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Abstract

Mitochondrial functions include production of energy, activation of programmed cell death, and a number of cell
specific tasks, e.g., cell signaling, control of Ca2+ metabolism, and synthesis of a number of important biomolecules.
As proper mitochondrial function is critical for normal performance and survival of cells, mitochondrial dysfunction
often leads to pathological conditions resulting in various human diseases. Recently mitochondrial dysfunction has
been linked to multiple organ failure (MOF) often leading to the death of critical care patients. However, there are
two main reasons why this insight did not generate an adequate resonance in clinical settings. First, most data
regarding mitochondrial dysfunction in organs susceptible to failure in critical care diseases (liver, kidney, heart,
lung, intestine, brain) were collected using animal models. Second, there is no clear therapeutic strategy how
acquired mitochondrial dysfunction can be improved. Only the benefit of such therapies will confirm the critical
role of mitochondrial dysfunction in clinical settings. Here we summarized data on mitochondrial dysfunction
obtained in diverse experimental systems, which are related to conditions seen in intensive care unit (ICU) patients.
Particular attention is given to mechanisms that cause cell death and organ dysfunction and to prospective
therapeutic strategies, directed to recover mitochondrial function. Collectively the data discussed in this review
suggest that appropriate diagnosis and specific treatment of mitochondrial dysfunction in ICU patients may
significantly improve the clinical outcome.

ICU-related diseases
Patients admitted to the intensive care unit (ICU) are of
different clinical etiology and characteristics. Many
unplanned ICU admissions are for the treatment of car-
diovascular disorders, which often are due to intraopera-
tive complications, acute myocardial infarction, and
coronary artery disease [1,2]. Trauma patients surviving
massive bleeding constitute an additional ICU popula-
tion with high risk of developing multiple organ failure
(MOF) and mortality. Cardiovascular disorders, massive
bleeding, and acute lung injury cause hypoxemia and
tissue hypoxia. Hypoxia per se is thought to be a key
factor in ischemic injury. Although ischemia associated
with reduced oxygen supply is a life-threatening event
and reperfusion with oxygenated blood is essential to
interrupt hypoxia-induced cell death, the damaging
effect of ischemia is not fully evident until reoxygenation

[3]. Reperfusion injury implies some reactions initiated
by reoxygenation of ischemic tissue [4,5]. This concept
is supported by the observations that (a) little mucosal
injury is detected during ischemia, but major changes
occur after reperfusion [6,7] and (b) hypoxic reperfusion
of ischemic tissue results in little additional damage [8].
In general, hypoxia-induced cell death appears after
hours of ischemia, whereas the reperfusion injury may
occur within minutes after reoxygenation [9-14].
Major burn injury and sepsis account for more than

25% of all ICU admissions [15]. In general, the body’s
response to an initial insult, e.g., trauma, ischemia, burn,
infection, or stress, is regulated by mediators derived
from the activation of humoral cascades, such as com-
plement, kallikrein/kinin, and coagulation systems and/
or from a variety of cells, such as monocytes/macro-
phages, and the release of cytokines, proteases, oxygen
radicals, and nitric oxide. Originally this response was
developed to protect the host; however, beyond a certain
threshold level of activation, it causes an imbalance of
the mediator system that can harm the host by leading
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to the development of MOF. Although the pathogenesis
of MOF is most likely multifaceted, some phenomena,
such as ischemia/reperfusion associated with excessive
free radical generation, activation and adherence of neu-
trophils to the endothelium and the subsequent transmi-
gration into the surrounding tissue [16-20], gut barrier
failure leading to the translocation of bacteria/endotoxin
[21-28], and an initially hyperinflammatory state fol-
lowed by delayed immune suppression that predispose
to infection, have been considered key events in this
scenario [29].
Despite early management and control of the acute

phase by means of advanced ICU technology, a series of
events may lead to failure of one or more organs (MOF)
and finally death in some ICU patients. Acute lung
injury (ALI) and acute respiratory distress syndrome
(ARDS) remain a major problem. In 2005, the incidence
of ALI and ARDS in adults was estimated to be approxi-
mately 200,000 patients annually in the United States,
with a mortality of approximately 40% [30]. More recent
reports on the ARDS-related mortality vary from 20-
50% [31-36]. Acute traumatic coagulopathy (ATC) is
observed in 10-25% of patients after major trauma and
its management forms an integral part of hemostatic
resuscitation [37]. Increasing severity of ICU patients
associated with acute renal failure elevates mortality rate
estimates by 15-60% [38-40].
It is commonly accepted that sepsis and ischemia-

reperfusion (I/R) injury are among the leading causes of
death in critically ill patients at the surgical intensive
care unit setting [41]. Therefore, leading life-threatening
pathological states in ICU patients are generally caused
by impaired oxygen delivery followed by tissue ischemia
or hypoxia and inflammation followed by excessive
inflammatory response of the body. Depending on the
location of these two processes, they cause dysfunction
and failure of a corresponding organ, or fatal MOF, if
they occur systemically. On the cellular level, there are
two basic mechanisms causing organ dysfunction: cell
death resulting in the reduction of cell numbers, and
cellular dysfunction causing an accumulation of cells
not able to support major organ functions.
Cell death is the main pathway of ischemia/reperfu-

sion-mediated tissue damage and organ failure [42]. In
contrast, a systemic inflammatory response causes organ
dysfunction/failure often without remarkable cell death.
Although inflammatory mediators have been shown to
induce apoptosis and necrosis in some experimental
models, the organs of animals or patients, even those
who died of MOF, often appear normal [43] with
neither major necrotic areas nor a relevantly increased
number of apoptotic cells (except for lymphocytes)
[44,45]. The most common change observed under both
ischemic and inflammatory conditions is cellular stress

accompanied by alterations in energy metabolism
initiated at the mitochondria. This has been well docu-
mented in diverse experimental models. There is a body
of data confirming that mitochondrial dysfunction
occurs not only in experimental models but also in ICU
patients. Mitochondrial dysfunction was determined in
muscle biopsies from septic patients [46,47] and in per-
ipheral blood monocytes [48]. Vanhorebeek et al.
reported structural and functional abnormalities in liver
but not muscle mitochondria from patients who had
died in surgical critical care unit [49]. These findings are
in line with data obtained in primates [50]. Mitochon-
drial dysfunction also was detected in liver biopsies of
patients after liver transplantation [51], but it is not
clear whether these changes are due to ischemia or
inflammatory/immune responses of the host. In animal
experiments, it has been shown that cold and warm
ischemia accompanying heart and liver transplantation
impair mitochondrial function [52-54].

Mitochondrial dysfunction under hypoxia and
inflammation
Impairment of oxygen delivery, inflammation, sepsis and
other ICU-associated pathologies, all impose cellular
stress and thus will affect profoundly mitochondrial phy-
siology. Mitochondria have a variety of functions, which
are not completely elucidated yet. Besides ATP synth-
esis, the best-known function of mitochondria, they are
involved in several biosynthetic and signaling pathways.
In context of acute critical diseases, the most important
mitochondrial activities are oxidative phosphorylation
and reactive oxygen species (ROS)-related signaling pro-
cesses. Inhibition of oxidative phosphorylation
(OXPHOS) and ATP synthesis impairs ion homeostasis,
most importantly Ca2+ homeostasis, frequently resulting
in excessive ROS production originating both from
mitochondrial and nonmitochondrial sources [55]. In
addition, mitochondrial morphology and dynamics are
affected, leading to the fragmentation of the mitochon-
drial network [56-58].
Several lines of evidence suggest that maintaining

mitochondrial homeostasis and integrity is directly
linked to cellular protection under conditions of cellular
stress. In particular, the production of ROS is seen as
the driving force behind mitochondrial dysfunction,
playing an important role in the development of cellular
malfunction and organ failure induced by inflammatory
mediators and hypoxia [4,59-61]. Basic OXPHOS activ-
ity of mitochondria is controlled mainly by substrate
and ADP availability and by the specific composition of
respiratory supercomplexes in mitochondria [62]. Addi-
tional levels of control include allosteric regulation,
reversible phosphorylation, and other forms of posttran-
slational modification. It has been proposed that

Kozlov et al. Annals of Intensive Care 2011, 1:41
http://www.annalsofintensivecare.com/content/1/1/41

Page 2 of 13



phosphorylation is of special importance for controlling
mitochondrial function [63]. The best evidence for such
a mode of regulation is present in the case of protein
kinase A (PKA) [64], which affects the activity of several
OXPHOS enzymes and thereby serves to modulate ATP
generation and ROS production. Notably, also dysfunc-
tion of OXPHOS enzymes correlates with clinical dete-
rioration in sepsis [65]. Other primarily cytoplasmic
signaling proteins have been suggested to regulate mito-
chondrial ROS production, both positively and nega-
tively [66-68].
Finally, a major question remains: how pathologic sti-

muli are communicated to the mitochondria, affecting
their function and how these organelles in turn orches-
trate a cellular response to stress conditions. P66SHC
(Src Homology 2 domain containing transforming pro-
tein) may be one candidate, whose action directly leads
to the production of ROS under conditions of various
cellular stresses. In this process, the primarily cytoplas-
mic protein translocates to the mitochondria in a
mechanism involving protein kinase C (PKC) and pro-
lyl-isomerase1 (Pin 1) [69,70]. Gene ablation experi-
ments have highlighted the benefit of abrogating
p66SHC in different pathological settings, such as aging
or ischemia reperfusion injury [71]. Mitochondria also
extensively communicate with the nucleus to assure
proper cellular responses. Expression of nuclearly
encoded genes is critical for mitochondrial protein
synthesis and mitochondrial biogenesis by mechanisms,
which include peroxisome proliferator-activated recep-
tor-g coactivator-1a (PGC-1a), nuclear respiratory fac-
tors (NRFs), and mitochondrial transcription factor A
(mtTFA). Notably, ATP depletion activates mitochon-
drial biogenesis via AMP-activated protein kinase
(AMPK) [72]. Factors released from mitochondria may
constitute important signaling molecules in these pro-
cesses. They also may include second messengers, such
as ROS or Ca2+ and the activation of signaling pathways
downstream of mitochondria, which has been demon-
strated in lower model organisms in the mode of retro-
grade signaling [73].
Very recently, it has been demonstrated that preven-

tion of ROS production by mitochondria decreases
inflammatory cytokines after cells stimulation by lipopo-
lysaccharide (LPS), suggesting that mitochondrial ROS
may be a therapeutic target for various inflammatory
diseases [60]. Interaction of cytokines with their target
cells involves cytokine receptors, which activate intracel-
lular signaling cascades. Universal and essential to cyto-
kine receptor signalling is the JAK-STAT (JAK = Janus-
Kinase, STAT = Signal Transducers and Activators of
Transcription) pathway. Almost 40 cytokine receptors
signal through combinations of four JAK and seven
STAT family members, suggesting commonality across

the JAK-STAT signaling system [74-76]. Some also acti-
vate NF-kB, stress-kinase pathways, or the Ras-ERK (Ras
= Rat sarcoma; ERK = extracellular signal-regulated
kinases) pathway [77,78].
In addition, it has become clear that mitochondria can

be considered as an important source of damage-asso-
ciated molecular patterns (DAMPs) for the activation of
innate immunity. Mitochondrial proteins and DNA
released from damaged necrotic or apoptotic cells may
activate mitochondrial DAMPs-mediated inflammation
(sterile inflammation) during ischemia-reperfusion of
various organs. Similarly, mitochondrial DAMPs can be
released in patients with infections, contributing thus to
the pathological mechanisms of sepsis [65,79-81].
Therefore, mitochondria seem to be the key players in

disorders induced by ischemia and inflammation in ICU
patients. The pathologic impact of mitochondria results
from the depletion of ATP, release of proapoptotic pro-
teins, excessive production of ROS, and disturbance in
Ca2+ homeostasis. Below, we consider how these events
will be manifested on the cell/organ level.

Pathological consequences of mitochondrial
dysfunction
ATP depletion
Mitochondrial ATP synthesis is regulated by substrate
supply and by the coupling of phosphorylation to the
proton gradient generated by mitochondrial electron
transfer and by the demand in ATP. Coupling of phos-
phorylation to the proton gradient is usually regulated
by uncoupling proteins (UCP) as well as physicochem-
ical variations of the inner mitochondrial membrane
and can be disrupted by the opening of the mitochon-
drial permeability transition pore under pathological
conditions. Although increased mRNA levels for UCPs
in mouse liver were detected during sepsis, so far there
is no unequivocal evidence that they are linked to mito-
chondrial uncoupling under such conditions [82]. This
fits to the observation that respiratory control values of
rat liver mitochondria were identical or even better than
those of control animals [83]. ATP depletion accompa-
nied with an inhibited Na/K pump leads to an increase
in cellular Na concentration, which results in cellular
gain of electrolytes and water, causing early reversible
cell swelling [6,84]. A prolonged period of hypoxia is
then followed by a loss of mitochondrial matrix and dis-
integration, expansion and formation of vesicles in the
endoplasmatic reticulum and cytoplasm, and lysosomal
rupture with release of enzymes as a final step of cell
death [6,85]. Besides direct damage of mitochondria, the
reduced supply with NAD+(H) as substrate, which is
consumed by an increased poly(ADP-ribose)polymerase
(PARP) activity for DNA repair under conditions of sep-
sis was suggested [86]. However, there was no recent
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development regarding the impact of PARP in ICU-
related diseases. For direct mitochondrial damage, ROS
and RNS have been favored [87]. Eventually, however,
continuing adverse stress stimuli will result in cell death
through apoptosis or necrosis, the latter is commonly a
result of insufficient ATP provision [88,89]. Apart from
cell death, an insufficient production of ATP may result
in cellular dysfunction. It has been shown that in animal
models of severe inflammation the ATP levels were
halved compared with controls [90]. Similar results were
reported in septic patients; approximately halved ATP
levels were found in the “non-survivors” group com-
pared to “survivors” group [47].

Cytochrome c and AIF release
Irrespectively of the trigger, impairment of mitochon-
drial function, often associated with a drop of the mito-
chondrial membrane potential, is followed by a release
of proapoptotic factors, such as cytochrome c from the
intermembrane space with subsequent activation of cas-
pases [91,92]. Although the involvement of the mito-
chondrial permeability transition pore in this event was
discussed, the precise mechanism is still unclear. Inflam-
mation-triggered lipid peroxidation also was related to
mitochondrial dysfunction. It has been argued that
ROS-induced cardiolipin oxidation decreases its close
association with cytochrome c and causes a higher
mobility of cytochrome c facilitating its release from
mitochondria [93], probably via the upregulation of Bax,
a proapoptotic protein, building the channels in outer
mitochondrial membrane. Upregulation of Bax in yeast
was associated with an increased amount of oxidized
lipids [94]. This, however, was not confirmed in mam-
malian cells yet. Another protein that induces apoptosis
is apoptosis-inducing factor (AIF). Proapoptotic activity
of AIF is associated with the increase of intracellular
Ca2+ (e.g., ischemia/reperfusion injury). Increased intra-
cellular Ca2+ levels in turn trigger the depolarization of
the mitochondrial membrane with subsequent loss of
membrane potential and elevated generation of ROS
[95,96]. AIF-mediated induction of apoptosis requires its
further translocation to the nucleus to induce DNA
degradation [97].

Reactive oxygen and nitrogen species, carbon monoxide
ROS are a group of molecules with widely differing
reactivity and damaging potential in biological systems.
The technical inability to differentiate easily individual
ROS by most analytical methods resulted in many con-
tradicting results in this field. Interpretation of ROS
effects should always take into account that different
ROS may have completely different biological effects.
Certain ROS (such as HO· and ROO·) themselves can
directly damage biomolecules at high levels (e.g.,

cardiolipin oxidation), whereas the same ROS and also
other ROS species at lower concentrations modulate
protein function through redox-modification [79]. Thus,
limiting ROS production or lowering ROS levels
through the use of antioxidants seems to be a straight
forward approach to reduce damage induced by
ischema/reperfusion or inflammation. However, in the
clinical setting their use had little benefit in limiting
ROS-associated tissue and organ damage. Due to diverse
chemical properties of individual ROS and the various
sites of their formation, their detoxification can be lim-
ited by the availability of appropriate antioxidants at
these locations. Applications of diverse antioxidants and
ROS scavengers will be discussed below.
An alternative strategy, whose feasibility is supported

by increasing experimental evidence, is to modulate
mitochondrial ROS production itself. This may be
achieved through activation or inhibition of intracellular
signaling pathways, which have been implicated in the
regulation of mitochondrial ROS production but also
other proteins can be of interest for therapeutic inter-
vention. These include mitochondrial uncoupling pro-
teins (UCPs), which reside in the inner mitochondrial
membrane and govern mitochondrial membrane poten-
tial (ΔΨm) and, therefore, ROS generation and Ca2+

influx [98]. Also, the prevention of mitochondrial frag-
mentation in cardiomyocytes protected hearts against
ischemia/reperfusion injury [99]. Additionally, intracellu-
lar signaling pathways may modulate ROS production as
discussed above, opening the possibility for future thera-
peutic interventions.
Nitric oxide (NO) formed under inflammatory and

hypoxic conditions is an important modulator of mito-
chondrial function. We discuss this issue very briefly,
because this topic has been reviewed extensively in the
past [100-102]. It is commonly accepted that under nor-
moxic conditions NO is synthesized by constitutive and
inducible forms of NOS (cNOS and iNOS, respectively).
Upon inflammatory response, iNOS is upregulated by
specific proinflammatory agents, such as endotoxin,
tumor necrosis factor alpha (TNF-alpha), interferon-
gamma (IFN), and interleukin-1 (IL-1) in certain cells
resulting in an excessive NO production (reviewed in
[100,103-105]). In contrast to inflammation during
ischemic/hypoxic conditions, NOSs are less efficient
because their enzymatic activity requires oxygen and
NO is generated via oxygen independent reduction of
nitrite (reviewed in [102]). The mitochondria are one of
the major targets for NO. NO itself reversibly inhibits
the mitochondrial respiratory chain at complex IV,
whereas peroxynitrite formed from NO and superoxide
radical inhibits mitochondrial respiration at multiple
sites and also causes mitochondrial permeability transi-
tion (reviewed in [101,106]).
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Carbon monoxide (CO) is another gas messenger that
controls mitochondrial function. CO has been shown to
stimulate mitochondrial biogenesis; there is evidence
that CO signalling is mediated by mitochondrial ROS
(reviewed in [107]). CO also has been shown to modu-
late immune response stimulating production of anti-
inflammatory cytokines [108]. Together, these data sug-
gest that NO/CO may be beneficial or deleterious and
only controlled low amounts of these gas messengers
exert beneficial effects.

Biogenesis of mitochondria and autophagy
The data on mitochondrial dysfunction under ischemic
and inflammatory conditions are sometimes contradic-
tory. Thus, upon diverse pathologic conditions involving
systemic immune response different groups reported
impaired [50,109-111], unchanged [112-114], and even
improved [115-117] mitochondrial function. This varia-
tion may relate to experimental conditions, such as the
severity of the insult, the duration of the study, and
others. Another possible explanation for these conflict-
ing findings may be the activation of natural adaptive
reactions designed to restore mitochondrial function.
They include biogenesis of mitochondria [118] and
autophagy, which removes damaged mitochondria [119].
The importance of mitochondrial biogenesis after

hypoxia has been shown in a variety of organs. Ahuja et
al. [120] demonstrated that in the heart pathological
stressors, such as ischemia, are associated with the
downregulation of mitochondrial biogenesis via PGC-1
activity. Also the transcription factor Myc may play a
key role in regulating cardiac metabolism and mitochon-
drial biogenesis in response to pathological stress. Myc
activation in the myocardium of adult mice increases
glucose uptake and utilization, downregulates fatty acid
oxidation by reducing PGC-1alpha levels, and neverthe-
less induces mitochondrial biogenesis [120]. In the liver
Wyatt et al. [121] studied the role of hexokinase III
(HKIII), an important enzyme in glucose metabolism.
Nuclear factor (erythoid-derived2)-like2, also known as
NFE2L2 or Nrf2, which is involved in increasing the
levels of endogenous antioxidants and attenuating apop-
tosis, has been shown to induce mitochondrial biogen-
esis [122]. HKIII is regulated by hypoxia and exerts
protective effects against oxidative stress, perhaps by
increasing ATP levels, reducing oxidant-induced ROS
production, preserving mitochondrial membrane poten-
tial, and increasing mitochondrial biogenesis. In the kid-
ney several studies showed that PGC-1alpha is an
important regulator of mitochondrial biogenesis. In a
model of oxidative injury mimicking ischemia-reperfu-
sion damage, Rasbach et al. [123] showed that increased
mitochondrial biogenesis accelerated recovery of mito-
chondrial function, mediated by p38 and epidermal

growth factor receptor (EGFR) activation of PGC-
1alpha. In another study, they demonstrated that mito-
chondrial biogenesis is mediated via 5-HT receptors and
suggest that 5-HT-agonists may be effective for the
treatment of mitochondrial and cell injury [124].
Mitochondrial biogenesis in sepsis is stimulated by the

elevated production of NO and ROS, which leads to oxi-
dative damage of mitochondrial DNA (mtDNA) and
initiates a complex crosstalk between mitochondria and
nucleus promoting an increased synthesis of new orga-
nelles [125]. Suliman et al. for the first time demon-
strated that lipopolysaccharide stimulates mitochondrial
biogenesis in rat hearts in response to oxidative cell
damage [126,127]. In another study, they also showed
that this simultaneous occurrence of mtDNA damage
and compensatory mitochondrial biogenesis under heat-
inactivated E. coli exposure results from the activation
of toll-like receptor 4 (TLR-4) [128]. In a more recent
study, the same group demonstrated that mitochondrial
biogenesis is capable to restore oxidative metabolism in
an experimental model of murine peritonitis, thus pro-
viding a potential mechanism affecting sepsis outcome
[129]. Indeed, experimental and clinical data clearly sug-
gest that mitochondrial dysfunction is closely linked to
the onset of multiple organ failure in sepsis and the
capacity to resolve this condition may depend on the
ability to restore an adequate mitochondrial function
[130]. In other terms, the failure of maintaining mito-
chondrial function through biogenesis may contribute to
bad outcome. Indeed, a recent report provides first evi-
dence that the activation of mitochondrial biogenesis
may affect survival in critical illness [131]. Accordingly,
the search for strategies to maintain and protect mito-
chondrial biogenesis has been proposed as an innovative
research direction potentially providing new ways for
preventing the onset of multiple organ failure in septic
patients [125].
Damaged mitochondria are removed from cells by

means of autophagy. Autophagy has been shown gener-
ally to limit cellular damage and cell death, appearing as
a cell-survival response [132]. Autophagy is an evolu-
tionary conserved process that involves a complex
sequence of vesicle formation and fusion with lysosomes
leading to the degradation of cellular structures and the
recycling of end products [133]. It also has been shown
that autophagy can be directly triggered by ROS
[134,135].

Possible therapeutic strategies to modulate
mitochondrial function
Antioxidants
Cellular and organ dysfunction related to the damage of
lipid membranes and membrane-bound proteins by oxy-
gen radicals is a rationale for the treatment of sepsis
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and septic shock by lipophilic antioxidants. The lipophi-
lic antioxidants, which are most relevant in this context,
are compounds of the vitamin E group (tocopherols and
tocotrienols) and ubiquinones. The structure of such
molecules usually consists of a redox-active part and a
lipid anchor [136]. The redox-active part corresponds to
the chromanol and benzoquinone head group for vita-
min E compounds and ubiquinones, respectively. The
lipid anchor is a C16 residue in vitamin E and an iso-
prenic side chain for ubiquinone. The most frequent
types of these compound groups in mammalian tissues
are alpha-tocopherol and ubiquinone-10 in humans. In
rats, which are frequently used in septic shock models,
ubiquinone-9 predominates. Although vitamin E com-
pounds are antioxidants per se due to their phenolic
OH group, ubiquinone needs to be reduced to ubiquinol
(hydroquinone form) before it is active as an antioxi-
dant. The benefit of vitamin E and ubiquinone-related
antioxidants under conditions of ischemia/reperfusion
was demonstrated in different experimental models
[137-139].
Besides their function as antioxidants, the effects of

vitamin E compounds on several signaling factors [140]
and the function of ubiquinone as electron carriers in
mitochondria are other important biological activities.
Because ubiquinones are continuously synthesized in all
tissues and both vitamin E and exogenous ubiquinone
are continuously supplied by the diet, the primary ques-
tion is whether there is an increased demand for such
compounds during sepsis and septic shock. There have
been several reports about the increase of ROS and lipid
peroxidation under such conditions. However, only a
few reports demonstrate clinically the decrease of lipo-
philic antioxidants in the plasma of septic patients.
Some authors demonstrated that alpha-tocopherol levels
in plasma are decreased in septic patients [141,142]. On
the other hand, it was shown that among septic patients
alpha-tocopherol levels did not differ between patients
developing MOF and other patients [143]. Furthermore,
in septic shock patients increased plasma levels of biliru-
bin were shown to counterbalance the loss of typical
lipophilic plasma antioxidants, such as tocopherols and
ubiquinones [144]. Little is known about concentrations
of ubiquinone in the plasma of those patients. However,
from the fact that sepsis was linked to increased glycoly-
sis and mitochondrial dysfunction, the supplementation
with ubiquinone to support mitochondrial functions
seems to be logical and is supported by some clinical
reports [145-148]. In addition, the suggested use of sta-
tins, which target the HMG-CoA reductase, against
inflammatory cascades initiated during sepsis [149] pro-
vides another link to ubiquinone supplementation. It is
well-known that the use of statins results in a decrease
of cellular ubiquinone concentrations, which is possibly

associated with adverse effects of statins [150]. Based on
this relationship, ubiquinone supplementation under
conditions of sepsis to prevent adverse effects of statins
may be a reasonable idea to explore. However, currently
there are no data on that. Whereas supplementation of
ubiquinone and vitamin E in low concentrations is
rather harmless, high concentrations and long-lasting
application have been shown to increase the risk of
bleeding in patients due to their anticoagulant effects
[136,151].

Mitochondria-targeted antioxidants
Because mitochondrial dysfunction has been shown to
play a major role in hypoxia-mediated injury and mito-
chondria are the major cellular source of ROS, there is
considerable interest in targeting antioxidants to mito-
chondria [152]. However, the benefit of this strategy is
still debated because the results are not clear.
In a cellular model of I/R, Loor et al. [153] demon-

strated that antioxidant administration during ischemia
prevented the release of cytochrome c and calcium to
the cytosol, which are known to contribute to I/R
damage. However, in a study on neuronal survival in the
rat striatum after acute perinatal hypoxia-ischemia, no
significant difference was seen between MitoQ-treated
animals and their respective vehicle-treated controls
[154]. Lowes and co-authors showed that MitoQ may be
beneficial in sepsis protecting mitochondria from
damage and suppressing the production of the anti-
inflammatory mediators [155]. Thus, this therapeutic
strategy to prevent mitochondrial damage has to be
further investigated. Mitochondrial targeting using pep-
tide mimetics or lipophilic cationic agents (MitoQ,
SkQ1) may offer improved antioxidant therapies. How-
ever, these compounds also have to be directed to the
respective organ or cell type, which may be difficult [65].

Donors of NO and CO
In the progression of I/R injury mitochondrial dysfunc-
tion, characterized by depletion of ATP, calcium-
induced opening of the mitochondrial permeability tran-
sition pore, and exacerbated ROS formation play a key
role [156]. Recently, nitrite was recognized as a nitric
oxide (NO) donor specifically in hypoxic/acidic condi-
tions, without substantially altering otherwise normal
tissue that mediates cytoprotection after IR. The benefit
of nitrite treatment has been shown in various in vivo
models and organs [157-159]. Whereas most studies so
far have investigated the effects of bolus treatments with
nitrite, a recent paper by Jung et al. showed that long-
term nitrite therapy, when initiated 24h after I/R, cor-
rected the subacute hostile environment, induced tissue
and vascular regeneration, and improved functional
recovery [157,159,160]. Thus, they concluded that early
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and subsequent long-term nitrite therapy may be effec-
tive for the management of ischemic conditions, e.g., in
stroke patients.
Endogenous NO is very diffusible and has many

effects on mitochondrial physiology. Normal levels of
intracellular NO stimulate mitochondrial biogenesis via
cGMP and PGC-1 [161,162]. NO produced by eNOS
activates cGMP generation from soluble guanylate
cyclase. This leads to the expression of the transcrip-
tional coactivator PGC-1, increasing production of
NRF-1 and thus activating mitochondrial biogenesis
[162]. Moreover, NO affects vascular smooth muscles,
leading to vasodilation. This should be associated with
improved availability of substrates and oxygen for cells
and mitochondria. However, during inflammation, high
levels of NO are produced due to activated expression
of iNOS [163,164]. This elevated production of NO
under pathological conditions directly inhibits mito-
chondrial respiration mostly through inhibition of
respiratory complex IV (cytochrome c oxidase, COX)
remarkably reducing OXPHOS [101,165]. This may
lead to incomplete reduction of oxygen, increasing
production of ROS and activating AMPK. Moreover,
NO reacts with superoxide producing cytotoxic perox-
ynitrite damaging mitochondria [166,167]. It has been
shown that under hypoxic conditions nitrite-derived
NO, inhibits complex I, but ameliorates oxidative inac-
tivation of complexes II-IV and aconitase during reox-
ygenation, thus preventing mitochondrial permeability
transition pore opening and cytochrome c release
[168]. Similar effects were found with a CO donor, tri-
carbonylchoro (glycinato)ruthenium, which act similar
to NO targeting metalloproteins. Lancel at al. have
shown in a sepsis model that CO stimulates mitochon-
drial biogenesis and reduces mortality in septic mice
[169].

Hydrogen sulfide (H2S)
During the past few years, H2S has been rediscovered
as a physiological mediator potentially involved in sev-
eral cellular processes [170,171]. A growing body of
evidence seems to confirm the capacity of this mole-
cule to protect organ functions from ischemia/reperfu-
sion injuries [172,173]. In contrast, the role of sulfide
in inflammation and sepsis is still a matter of debate.
In fact, marked pro- [174,175] as well as anti-inflam-
matory effects of H2S [176-178] have been observed in
different experimental studies. In principle, a link
between H2S-exposure and mitochondrial function is
given by the well-known capacity of sulfides to
strongly inhibit the cytochrome c oxidase (COX) [179],
i.e., the final electron acceptor of the mitochondrial
respiratory chain. This property mainly determines the
high toxicity of this compound. On the other hand,

this capacity does not imply that the biological proper-
ties of H2S are exclusively mediated through direct
effects on the mitochondria [170]. For example, H2S-
therapy has been observed to preserve mitochondrial
function in the heart muscle after I/R injury [176,180],
but it failed to increase mitochondrial biogenesis [180].
Based on these observations, it was argued that H2S
mainly prevents mitochondria from damage through
an antioxidative effect. Accordingly, antioxidant effects
of sulfide therapy have been demonstrated in the kid-
ney after I/R injury [181]. Furthermore, interactions
between H2S and potassium-dependent ATP-channels
[182] as well as an eventual modulation of NO- and
CO-related effects by H2S [183] are discussed as
potential mechanisms of action at cellular level. Calvert
et al. investigated the effect of exogenous hydrogen
sulfide on survival rate in response to myocardial
ischemia, which was induced by subjecting mice to
permanent ligation of the left coronary artery for 4
weeks or to 60 minutes of left coronary artery occlu-
sion followed by reperfusion for 4 weeks [180]. H2S
therapy increased the phosphorylation of protein ser-
ine/threonine kinase B (PKB, AKT) and increased the
nuclear localization of two transcription factors,
nuclear respiratory factor (NRF) 1 and NRF2, which
are involved in increasing the levels of endogenous
antioxidants, attenuating apoptosis, and increasing
mitochondrial biogenesis [180].

Pyruvate
Pyruvate is an activator of the pyruvate dehydrogenase
complex (PDHC) and reduces the cytoplasmic NADH/
NAD+ ratio by stimulating the glycolytic pathway
[184]. It has been proposed recently as a potential
therapeutic in mitochondrial diseases and it was indeed
effective in the treatment of a patient with Leigh syn-
drome due to cytochrome c oxidase deficiency
[184,185]. Because an inhibition of the PDHC has been
observed in sepsis, a similar benefit of pyruvate-ther-
apy may be expected in this condition [186,187].
Indeed, indirect evidence for the potential effects of
pyruvate in sepsis is provided by experiments con-
ducted with dichloroacetate (DCA), a structural analo-
gue of pyruvate that also activates the PDHC. As
predicted by the mechanism of action of DCA, this
treatment allowed reversing the disturbed lactate and
glucose metabolism in septic animals [188]. However,
a controlled, clinical trail of DCA for the treatment of
patients with sepsis or liver failure did not show bene-
ficial effects to improve hemodynamics or survival
[189]. Additionally, pyruvate also acts as an antioxi-
dant, and its pharmacologic potential in sepsis as well
as in other critical conditions seems to be partially
related to this property [190,191].
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Cytochrome c
Exogenous cytochrome c administration has been pro-
posed as a further therapeutic approach for mitochon-
drial dysfunction in sepsis [192]. The rationale for this
treatment is given by the observation that cardiac
depression in septic animals developed simultaneously
to the onset of COX-inhibition. Indeed, exogenous cyto-
chrome c administration was shown not only to replete
cardiac mitochondria with substrate and to increase
COX-activity level but also improved cardiac function in
septic mice [193]. In a further experimental study, these
effects were observed up to 72 hours and even survival
of the animals was improved [194]. However, no data
are available to support the potential benefits of exogen-
ous cytochrome c in humans.

Preconditioning
Preconditioning is a phenomenon in which protection
against severe injury is achieved by adapting to low
doses of insults (reviewed in [195,196]). Preconditioning
stimuli include ischemia/hypoxia, low doses of endo-
toxin, adenosine A1 agonists, opioid delta1 agonists and
others. Sublethal ischemia, however, leads to cellular
alterations, termed “hypoxic priming,” of second mes-
sengers, such as cellular ionized calcium (Ca2+), cyclic
cAMP, phosphatidic acids, and ROS [197-200]. Cells
primed during ischemia are more susceptible to further
release of ROS subsequent to reperfusion and active
participants in the inflammatory response. Mitochondria
are believed to be the end target for preconditioning
operating via NO signaling pathways [201] or stimula-
tion of mitochondrial biogenesis [202].

Illumination and lasers
Low-level laser therapy (LLLT) has been found to biosti-
mulate various biological processes, such as attenuation
of ischemic injury. Avni et al. showed in a model of I/R
injury in the gastrocnemius muscle in rats that LLLT
significantly prevented degeneration after I/R, probably
by induction of synthesis of antioxidants and other cyto-
protective proteins [203]. A probable mechanism of
light was shown by Dungel et al. who demonstrated that
mitochondrial respiration inhibited by NO could be effi-
ciently restored by illumination in a wavelength-depen-
dent manner [204]. This effect was used by Mittermayr
et al. who used blue laser irradiation of NO-Hb in the
blood to cause decomposition of NO-Hb complexes and
to release free NO. This led to a clear enhancement of
local tissue perfusion decreasing the ischemic area in a
skin flap model in rats [205].

Side effects of ICU therapy on mitochondrial function
Antibiotics are one of the most common therapies
administered in the intensive care unit setting. In

addition to treating infections, use of antibiotics contri-
butes to the emergence of resistance among pathogenic
microorganisms (reviewed in [206]). Several classes of
antibiotics function by binding to the bacterial ribosome
and inhibiting bacterial protein synthesis. The mito-
chondrial protein synthesis machinery is in many ways
similar to the prokaryotic machinery and as a result
may be a target for antibiotics [207,208]. For instance,
oxazolidinones that were very potent as antibiotics are
uniformly potent in inhibiting mitochondrial protein
synthesis [209]. This suggests considering antibiotics
and other therapies used in ICU with respect to their
impact on mitochondrial function.

Conclusions
The exact mechanisms causing death of ICU patients
are still not fully understood, although it is commonly
accepted that single or multiple organ failure are the
major reasons for death. Mitochondria play an impor-
tant role in the development of malfunction of various
organs, such as heart, liver, and kidney, in a mode that
involves changes in turnovers of ATP, ROS, Ca2+, and
release of proapoptotic proteins. Cell stress occurring
under ischemia or/and inflammation always present in
ICU patients compromise mitochondrial function, which
contributes greatly to the metabolic changes, resulting
in cell dysfunction and death, which in turn cause organ
failure. Mitochondria can directly (e.g., via decrease in
ATP levels) and/or indirectly (e.g., via modulation of
ROS-dependent signaling) contribute to cellular dys-
function and death causing organ failure contributing to
fatal outcome of ICU patients. Therefore, strategies to
prevent mitochondrial injury in clinically relevant set-
tings may provide new therapies for ICU-related disor-
ders. Current therapeutic options include antioxidant
therapy, nitric oxide donors, and low-level laser therapy,
but further studies are necessary to clarify possible ben-
efits for ICU patients. Targeted antioxidants and nitrite
are in the phase of clinical trials (NCT00329056 and
NCT00069654, respectively). Thus, there is a solid body
of data that suggest significant contribution of mito-
chondrial dysfunction to outcomes of ICU patients.
This, together with the fact that a number of relevant
therapeutic tools have been developed within the last
decade, suggests focusing more on detection and specific
treatment of mitochondrial dysfunction in ICU patients
to improve the clinical outcome.
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