analyzer according to the 

manufacturer’s instructions.

QUANTIFICATION AND STATISTICAL ANALYSIS

Alignment, cell calling, and guide assignment—Cell Ranger 4.0.0 software (10x 

Genomics) was used for alignment of scRNA-seq reads to the transcriptome, alignment 

of sgRNA reads to the library, collapsing reads to UMI counts, and cell calling. The 10x 

Genomics GRCh38 version 2020-A genome build was used as a reference transcriptome. 

For specific applications discussed below, STARsolo (STAR version 2.7.9a) was used extract 
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transcript features, including intronic and exonic alignments and alignment of reads to 

transposable elements.

Reads from the sgRNA libraries were mapped with Cell Ranger. To account for 

differences in sequencing depths across GEM groups from the same experiment, reads 

were downsampled to produce a more even distribution of the number of reads per cell 

across gemgroups, with a threshold of 1000 reads per cell in the K562 day 8 experiment, 

800 reads per cell in the K562 day 6 experiment, and 3000 reads per cell in the RPE1 

experiment. Guide calling was performed with a Poisson-Gaussian mixture model as 

previously described. For each guide, the mixture model was fit 100 times, selecting 

the maximum likelihood model from among the fits. After guide calling, each cell was 

categorized according to its guide identities as representing a single genetic perturbation or 

a multiplet (which may arise from lentiviral recombination or multiple cell encapsulation 

during droplet generation). Only cells bearing two guides targeting the same gene or a single 

guide were used for downstream analysis.

Downstream analyses were performed in Python, using a combination of numpy, 

scipy, Pandas, scikit-learn, pomegranate, infercnvpy, pygenometracks, scanpy and seaborn 

libraries.

Filtering and internal normalization of gene expression measurements—Our 

internal normalization approach is similar to the one described in Adamson et al. (2016). 

First, we identified ‘‘core’’ control sgRNAs. That is, within each experiment there are tens 

to hundreds of possible negative control sgRNAs that were synthesized to have similar base 

compositions to targeting sgRNAs (Horlbeck et al., 2016). Some of these by chance induce 

detectable phenotypes. We constructed a minimal set of control sgRNAs that are largely 

indistinguishable from each other using the following procedure: (i) We take all cells bearing 

all possible non-targeting sgRNAs and represent them by the vector of genes with mean 

>1 UMI count per cell. (ii) We z-normalize the expression of these genes: i.e. we subtract 

the mean and divide by the standard deviation. (iii) For each gene, we test for equality 

of distribution using the Anderson-Darling test (scipy.stats.anderson_ksamp) between all 

possible pairs of non-targeting control sgRNAs. (E.g. In the genome-scale dataset, there are 

585 possible control sgRNAs and therefore 
585
2 = 170280 pairwise comparisons.) (iv) We 

adjust the resulting p-values for multiple hypothesis testing using the Benjamini-Hochberg 

procedure. (v) For each potential control sgRNA, we compute the average number of 

differentially expressed genes relative to all other potential control sgRNAs. (vi) We set 

a dataset-dependent threshold on the number of differentially expressed genes (8 in the 

genome-scale dataset and 30 in the ‘‘K562 essentials’’ and ‘‘RPE1 essentials’’ datasets, 

which were more deeply sequenced and so had more genes passing the expression threshold) 

and kept all potential control sgRNAs that fell below the threshold. For example, in the 

genome-scale dataset this resulted in 514 control sgRNAs.

Next, we filtered cells based on quality metrics. We first computed scale factors to adjust 

for variable sequencing depths across gemgroups: we examined all core control cells (which 

make up ~4% of all cells), computed factors that equalized the mean UMI counts within 
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these cells across gemgroups, and then applied these factors to all cells in the gemgroup 

to produce adjusted UMI counts. We then applied two quality filters, ensuring that cells 

passed a minimum adjusted UMI content filter (genome-scale dataset: 2000 UMIs, K562 

essentials/RPE1 essentials: 3000 UMIs) and a maximum mitochondrial RNA filter (genome-

scale dataset: <25%, K562 essentials: <20%, RPE1 essentials: <11%). (Mitochondrial RNA 

content is the fraction of total UMIs derived from mitochondrially-encoded genes.) These 

filter parameters were chosen by plotting adjusted UMI content vs. mitochondrial RNA 

content and manually setting thresholds that removed the low-quality cells.

Finally, we computed a normalized gene expression matrix for cells passing the quality 

filters via two normalization steps: (i) UMI count normalization: We scale expression within 

all cells so that their total UMI counts equal the median UMI count of core control cells 

within the experiment. (ii) Relative z-normalization: Within each gemgroup, for each gene, 

we compute the mean and standard deviation of expression within control cells and use 

these to z-normalize expression. In other words, if x is the expression of a given gene, it 

is represented by the score z = x − μcontrol /σcontrol, where the mean and standard deviation 

are separately computed within each gemgroup.) The resulting scores should therefore be 

interpreted as ‘‘fraction of transcriptional effort’’ due to the UMI count normalization, with 

a scale set relative to control cells. Put simply, an expression score of +2 thus represents a 

gene expressed at a level 2 standard deviations above the mean in control cells.

Examining effects of normalization on batch effects—As described in the main 

text, we observed batch effects in the data (Data S2 [Figure i]). This variation appeared 

to track mostly with sets of 8 samples that went through the 10x Chromium instrument 

and library prep together, though the precise origin is unclear. To construct this figure, 

we normalized the data in two ways. Raw data normalization: (i) To adjust for variable 

sequencing depth, scale cellular UMI counts by factors chosen so that so that core control 

cells have the same total UMI counts across all gemgroups. (ii) Construct a gemgroup 

mean expression profile of all genes with mean >2 UMI counts per cell by averaging 

counts following normalization in previous step across all cells in the gemgroup. (iii) Scale 

the gemgroup mean expression profiles by dividing by their mean across all gemgroups. 

An expression value of 1 is then the mean across all cells across all gemgroups. Internal 
z-normalization. Normalize expression as described in previous section.

Data S2 (Figure i) compares the two normalization schemes. In both cases the ranges of 

the plot are chosen using seaborn’s robust option (which sets the min and max to the 2nd 

and 98th percentile of the data). Genes are clustered based on the raw data normalization 

and are in the same order in both panels. The gemgroups are presented in order based on 

how samples were multiplexed while performing the experiment as indicated by the color 

groupings at the top.

Energy distance test for identifying perturbations that induce altered 
transcriptional states—To compare distributions of expression states, we used tests 

derived from energy statistics, which allow for testing of equality of distributions when 

data are high-dimensional. In short, each cell is represented by a vector composed of 

its top 20 principal component scores, and we compare whether the distribution of these 
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20-dimensional vectors is equal or not between unperturbed control cells and cells bearing 

each perturbation. When these distributions differ, we can infer that the perturbation is 

causing some change either in the structure or distribution of transcriptional states within the 

perturbed cells.

To construct the distributions to compare, we first applied a series of filtering steps: (i) we 

removed cells that did not pass the UMI or mitochondrial RNA filters described in Internal 
normalization of gene expression measurements; (ii) as features, we took the z-normalized 

expression of all genes with mean expression >0.5 UMIs per cell; (iii) to dampen the effects 

of a handful of strongly induced outlier genes, we clipped any measure with a z-score 

greater than 10 to 10 (this only affects a handful of genes); (iv) finally, we applied principal 

components analysis (using sklearn’s PCA implementation, which will use randomized 

algorithms for datasets of this scale) and kept only the top 20 principal components. The test 

should therefore be interpreted as assessing gross changes in cellular transcriptional state.

To construct a null distribution, we randomly subsampled 5,000 control cells bearing 

non-targeting sgRNAs. (Subsampling was necessary for performance reasons.) For each 

perturbation, we then compute an estimator of the energy distance:

ε x, y = 2
n1n2 ∑

i = 1

n1
∑

j = 1

n2
xi − yi − 1

n1
2 ∑

i = 1

n1
∑

j = 1

n1
xi − xj − 1

n2
2 ∑

i = 1

n2
∑

j = 1

n2
yi − yj

where each xi is one of the control cells and each yj is one of the perturbed cells.

In the limit of infinite data, the energy distance will be 0 between identical distributions 

and positive between non-identical distributions. We assess statistical significance in practice 

using a permutation test by permuting the labels of control and perturbed cells 10,000 times 

and estimating how frequently a larger energy distance would be observed by chance. The 

specific implementation is based on the python package torch-two-sample, modified to use 

numba for improved performance.

Gene-level differential expression testing using the Anderson-Darling and 
Mann-Whitney tests—Because of (i) biological differences in expression characteristics 

across different genes, (ii) the batch effects described above, (iii) incomplete penetrance of 

some perturbations, and (iv) heterogeneity of some gene expression programs, we opted 

to use non-parametric statistical tests rather than tests based on specific distributional 

assumptions about gene expression. Specifically, we z-normalize gene expression relative 

to control cells as described (Internal normalization of gene expression measurements) 

and for each gene test whether the distribution of normalized expression is identical 

between control cells bearing non-targeting sgRNAs and cells bearing each perturbation. 

We used two tests implemented in scipy: the Anderson-Darling test (scipy.stats.anderson_ 

ksamp), which is broadly sensitive to changes in distribution, and the Mann-Whitney U 

test (scipy.stats.mannwhitneyu), which tests whether one distribution is stochastically greater 

than another. For the Anderson-Darling test we extended the range of p values beyond 

those available in scipy’s implementation by computing the p-value for many values of the 

Replogle et al. Page 29

Cell. Author manuscript; available in PMC 2022 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



test statistic using R’s kSamples package and interpolating any intermediate values using 

scipy.interpolate.interp1d. For the Mann-Whitney test we used the asymptotic p values and 

excluded any perturbation with fewer than 10 cells. p-values in both cases were adjusted 

for multiple hypothesis testing using the Benjamini-Hochberg procedure to produce the final 

results.

Functional analyses of strong perturbations—We conducted functional analyses 

to gain insight into the types of gene perturbations that induced strong transcriptional 

phenotypes. ‘‘Strong’’ perturbations were defined by three criteria: (i) at least 50 

differentially expressed genes at a significance of p < 0.05 by Anderson-Darling test 

following Benjamini-Hochberg correction; (ii) at least 25 cells that passed our quality filters; 

and (3) an on-target knockdown, if measured, of at least 30% (i.e. the target of perturbation 

was either knocked down by at least 30% or was not detected, a broad attempt to remove 

non-functional perturbations). ‘‘Weak’’ perturbations met the same criteria but had fewer 

than 5 differentially expressed genes. Strong and weak perturbations were largely similar 

in terms of representation and knockdown efficacy, as described in Figure S2. To look for 

classes of functional behaviors among strong and weak perturbations, we used the gseapy 

implementation of the Enrichr algorithm to compute gene set enrichment p-values within 

the KEGG2021 pathway gene set (with the set of all targeted genes in the experiment as 

the background list). To determine whether strong and weak perturbations fell in different 

subcellular locations, we used location annotations from Itzhak et al. (2016).

Global analysis and clustering of strong perturbations—The analysis presented 

covers 1973 perturbations that met three criteria: (i) at least 50 differentially expressed 

genes at a significance of p < 0.05 by Anderson-Darling test following Benjamini-Hochberg 

correction; (ii) at least 25 cells that passed our quality filters; and (3) an on-target 

knockdown, if measured, of at least 30% (i.e. the target of perturbation was either knocked 

down by at least 30% or was not detected, a broad attempt to remove non-functional 

perturbations). As features, we used a union of two sets of genes: (i) the top 10 differentially 

expressed genes for all perturbations (ordered by the value of the Anderson-Darling test 

statistic) and (ii) all genes of mean >0.25 UMIs per cell with variance in the top 30% of 

the dataset. We represented perturbations by their mean normalized expression profile across 

these 2319 highly variable genes. To prevent the direct targets of knockdown influencing 

results, the target gene value was replaced by 0 for the corresponding perturbation. For 

example, RPS5 gene normalized expression was set to 0 in the expression profile of the 

RPS5 perturbation, which is equal to the mean in control cells by construction.

Because clearly related perturbations sometimes showed variable absolute phenotypic 

strengths, we used correlation as a metric to compare profiles, since it is scale-invariant. 

We conducted two global assessments of the ability of these expression profile correlations 

to recall known biological relationships. First, curated complexes were obtained from the 

03.09.2018 CORUM3.0 database (Giurgiu et al., 2019). We identified all complexes that had 

at least 66% of genes represented within the 1973 perturbations (based on matching gene 

symbols between the datasets), leading to 327 complexes. Each represented complex was 

then split into a series of links (e.g. if a complex contained genes A, B, and C, then it would 
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be split into links A-B, B-C, and A-C). The figure plots the distribution of expression profile 

correlations of these annotated links versus the distribution of all possible links among 

the 1973 targeted genes. A similar analysis was then conducted using predicted protein 

links from the v11.5 of STRING (Szklarczyk et al., 2019) (9606.protein.links.v11.5.txt.gz) 

after mapping STRING protein IDs to gene names (using the ‘‘preferred_name’’ field in 

9606.protein.info.v11.5.txt.gz). Among the 1973 genes in the figure there are 1,945,378 

possible pairwise links between genes, 243,558 of which have scores within STRING. We 

binned these represented links into 6 equally spaced bins based on observed expression 

profile correlation. The figure shows kernel density estimates of the STRING score 

distribution within each bin made using seaborn’s violinplot (with cut set to 0 so that density 

estimates do not extend past observed data).

To identify clusters of related perturbations, we manually computed correlation distances 

between all pairs of expression profiles, and used HDBSCAN (metric=’precomputed’, 

min_cluster_size=4, min_samples=1, cluster_selection_method=’eom’) to identify 63 

clusters. This procedure is intrinsically conservative due to the choice of metric and 

clustering algorithm, so many perturbations are not assigned to any cluster—our emphasis 

was on identifying the strongest signals rather than the most comprehensive. We then 

annotated the possible function of these clusters using a combination of manual lookup of 

related genes and automated annotation using CORUM complexes and STRING clusters. 

(STRING clusters are derived from 9606.clusters.info.v11.5.txt.gz and are labeled according 

to the ‘‘best_described_by’’ field.) We only assigned automated annotations when a cluster 

contained 75% or more of the members of a CORUM complex or STRING cluster. 

Aggregated information about clusters is provided in Table S3 which has the following 

fields:

members The genes assigned to the cluster by HDBSCAN

nearby_genes Perturbations that are close to the cluster center in the high-dimensional 
embedding (see below). These are candidate members of the cluster that may 
be too weak to be called by HDBSCAN, which is quite conservative.

emb_variable_x Location of cluster center in Figure 2D

emb_variable_y Location of cluster center in Figure 2D

manual_annotation Manual annotation of cluster function.

contained_string_cluster_ids IDs of any STRING clusters contained within this cluster (at least 75% of 
members must be represented).

contained_string_clusters Descriptions of any STRING clusters contained within this cluster (at least 
75% of members must be represented).

contained_corum_complexes Names of any CORUM complexes contained within this cluster (at least 75% 
of members must be represented).

nearby_corum_complexes Names of any CORUM complexes that are close to this cluster in the high-
dimensional embedding (at least 75% of members must be represented).

nearby_string_clusters Names of any STRING clusters that are close to this cluster in the high-
dimensional embedding (at least 75% of members must be represented).

strong_positive_gene_expr_clusters Gene expression programs (see Figure 4) for which average expression in this 
cluster is at least 2 standard deviations above normal expression level.

strong_negative_gene_expr_clusters Gene expression programs (see Figure 4) for which average expression in this 
cluster is at least 2 standard deviations below normal expression level.
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members The genes assigned to the cluster by HDBSCAN

best_description Either the manual annotation or identity as called by CORUM/STRING. Most 
of the labels in Figure 2D come from this field.

example_genes Manually curated genes indicative of cluster function.

Notes Notes, including any known off-targets.

Minimum distortion embedding of strong perturbations—The visualization in 

Figure 2D is a minimum distortion embedding (MDE) of the 1973 strong perturbations 

created using pymde v0.1.13. pyMDE solves MDE problems based on minimizing 

Euclidean distances. To adapt it to correlation distances, we first z-normalized each 

expression profile. (I.e. If a perturbation is represented by the vector x of 2319 

highly variable genes, we computed x = x − x /σx.) Because of the polarization identity, 

minimizing the Euclidean distance between these normalized profiles is equivalent to 

minimizing the (square root of) the correlation distance between the unnormalized profiles:

x − y 2 = x 2 + y 2 − 2 x ⋅ y = 2 1 − corr x, y

where the second equality follows from the z-normalization and the scale-invariance of 

correlation.

We created two embeddings. First, we used pymde to embed the dataset into 20 

dimensions. This ‘‘high-dimensional embedding’’ serves as an imputation step, as it 

distorts the geometry of the dataset so that clusters of related genes that may be 

driven by weaker overall correlations are allowed to form. Proximity within this 

embedding was used to identify genes, CORUM complexes, and STRING clusters 

that were near to the HDBSCAN clusters called on the raw data (which were well-

preserved in the embedding) as described in Table S3. To construct the embedding, 

we initialized pymde using the spectral embedding of the dataset (using sklearn’s 

SpectralEmbedding with n_components=20, affinity=’nearest_neighbors’, n_neighbors=7, 

eigen_solver=’arpack’)), and then ran pymde’s ‘‘preserve_neighbors’’ function with 

embedding_dim=20, n_neighbors=7, and repulsive_fraction=5. pymde was run until 

convergence with a final average distortion of 0.0979 and final residual norm of 9.4e-06.

To produce the embedding in Figure 2D, we ran pymde with the same parameters but 

with the embedding dimension set to 2 (final average distortion 0.105, final residual 

norm 3.2e-06). The bold cluster labels in the figure correspond to the manual annotations 

mentioned in the previous section. A handful of changes were manually incorporated: (1) 

the cytochrome c-ubiquinol cluster was not detected by HDBSCAN, and was manually 

annotated (2) 4 clusters involving protein post-translational modifications (ubiquitination, 

sumoylation, acetylation, neddylation) were annotated with a single label of ‘‘post-

translational modifications’’ (3) components of eIF3 split across two clusters that are next 

to each other in the embedding and are labeled as a single cluster (4) all clusters of 

unknown function were not labeled but are included in Table S3. The complex labels come 

from CORUM or STRING. A complex/cluster label was placed if and only if 75% of the 
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members of a complex or cluster were close to each other in the 20-dimensional pyMDE 

embedding (‘‘close’’ meaning at or below the 5th percentile of all pairwise distances). 

Redundant/duplicated clusters were manually deduplicated. The locations of the labels on 

the figure were then adjusted for readability. Label location is a decent proxy for, but not an 

entirely accurate representation of, cluster and complex locations.

Clustering of gene expression programs—We next turned to identifying conserved 

gene expression programs using a similar pipeline applied to the transpose of the 

expression matrix from the previous sections. Initial HDBSCAN clustering on the raw 

data did not yield very many clusters, which we attributed to the broad range in gene 

expression program size and dynamic range. To attempt to equalize for these factors, we 

performed the clustering on a high-dimensional embedding of the data. Each gene was 

represented by its expression across the 1973 perturbations in Figure 2 and we masked 

the targets of knockdown as described there to avoid target gene knockdown influencing 

clustering. We used pyMDE with the same normalization as above to encourage genes with 

correlated expression to be placed nearby to each other (20 dimensions, n_neighbors=7 

and repulsive_fraction=5, final average distortion 0.145, final residual norm 5.1e-06). We 

then identified clusters using HDBSCAN applied to the embedding (metric=’euclidean’, 

min_cluster_size=10, min_samples=10, cluster_selection_method=’leaf’), producing 38 

clusters. We performed similar analyses as in Figure 2 to annotate known CORUM 

complexes and STRING clusters. Cluster identities were then manually annotated using a 

combination of these automated annotations, manual gene searches, and gene set enrichment 

analyses conducted using Enrichr (Xie et al., 2021). These clusters are summarized in Table 

S3, which includes the fields:

members The genes assigned to the cluster by HDBSCAN.

string_cluster_ids IDs of any STRING clusters contained within this cluster (at least 75% of members must 
be represented).

string_clusters Descriptions of any STRING clusters contained within this cluster (at least 75% of 
members must be represented).

corum_complexes Names of any CORUM complexes contained within this cluster (at least 75% of 
members must be represented).

nearby_corum_complexes Names of any CORUM complexes that are close to this cluster in the high-dimensional 
embedding.

nearby_string_clusters Names of any STRING clusters that are close to this cluster in the high-dimensional 
embedding.

strong_positive_clusters Perturbation clusters (see Figure 2) for which average expression of this expression 
program is at least 2 standard deviations above normal expression level.

strong_negative_clusters Perturbation clusters (see Figure 2) for which average expression of this expression 
program is at least 2 standard deviations below normal expression level.

manual_annotation Manual annotation of cluster function.

example_genes Manually curated genes indicative of cluster function.

To produce Figure 3B, we averaged expression within the 64 perturbation clusters from 

Figure 2 across the genes within the 38 gene expression clusters. Each element in the heat 

map therefore represents an average over both multiple related perturbations and multiple 

related genes. The labels were manually selected to highlight interesting features.
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Screens of gene expression programs—To demonstrate the ability of Perturb-seq 

to conduct screens on aggregate phenotypes, we conducted two analyses to identify 

perturbations that strongly induced interesting expression programs. In the first comparison, 

we compared expression of genes associated with erythroid differentiation (gene expression 

cluster 15) to those associated with myeloid differentiation (gene expression cluster 21) in 

Figure 4D. We scored expression programs by taking the mean normalized gene expression 

of all genes in the associated clusters. We computed scores for all perturbations in the 

genome-scale dataset that were detected in at least 25 cells, and then z-normalized these 

scores to make scales comparable. The figure has labels on the 15 most outlying genes 

across the two programs. We then conducted an identical analysis comparing expression 

of an unfolded protein response cluster (cluster 2) to an integrated stress response cluster 

(cluster 12) in Figure 4C.

Analysis of composite phenotypes: total RNA, fraction mtRNA, fraction TE, 
RNA splicing—Composite phenotypes integrate data from across the transcriptome to 

describe global cellular features. While some derive from simple metrics, others rely on 

extracting information from the transcriptome beyond gene expression levels. As an example 

of a simple metric, the number of UMIs aligned to the transcriptome (GRCh38 version 

2020-A) of single-cells was used to represent the total cellular RNA content. To produce 

Figure 4H, we averaged the total RNA content of cells for each perturbation, and z-scored 

the RNA content with respect to non-targeting controls. Similarly, to calculate the fraction 

of mitochondrial RNA per cell (fraction mtRNA), the sum of the expression levels of the 13 

mitochondrial genome protein-coding genes (MT-ND6, MT-ND1, MT-ND2, MT-ATP8, MT-

ND4L, MT-ND5, MT-ND3, MT-CO1, MT-CO2, MT-ND4, MT-ATP6, MT-CO3, MT-CYB) 

was divided by the total cellular RNA content for each individual cell.

The scTE (He et al., 2021) processing pipeline was used to quantify the expression 

of transposable elements in single cells. As transposable elements tend to be present 

in many degenerate copies throughout the genome, scTE allocates TE reads to TE 

metagenes rather than specific genomic positions. Reads were aligned to the genome 

using STARsolo (STAR version 2.7.9a) with the flags ‘ –outSAMattributes NH HI AS 

nM CR CY UR UY –soloFeatures Gene GeneFull SJ Velocyto –readFiles Command 

zcat –outFilterMultimapNmax 100 –winAnchorMultimapNmax 100 –outMultimapperOrder 

Random –runRNGseed 777 –outSAMmultNmax 1’ to allow multimapping. To avoid 

incompatibilities in cell calling between STARsolo and Cell Ranger, the output of Cell 

Ranger cell calling was used to define the STARsolo cell barcode whitelist using ‘–

soloCBwhitelist’. Next, aligned reads were allocated to genes and TEs using scTE. The 

flag ‘-o nointron’ was used to prevent the quantification of TEs in gene introns. From single-

cell transcriptomes, quantification of all TEs in the classes LINE, SINE, LTR, DNA, and 

Retroposon based on RepeatMasker were extracted. To calculate the fraction of repetitive 

and transposable element RNA per cell (fraction TE), the sum of the expression level of 

these TEs was divided by the total cellular RNA content for each individual cell. To produce 

Figure 4G, we averaged the fraction TE of cells for each perturbation.

The alignments from STARsolo described above were also be used to quantify RNA 

splicing. Due to (i) the sparsity of single-cell data (ii) the relationship between the fraction 
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of spliced reads and gene expression levels, gene-wise RNA splicing was quantified at the 

pseudobulk level. From the STARsolo Velocyto output, the levels of spliced and unspliced 

reads for each gene were averaged across all cells bearing each perturbation, ignoring 

ambiguous reads. Then, for each gene, the fraction of unspliced reads was divided by the 

mean fraction of unspliced reads for that gene across all non-targeting control perturbations. 

The results in Figure 3F display a common set of genes across all perturbations.

Leverage scores for quantifying perturbation penetrance and variability—Our 

use of non-parametric tests in differential expression testing is in part to accommodate 

perturbations that may be incompletely penetrant or heterogeneous in effect. To attempt to 

quantify these features, we developed a scalar single-cell score to summarize how outlying 

each cell’s transcriptional state was relative to control cells. We used an approach based 

on leverage scores, which measure how outlying the rows or columns of a matrix are 

and which form the basis for many randomized algorithms (Ma et al., 2013). Specifically, 

we: (i) Construct an expression matrix consisting of all cells that pass the quality filters 

described in Internal normalization of gene expression measurements, and all genes with 

mean expression >0.25 UMI counts per cell. (ii) To dampen the effects of a handful of 

strongly induced outlier genes, we clipped any measure with a z-score greater than 10 to 

10 (this only affects a handful of genes) (iii) To avoid the influence of gemgroup-level 

batch effects and variable sequencing depth, we then compute leverage scores separately 

within each gemgroup. Row leverage scores, corresponding to the cell axis of the expression 

matrix, are calculated as the squared norm of the top 20 left singular vectors within each 

gemgroup (computed via the truncated SVD routine scipy.sparse.svds with the arpack 

solver with k=20). We then normalize these scores so that the sum over all cells in the 

gemgroup is 1 (i.e. compute the leverage sampling probability distribution). (iv) Finally, to 

integrate leverage scores across gemgroups, we then take logs, and rescale by z-normalizing 

relative to the scores of control cells (subtracting their mean and dividing by their standard 

deviation). All the leverage scores presented in the figures are the leverage scores after this 

normalization procedure.

In Figure S6 we conducted various analyses to validate leverage scores as measures 

of phenotype and to use them to study penetrance of perturbations. We considered all 

perturbations that passed the following criteria: (i) >5 differentially expressed genes by 

Anderson-Darling test; (ii) detected in at least 25 cells that passed our quality filters; and 

(iii) the gene targeted by the perturbation was either undetectable in the expression data 

or knocked down by at least 30% if detected (i.e., we removed perturbations that appear 

non-functional). For these perturbations we compared the mean leverage scores to the 

number of differentially expressed genes found using the Anderson-Darling test. To assess 

reproducibility we then subset to perturbations that were present in both the genome-scale 

dataset and the K562 essentials dataset, including non-targeting controls.

In the analyses of perturbations targeting Mediator and the small subunit of the ribosome 

we only included perturbations that were (i) present in both the genome-scale dataset and 

the ‘‘K562 essentials’’ dataset and (ii) targeted the principal ‘‘P1’’ transcript identified 

by the FANTOM consortium. (A handful of genes also had perturbations targeting the P2 

transcript that did not generally have effects.) Knockdown was computed as the ratio of 
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mean (unnormalized) expression of the target gene within perturbed cells vs. that in cells 

with non-targeting sgRNAs. The plots show kernel density estimates of the distributions 

of the leverage scores of all cells with these perturbations constructed using seaborn’s 

violinplot (with cut set to 0 so that estimated distributions do not extend beyond the range of 

the data). The gray bars represent the 10%-90% quantiles of cells with non-targeting control 

sgRNAs for comparison.

Finally, in Figure 5B we used leverage scores to search for perturbations that had 

highly variable phenotypes. We considered all perturbations using the same criteria as 

in fig. S6. We used the standard deviation of the leverage scores as a metric for 

variability, as diagrammed in Figure 5A. The two examples in this figure are derived 

from actual data. The 20 labeled genes are the most outlying from the lowess local 

regression between the standard deviation of leverage scores and the log of the number 

of differentially expressed genes detected by the Anderson-Darling test (computed using 

statsmodels.nonparametric.smoothers_lowess.lowess).

Analysis of chromosomal instability and cell cycle—The framework described in 

inferCNV (Patel et al., 2014) and implemented as infercnvpy (https://github.com/icbi-lab/

infercnvpy) was used to detect evidence of chromosomal copy number changes. The raw 

single-cell gene expression matrix was first filtered to remove lowly expressed genes 

(<0.05 UMIs per cell across the population), normalized for total UMI content (using 

scanpy.pp.normalize_total with target_sum=1e6, exclude_highly_expressed=False, and 

max_fraction=0.05), and log-scaled (using scanpy.pp.log1p). Then we used infercnvpy to 

compute rolling average gene expression changes for windows of 100 genes with a dynamic 

threshold of 1.5 standard deviations for noise filtering (using infercnvpy.tl.infercnv). For 

each single-cell, this generated a vector of CIN values across the genome. To label cells 

with likely karyotypic abnormalities, unstable karyotypic cells were heuristically defined as 

having ≥1 chromosome with evidence of changes in chromosomal copy number (nonzero 

CIN values) for >80% of the chromosomal length. For Figure 5G, the CIN score of 

genetic perturbations was calculated as the mean single-cell sum of squared CIN values, 

z-normalized relative to non-targeting control perturbations.

To show cell cycle effects in Figures 5D and 5E, we chose to use a dimension reduction 

approach. Previous approaches to cell cycle analyses in Perturb-seq have largely focused 

on supervised classification of cells into canonical cell cycle states. However, we found 

that these approaches did not allow for aberrant cell cycle states sometimes generated 

by genetic perturbations. As a summary of single-cell cell cycle states, we performed a 

Uniform Manifold Approximation and Projection (UMAP) dimension reduction based on 

the expression n=199 known cell cycle genes [obtained from Seurat (Satija et al., 2015) 

and (Adamson et al., 2016)]. From total UMI content normalized, log-scaled expression 

data, a neighborhood graph was computed (using scanpy.pp.neighbors with n_neighbors=30, 

method=’umap’, metric=’correlation’, and n_pcs=20) followed by UMAP embedding (using 

scanpy.tl.umap with default parameters). This UMAP revealed cells in canonical cell cycle 

stages when compared with other methods, but also naturally separated dying cells and 

putatively quiescent cells. Gates were drawn by manual inspection to approximately separate 

cells likely to be in S, G2/M, and G1/G0 cell cycle phases.
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Analysis of transcriptional responses to mitochondrial stress—To compare the 

functional specificity of nuclear and mitochondrial genome responses to mitochondrial 

stress, we clustered mitochondrial perturbations based on their transcriptional phenotypes. 

The analysis presented in Figures 6A and 6C (K562 day 8 data) covers 268 mitochondrial 

perturbations that met three criteria: (i) at least 50 differentially expressed genes at 

a significance of p < 0.05 by Anderson-Darling test following Benjamini-Hochberg 

correction; (ii) at least 30 cells; and (iii) an on-target knockdown of at least 60%. As 

features, we used 1715 genes encoded in the nuclear genome expressed at >1 UMI per cell 

or the 13 protein-coding mitochondrial-encoded genes. Analogously, the analysis presented 

in Figures S12A and S12E (RPE1 day 7 data) covers 140 mitochondrial perturbations 

that met three criteria: (i) at least 20 differentially expressed genes at a significance of 

p < 0.05 by Anderson-Darling test following Benjamini-Hochberg correction; (ii) at least 

30; and (iii) an on-target knockdown of at least 60%. As features, we used 2017 genes 

encoded in the nuclear genome expressed at >1 UMI per cell or the 13 protein-coding 

mitochondrial-encoded genes.

To cluster these data, we used correlation as a metric to compare z-normalized expression 

profiles, since it is scale-invariant. We clustered using HDBSCAN (metric=’correlation’, 

min_cluster_size=3, min_samples=1, cluster_selection_method=’eom’, alpha=1.0). As 

discussed above, this procedure is intrinsically conservative due to the choice of metric 

and clustering algorithm, so many perturbations are not assigned to any cluster. We used 

the hierarchical clustering output of HDBSCAN to manually identify and label groups of 

perturbations in the figures.

To compare the heterogeneity of mitochondrial genome expression, we used two 

approaches. First, we used a data-driven approach comparing the 38 gene expression 

programs described in Figure 4B across perturbations. For each program, we scored its 

expression within each genetic perturbation, and calculated a standard deviation of these 

scores across the different perturbations in the K562 day 8 experiment. The mitochondrial 

genome program discovered in this way consists of the 13 protein-coding mitochondrial 

genes, plus two MT-RNR2-like pseudogenes encoded in the nuclear genome which are 

likely to multimap with mitochondrial-encoded transcripts. In Figure S12C, we show a 

histogram of the variability of expression programs across perturbations. Second, we used a 

hypothesis-driven approach that compared the variation of mitochondrial genome responses 

by the protein localization of perturbations. We used data from the Human Protein Atlas 

to assign locations to different perturbations (https://www.proteinatlas.org/about/download 

table subcellular_location.tsv.zip; some locations were collapsed into supersets), excluding 

any dual-localized proteins. For all perturbations with the same localization and at least 

50 differentially expressed genes at a significance of p < 0.05 by Anderson-Darling test 

following Benjamini-Hochberg correction, we calculated the variance of z-normalized gene 

expression profiles for each mitochondrially encoded gene. The data in Figure 7B (K562 day 

8) and S12B (RPE1) represents the average variance across mitochondrially-encoded genes 

for each localization.

To quantitatively compare the specificity of the mitochondrial and nuclear transcriptional 

responses, we employed random forest classifiers. The analysis presented in Figure S12F 
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(K562 day 8 data) covers perturbations that met three criteria: (i) cause at least 50 

differentially expressed genes at a significance of p < 0.05 by Anderson-Darling test 

following Benjamini-Hochberg correction; (ii) at least 30 cells; and (iii) belong to either 

the small or large mitochondrial ribosomal subunit (identified by gene names beginning with 

MRP), ATP synthase (identified by gene names beginning with ATP5), proteostatic factors 

(including PAM16, DNAJC19, TFAM, HSPA9, TOMM40, TOMM20, PMPCB, LONP1, 

and HSPE1). As features, we used 2039 genes encoded in the nuclear genome expressed at 

>0.5 UMI per cell with variance in the upper 25% of the dataset, or the 13 protein-coding 

mitochondrial encoded genes. To train the random forest classifier to separate cells by 

perturbed complex (as described above), we used the scikit-learn implementation with 

extremely randomized trees with 1,000 trees in the forest and 100 features. The reported 

accuracy is the balanced accuracy defined as the defined as the average of recall obtained on 

each class. To visualize the data, we used a UMAP (metric=’correlation’, n_neighbors=10) 

generated on the nuclear or mitochondrial genome.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Perturb-seq maps the transcriptional effects of genetic perturbations at 

genome scale

• Transcriptional signatures allow prediction of function for thousands of genes

• Single-cell RNA-seq enables the study of complex composite phenotypes like 

aneuploidy

• Analysis of mitochondrial genome expression reveals diverse, stress-specific 

regulation
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Figure 1. Genome-scale Perturb-seq via multiplexed CRISPRi
(A) Experimental strategy.

(B) On-target knockdown statistics in K562 cells (red) and RPE1 cells (blue).

(C) Comparing growth phenotype versus the number of differentially expressed genes 

(DEGs) in K562 cells. Growth phenotypes are reported as the log2 guide enrichment per 

cell doubling (gamma).

See also Figures S1, S2, and S3.
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Figure 2. Data-driven inference of gene function from transcriptional phenotypes
(A) Analysis schematic. Genetic perturbations that elicited strong responses were clustered 

by correlation of expression of highly variable genes.

(B) Distributions of pairwise expression profile correlations among all possible gene-gene 

pair versus among genes in 327 CORUM3.0 protein complexes that have at least two thirds 

of complex subunits within the dataset.

(C) Kernel density estimates (KDEs) of STRING scores divided into bins based on 

expression profile correlation.

(D) Minimum distortion embedding where each dot represents a genetic perturbation. 

Manual annotations (black labels) of cluster function are placed near the median location 

of genes within the cluster. CORUM complexes or STRING clusters (green labels) are 

annotated.

(E) Quantification of 28S to 18S rRNA ratio after knockdown of indicated genes by 

CRISPRi. rRNA was measured by Bioanalyzer in biological duplicate with two distinct 

sgRNAs per gene (green and blue; solid gray lines represent mean). Dotted gray lines 

represent two standard deviations above and below the mean of non-targeting controls.
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See also Figure S4.
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Figure 3. Discovery of a novel gene member and functional submodules of the Integrator 
complex
(A) Location of Integrator complex members in the minimum distortion embedding.

(B) Relationship between Integrator complex members and C7orf26 in K562 cells and 

RPE1 cells. The heatmap shows the Pearson correlation between gene expression profiles of 

Integrator complex members.

(C) Co-depletion of Integrator complex members. Integrator complex members were 

depleted by CRISPRi in K562 cells. Lysates were probed by western blot.

(D) Co-immunoprecipitation of endogenous C7orf26 with His-INTS10. HEK293T were 

transfected with His-INTS10 or INTS10. Lysates were affinity purified and probed by 

western blot.

(E) Purification of a INTS10-13-14-C7orf26 complex. His-INTS10, INTS13, INTS14, and 

C7orf26 were overexpressed, affinity purified, separated via SEC, and probed by western 

blot.
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(F) Effects of Integrator modules on gene-level splicing scores from Perturb-seq data.

(G) Density of PRO-seq reads at the snRNA RNU1-1 locus mapping actively engaged RNA 

polymerase II.

(H) Structure of the Integrator complex colored by Perturb-seq functional modules. The 

endonuclease (blue) and shoulder/backbone (orange) modules were obtained from the 

cryo-EM structure (Zheng et al., 2020). The model of the newly discovered INTS10-13-14-

C7orf26 module was built by docking the crystal structure of INTS13-INTS14 (Sabath et al., 

2020) with an AlphaFold multimeric model of INTS10 and C7orf26.
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Figure 4. Summarizing genotype-phenotype relationships with Perturb-seq
(A) Analysis schematic.

(B) Heatmap of the genotype-phenotype map. The heatmap represents the mean Z scored 

expression for gene expression and perturbation clusters labeled with manual annotations.

(C) Comparison of ISR and UPR scores for perturbations.

(D) Comparison of erythroid and myeloid differentiation scores for genetic perturbations. 

Genetic perturbations are colored to reflect cluster identity.

(E) CD11b surface expression (measured by flow cytometry) upon knockdown of PTPN1 or 

KDM1A in K562 cells.

(F) Correlation of composite phenotypes across time points and cell types. Fraction TE 

represents the number of non-intronic reads mapped to TEs over total, averaged over all cells 

bearing each perturbation. Fraction mtRNA represents the mean number of reads mapped to 

mitochondrial genome protein-coding genes over total. Total RNA represents the mean total 

RNA content.

(G) Comparison of TE expression across time points.
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(H) Comparison of total RNA content across time points.

See also Figure S5.
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Figure 5. Exploring acute consequences and genetic drivers of aneuploidy in single cells
(A) Schematic of heterogeneity statistic. Single-cell leverage scores quantify how outlying 

each cell is relative to control cells with single-cell heterogeneity quantified as the standard 

deviation of leverage scores.

(B) Identifying heterogeneous perturbations by comparison of single-cell heterogeneity to 

number of differentially expressed genes.

(C) Heatmap of chromosome copy-number inference from Perturb-seq data. For expressed 

genes, the log-fold change in expression is calculated with respect to the average of control 

cells, and genes are ordered along the genome. A weighted moving average is used infer 

copy-number changes (columns) in single cells (rows). Cells are ordered by hierarchical 

clustering based on correlation of chromosome copy-number profiles.

(D and E) Comparison of cell-cycle occupancy upon acute karyotypic changes. Abnormal 

karyotypic cells were defined as having ≥1 chromosome with evidence of changes in 

chromosome copy number for >80% of the chromosome length. Cell-cycle occupancy is 

shown as a 2D KDE of a random subset of 1,000 cells per karyotypic status.

(F) Comparison of CIN status on ISR score in RPE1 cells.
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(G) Comparison of the effect of genetic perturbations on the CIN score across cell types. 

The perturbation CIN score is calculated as the mean single-cell sum of squared CIN values, 

z-normalized relative to control perturbations.

(H) Schematic of a subset of genetic perturbations that drive CIN.

See also Figures S6 and S7.
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Figure 6. Global organization of the transcriptional response to mitochondrial stress
(A) Clustering perturbations of nuclear-encoded genes whose protein products are 

targeted to mitochondria (mitochondrial perturbations) by nuclear transcriptional response. 

Mitochondrial perturbations were annotated by MitoCarta3.0 and subset to those with a 

strong transcriptional phenotype (n = 268). The heatmap displays the Pearson correlation 

between mean normalized gene expression profiles of mitochondrial perturbations in K562 

cells clustered by HDBSCAN.

(B) Variability in the mitochondrial transcriptome by perturbation localization. For each of 

the 13 mitochondrially encoded genes, the variance in mean normalized expression profiles 

was calculated between all perturbations with the same localization (in the Human Protein 

Atlas). Barplots represent the average across genes with 95% confidence interval obtained 

by bootstrapping.
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(C) Clustering mitochondrial perturbations by mitochondrial transcriptional response. 

Mitochondrial perturbations were defined as in (A). Gene expression profiles were restricted 

to the 13 mitochondrial-encoded genes. Heatmap is displayed and clustered as in (A). 

Clusters were manually annotated.

(D) Heatmap visualizing the mitochondrial genome transcriptional response to diverse 

mitochondrial stressors. The expression of the 13 mitochondrially encoded genes (relative to 

controls) is shown for a subset of representative mitochondrial perturbations.

See also Figure S8.
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Figure 7. Investigating regulation of the mitochondrial genome in stress
(A) Mitochondrial transcriptome schematic.

(B) Density of Perturb-seq reads along the mitochondrial genome for select genetic 

perturbations. Reads are aligned to both the H-strand (dark gray) and L-strand (light gray).

(C) Comparison of mitochondrial gene expression profiles between Perturb-seq and bulk 

RNA-seq. Heatmap displays changes in expression of the 13 mitochondria-encoded genes 

(columns) for perturbations (rows) in Perturb-seq and bulk total RNA-seq data collected 

from K562 cells.

(D) Clustering of TMEM242 genetic perturbation based on the mitochondrial transcriptome. 

Genetic perturbations to members of ATP synthase and complex I of the respiratory chain 

were compared with knockdown of TMEM242, a mitochondrial gene of unknown function. 

Gene expression profiles were restricted to the 13 mitochondrially encoded genes. The 
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heatmap displays the Pearson correlation between pseudobulk z-normalized gene expression 

profiles of mitochondrial perturbations in K562 cells.

(E) Effect of TMEM242 knockdown on mitochondrial respiration. A Seahorse analyzer 

was used to monitor oxygen consumption rate (OCR) through a Mito stress test. Data are 

presented as average ± SEM, n = 6.

(F) Schematic diagram of mitochondrial stress response.

See also Figure S8.

Replogle et al. Page 56

Cell. Author manuscript; available in PMC 2022 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Replogle et al. Page 57

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

α-INTS10 Abcam Cat# ab180934s

α-INTS13 Bethyl Cat# A303-575A; RRID: 
AB_11125549

α-INTS14 Prestige Cat# HPA040651

α-C7orf26 Prestige Cat# HPA052175

α-His CST Cat# 2366

α-Mouse Licor Cat# 926-32210

α-Rabbit Licor Cat# 926-32213

α-CD11b AF647 Biolegend Cat# 101220; RRID: 
AB_493546

Bacterial and virus strains

MegaX Competent Cells ThermoFisher Cat# C640003

Stellar Competent Cells Takara Cat# 636766

Chemicals, peptides, and recombinant proteins

TransIT-LT1 Transfection Reagent Mirus Bio Cat# MIR2300

Critical commercial assays

Chromium Single-Cell 3ʹ v3 with Feature Barcoding 10x 
Genomics

PN-1000075, PN-1000153, 
PN-1000079

Seahorse XF Cell Mito Stress Test Agilent Cat# 103015-100

Bioanalyzer RNA nano Agilent Cat# 5067-1511

Deposited data

Raw sequencing data from Perturb-seq screens This paper SRA BioProject 
PRJNA831566

Processed data from Perturb-seq screens This paper http://gwps.wi.mit.edu

Experimental models: Cell lines

K562 dCas9-BFP-KRAB Gilbert et al., 
2014

N/A

RPE1 Zim3-dCas9 This study N/A

Oligonucleotides

Dual sgRNA gDNA primer: 
AATGATACGGCGACCACCGAGATCTACACCGCGGTCTGTATCCCTTGGAGAACCACCT

Nunéz et al., 
2021

oJR324

Dual sgRNA gDNA index primer: 
CAAGCAGAAGACGGCATACGAGATnnnnnGCGGCCGGCTGTTTCCAGCTTAGCTCTTAAA

Nunéz et al., 
2021

oJR325

Custom R1 sequencing primer: CGCGGTCTGTATCCCTTGGAGAACCACCTTGTTGG Nunéz et al., 
2021

oJR326

Custom R2 sequencing primer: GCGGCCGGCTGTTTCCAGCTTAGCTCTTAAAC Nunéz et al., 
2021

oJR328

Custom Index Read 1 sequencing primer: GTTTAAGAGCTAAGCTGGAAACAGCCGGCCGC Nunéz et al., 
2021

oJR327

Recombinant DNA

See Table S9 for plasmids used in this study This paper N/A

Software and Algorithms

Cell. Author manuscript; available in PMC 2022 August 16.

http://gwps.wi.mit.edu/


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Replogle et al. Page 58

REAGENT or RESOURCE SOURCE IDENTIFIER

CellRanger 4.0.0 10X 
Genomics, 
Inc.

http://
software.10xgenomics.com

sgRNA assignment scripts Replogle et 
al., 2020

https://github.com/
josephreplogle/
guide_calling

Perturb-seq analysis codebase Norman et 
al., 2019

https://github.com/
thomasmaxwellnorman/
Perturbseq_GI
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