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ABSTRACT Integrating diverse genomics data can provide a global view of the complex biological processes
related to the human complex diseases. Although substantial efforts have been made to integrate different omics
data, there are at least three challenges for multi-omics integration methods: (i) How to simultaneously consider
the effects of various genomic factors, since these factors jointly influence the phenotypes; (ii) How to effectively
incorporate the information from publicly accessible databases and omics datasets to fully capture the interactions
among (epi)genomic factors from diverse omics data; and (iii) Until present, the combination of more than two
omics datasets has been poorly explored. Current integration approaches are not sufficient to address all of these
challenges together. We proposed a novel integrative analysis framework by incorporating sparse model,
multivariate analysis, Gaussian graphical model, and network analysis to address these three challenges
simultaneously. Based on this strategy, we performed a systemic analysis for glioblastoma multiforme (GBM)
integrating genome-wide gene expression, DNA methylation, and miRNA expression data. We identified three
regulatory modules of genomic factors associated with GBM survival time and revealed a global regulatory
pattern for GBM by combining the three modules, with respect to the common regulatory factors. Our method
can not only identify disease-associated dysregulated genomic factors from different omics, but more importantly,
it can incorporate the information from publicly accessible databases and omics datasets to infer a comprehensive
interaction map of all these dysregulated genomic factors. Our work represents an innovative approach to
enhance our understanding of molecular genomic mechanisms underlying human complex diseases.
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Human complex diseases (e.g., cancer) are induced by various genomic
and epigenomic alterations inmultiple biological processes (Wang et al.
2011). Studying a single type of biological data is generally insufficient

to fully explore the underlying mechanisms of the human complex
diseases. Recent advances in high-throughput technologies allow effi-
cient investigation of various omics data, such as single nucleotide
polymorphism (SNP), copy number variation (CNV), DNA methyl-
ation, and gene expression. Several pioneering studies have yielded
genome-scale large datasets, including genomic, epigenomic, transcrip-
tomic, and proteomic information, which are publicly accessible from
large collaborative projects, including the ENCODE Project Consor-
tium (2012), NIH Epigenomics Roadmap (Bernstein et al. 2010), and
The Cancer Genome Atlas (TCGA) (Weinstein et al. 2013).

Concomitantly, the integration analyses of these diverse omics data
are increasingly adopted to identify the potential causal (epi)genomic
factors and ultimately provide the systematic view of fundamental
insights into the complexmechanismsunderlying the etiology of human
diseases (Chen et al. 2014b; Hamed et al. 2015). For example, integrat-
ing genotype data with whole-genome gene expression data or DNA
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methylation data can identify the expression quantitative trait loci
(eQTL) or the methylation quantitative trait loci (meQTL) (Shabalin
2012; Schadt et al. 2005). Methods for integrating gene expression data
with miRNA, SNP, CNV, and DNA methylation data have been ap-
plied in cancer genomics (West et al. 2012; Taylor et al. 2009). Addi-
tionally, some latent variable models, such as canonical correlation
analysis and partial least squares, were applied to identify the relation-
ship between different omics datasets (Friedman et al. 2008; Zhao et al.
2012; Soneson et al. 2010). Recently, network analysis is increasingly
gaining acceptance as a useful tool for data integration (Chen et al.
2014b; Kholodenko et al. 2012). Various network analysis methods
have been developed to incorporate transcriptomic and proteomic data
for computation of biological networks (Gosline et al. 2015; Wachter
and Beissbarth 2015), to elucidate causality in biological networks
(Gitter et al. 2011; Ourfali et al. 2007), and to integrate and visualize
complexmetabolomics results even in cases where biochemical domain
knowledge or molecular annotations are unknown (Grapov et al. 2015;
Karnovsky et al. 2012).

Although substantial efforts have been made to integrate different
omics data, there are at least three challenges for multi-omics in-
tegration methods to overcome: (i) How to simultaneously consider
the effects of all kinds of genomic and epigenomic factors, since these
factors jointly influence the phenotypes (Lander 2011); (ii) How to
effectively incorporate the information from publicly accessible da-
tabases and omics datasets to fully capture the interactions among
(epi)genomic factors from diverse omics data sources; and (iii) Until
present, the combination of more than two omics datasets has been
poorly explored compared with those that intend to integrate two
various omics datasets, such as those in eQTL and meQTL analyses
(Pineda et al. 2015). Current integration approaches are not suffi-
cient to address all of these challenges simultaneously in one ana-
lytical framework.

Toaddress these threechallenges inmulti-omics integrationanalysis,
we presented a novel integrative analysis framework that incorporated
sparse model, multivariate analysis, Gaussian graphical model (GGM),
and network analysis. Ourmethod can not only simultaneously identify
disease-associated (epi)genomic factors from diverse omics data, but
also incorporate the information from publicly accessible databases and
omics datasets to infer the regulatory modules of these (epi)genomic
factors. By applying this strategy to systemically study the genome-wide
gene expression, DNA methylation, and miRNA expression data of
glioblastomamultiforme (GBM) samples, we identified three regulatory
modules of dysregulated (epi)genomic factors associated with GBM
patient survival time. By combining the three regulatory modules with
respect to the common regulatory factors, we further revealed a prom-
ising global regulatory pattern critical for GBMsurvival. Our integrative
analysis represents an innovative approach to enhance our comprehen-
sive understanding of molecular genomic mechanisms underlying
human complex diseases.

METHODS
It is well known that genes usually jointly contribute to certain diseases
andmany epigenomic factorsplay an important role in the development
of complex diseases by regulating gene expression. Our goal is to infer a
comprehensive interaction map of all these dysregulated (epi)genomic
factors.

Thus, we divided our integrative analysis into two major stages as
shown in Figure 1: we first identify the trait-related mRNAs and build
optimized coexpression modules with these mRNAs, and then infer
regulation pattern between the epigenomic (and/or other omics factors)
and the identified coexpression module.

Stage 1: build optimized mRNA coexpression module
networks associated with the trait of interest
Considering the different gene functional modules may contribute to
certain diseases and the computational burden for the downstream
analysis, we propose to identify trait-associated mRNAs and subse-
quentlydiscover thecoexpressionmoduleswithtrait-associatedmRNAs
through coexpression network analysis.

First,weapply theelasticnetpenalized regressionmodel toselecta set
of trait-associatedmRNAs.Theelasticnet is particularlyuseful tohandle
the situation of small sample size and a large number of features. In
addition, it encourages the selection of strongly correlated predictors in
orout of themodel together,which ishelpful topreserve the information
for the following module identification (Zou and Hastie 2005). The
elastic net penalized regression model is illustrated as follows:

b̂ ¼ argmin
b

LðbÞ þ
Xp
k¼1

l
�
ajbkj þ ð12aÞb2

k

�
;

where the regularization parameter l. 0 controls the overall strength
of the penalty and 0, a# 1 bridges the gap between lasso (a = 1, the
default) and ridge (a = 0) penalty. LðbÞ is the loss function given a
fitted model, such as the residual sum of squares for the ordinary
linear model or the negative log partial likelihood function for the
Cox’s proportional hazards model. The optimal l and a can be cho-
sen by 10-fold cross-validation.

The trait-associated mRNAs are then subjected to weighted cor-
relation network analysis (WGCNA) (Zhang and Horvath 2005)
for the identification of high coexpression modules, denoted as
M ¼ fMi; i ¼ 1; 2; ::; nmg; where nm is the number of modules iden-
tified. Computations are carried out using the R package WGCNA
(Zhang and Horvath 2005). The relationships stored in the coexpres-
sion modules include direct interactions, which connects one pair of
genes directly, and indirect interactions, where two genes are connected
due to a path with multiple edges (Poyatos 2011). We then remove the
indirect interactions in the coexpression modules through a partial
correlation analysis.

The GGM reveals direct associations with conditional indepen-
dence/dependence among variables using partial correlation coeffcients
(Mader et al. 2015). Given a coexpression module Mi; it is assumed
the expression of the genes in Mi follows a multivariate Gaussian
distribution with mean m and covariance matrix Σ. The conditional
independence between gi and gj given the other genes g2 {ij}, denoted by
P(gi, gj|g2{ij}) = P(gi|g 2 {ij}) P(gj|g 2 {ij}), is equivalent to that the
corresponding element in the precision matrix is zero (Wang and
Huang 2014), i.e., vij = 0. The precision matrix is the inverse of the
covariance matrix of genes inMi; denoted byV = (vij) = Σ21. A partial
correlation P(gi, gj|g 2 {ij}) is formally written as ĝij ¼ 2v̂ij=

ffiffiffiffiffiffiffiffiffiffiffi
v̂iiv̂jj

p
with the property

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð12ĝ2

ijÞ22
q

ðĝij 2 gijÞ/
D

Nð0; 1Þ; where v̂ij; v̂ii,

and v̂jj are the estimators of vii; vij, and vjj (Wang et al. 2016). Only
the edges with ĝij significantly different from zero will be preserved.
An FDR of 0.05 is used as the cut-off for statistical significance to
adjust for the multiple testing. The filtered modules are denoted by
M9 ¼ fMi9; i ¼ 1; 2; ::; nmg

After removing the indirect interactions, an optimal subnetwork is
refined that which may play an important role on the trait of interest.
Given one module is Mi9 ¼ ðV; EÞ, with a node set as V and direct
interactions set as E; the Prize Collecting Steiner Tree (PCST) algo-
rithm, which is able to reconstruct compact networks of the function-
ally relevant connections with control of the false positives in the
network (Huang and Fraenkel 2009), is used to find a set of most
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confident interactions that connect the terminal genes in the network
Mi$ ¼ ðV9; E9Þ, using the following function that simultaneously
minimizes the cost of edges included and the penalties of nodes
excluded:

Mi$ ¼ min
E94E;  V94V

ðE9;  V9Þ  connected

 X
e2E9

ce 2
X
i2V9

bi

!

with ce ¼ 12
Yk
j

rj;

where the node prize bi is the weight of node i; ce is the cost of edges
with k interaction evidence, rj indicates the score ½0;   1� of the jth
interaction evidence. The weight of node i is from the univariate
mRNA trait regression analysis. We assign the absolute value of the
regression coefficient of the node i to bi. The cost of edges is derived
from two kinds of evidence: (i) information from publicly accessible
databases and omics datasets, such as the Search Tool for the Retrieval
of Interacting Genes (STRING) database (http://string-db.org/), or
public datasets; and (ii) correlations between nodes in the local data-
sets. Instead of using the standard definition of ce;we combine the two
kinds of evidence into the edge weight using ce ¼ 12 S; where

S ¼
2
412 Y

j

�
12

Sj 2 p

12 p

�35ð12 pÞ þ p;

a naive Bayesian approach tomeasure the interaction evidence among
nodes (Szklarczyk et al. 2011). Sj 2 ½0; 1� is the subscore downloaded
from STRING or the absolute value of the correlations from the
local datasets. This method integrates the scores by multiplying the
probabilities of associations not predicting a functional interaction
while adjusting for the prior probability (p) for any two genes being
linked, which is 0.063 according to the KEGG benchmark dataset
(Franceschini et al. 2013). In the calculation, the prior corrected score is
constrained to be within [0, 1] (see the source code online). Compared

with the standard method, it yields higher confidence when more than
one type of evidence supports a given interaction (vonMering et al. 2003).

Stage 2: infer module-based regulation pattern with
epigenomic and/or other omics data
To identify DNA methylation sites and other factors that potentially
regulate the optimized module subnetworkMi$ (such as miRNAs), we
examine their associations with the genes withinMi$: Let Y 2 Rn·p be
the data matrix of Mi$ derived in stage 1, where n is the number of
patients with complete phenotypic and multi-omics data, and p is the
number of mRNAs in the given module Mi$:

First, we screened trait-associated methylation sites and other reg-
ulators by the elastic net penalized regression model as in the analyses of
mRNAs in stage 1. Let D 2 Rn·q be the combined data matrix for the q
trait-associated regulators, whichmay includemethylation sites and other
factors. To deal with the large number of features and small sample size,
we use the sparse partial least square (SPLS) regression model to identify
the regulators that are correlated with themoduleMi$ (Meng et al. 2016):

max  covðYa;D  bÞ þ l1½FðaÞ� þ l2½FðbÞ�

s:t: bTb ¼ 1;aTa ¼ 1;

where a; b are loading vectors for the latent vectors E ¼ Ya;G ¼ Db;
respectively. The sparse regularization function Fð�Þ including L1
and L2 penalties is imposed on a; b: the L1 penalty is applied to
set the coefficients of the irrelevant variables to 0; the L2 penalty is
added to handle multicollinearity among covariates (Chun and Keles
2010; Chun et al. 2011). The optimal regularization parameter can be
chosen by 10-fold cross-validation (Chun et al. 2011). The resulted
regulators associated with the module Mi$ are denoted by Ri:

To reveal the module-based regulation patterns, the Pearson’s cor-
relation is used to detect correlations between the identified regulators
Ri and mRNAs within the moduleMi$: The cut-off of correlation test
p value#0.05 (t-test) is applied to select those regulator mRNA pairs of
potential interest. Those chosen pairs are further filtered by external
databases if there are any, i.e., Exiqon miRSearch, TargetScan, and
microRNA.org for miRNA–mRNA regulatory relationships (Chen
and Rajewsky 2007; Akhtar et al. 2016).

Data availability
The source code in this study is publicly available at https://github.com/
xu1912/SMON.git.

Figure 2 Venn diagram of the samples with different Omics data.
Methylation \ miRNA = 261; methylation \ mRNA = 265; miRNA \
mRNA = 504.

Figure 1 Workflow of the integrative analysis of multi-omics data.
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RESULTS
Here,we apply our framework to integrate three different omicsdatasets
(mRNA expression, miRNA expression, and DNA methylation) from
the GBM study. All normalized data (level 3) were collected from The
Cancer Genome Atlas (TCGA) portal, and can be accessed from the
TCGA-GBM project repository at National Cancer Institute Genomic
Data Commons Data Portal (https://portal.gdc.cancer.gov/legacy-
archive/search/f). To minimize the scale differences among different
omics data, the features of the three omics datasets were standardized to
have zero means and unit SDs. The clinical outcome of interest is the
patient survival time. From the GBM datasets, we excluded those pa-
tients whose survival time was ,30 d to remove short survival due to
reasons such as postoperative complications from the surgery (Kim
et al. 2010). Figure 2 presents the sample size of the three omics datasets
and the overlapping samples among them.

Identifying trait-associated genes in mRNA data are the first step in
reconstructing trait-associated coexpression modules. As detailed
in the Methods section, the sparse Cox’s proportional hazards
model was used to select genes associated with patients’ survival
time, which can simultaneously incorporate thousands of genomic
markers working collaboratively with joint effects on the trait of
interest in a single statistical model. After 10-fold cross-validation,
we identified 217 genes with 512 subjects in mRNA data signifi-

cantly associated with GBM survival time, including numerous
GBM-related genes such as FZD7 (Kierulf-Vieira et al. 2016),
TPPP3 (Fomchenko et al. 2011), and LGALS3 (Ma et al. 2014).
Using the Dynamic Tree Cut method in WGCNA, we identified
three coexpression modules, which are composed of 50, 28, and
18 genes, respectively. There were 121 genes (55.76% in total iden-
tified genes) that were not grouped in any community. This was
partially due to the minimum size of modules we set. In this study,
the minimum size of modules was set as 15, which means those
genes were not assigned in a module due to their size being ,15,
even if they were grouped.

Figure 3 presents the correlation heat map of modules constructed
through WGCNA. In the heat map, each row (column) corre-
sponds to a gene. The independent modules are represented as
isolated boxes along the diagonal. Inspecting the correlation be-
tween and within the module memberships, these genes within
each module are found to be strongly connected (reflected
by the majority of red blocks within each module in Figure 3),
and the genes between modules show weak connections (reflected
by the overall green block in the heat map in Figure 3). The weak
interconnectivity between modules suggests that the three mod-
ules may function separately and affect patient survival time in
relatively independent ways.

Figure 3 Heat map of correlations between and within coexpression modules constructed by WGCNA. Each row/column represents a gene. Each
cell element is the absolute value of correlation coefficient between two genes. The intensity of red coloring indicates the strength of correlation
between pairs of genes, with green color corresponding to low correlation. The independent modules are represented as isolated boxes along
the diagonal.
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We estimated the partial correlations between genes in eachmodule
to trimindirect interactions. Ineachmodule,we selectedsignificantgene
pairs (FDR# 0.05) for their partial correlations and reconstructed the
coexpression networks using these significant gene pairs. As shown in
Supplemental Material, Figure S1, in modules 1–3, we identified 272,
141, and 141 gene pairs with significant partial correlations, respec-
tively, and trimmed 77.80, 62.70, and 7.84% of gene pairs as indirect
interactions. In addition, by incorporating the information on protein–
protein interactions (PPIs) from the STRING database, we further
filtered the unreliable or indirect interactions in the modules by
PCST. In total, 49 gene pairs from module 1, 27 pairs from module
2, and 17 pairs frommodule 3 were determined as the most reliable
interactions (Figure S1) that had multiple lines of evidence sup-
porting their potential functionality in the cell. We also performed
pathway enrichment analysis on the genes collected from all
the three modules with WEB-based GEne SeT AnaLysis Toolkit
(Wang et al. 2013) to investigate how well the modules functioned
in a GBM-related process, as annotated by KEGG database
(Kanehisa et al. 2012). An additional file (Table S1) lists the nine
most significant KEGG pathways with adjusted p values ,0.05,
including mRNA surveillance pathway, pathways in cancer,
WNT signaling pathway, etc. Among these pathways, it is well
known thatWNT signaling pathway regulates proliferation, death,
and migration and cell fate decision. Dysregulation of the WNT
signaling pathway was associated with various cancers, including
GBM (Lee et al. 2016). The members FZD7 and FZD10 in theWNT
signaling pathway are important receptors. In many types of can-
cer, FZD2 expression was strongly correlated with poor prognosis
(Mine et al. 2015). Therefore, our results may reveal the regulation
pattern of FZD2 and FZD10 expression by network analysis, which
could be utilized for epigenomic-based therapy for GBM.

To incorporate DNA methylation and miRNA data into the coex-
pressionmodules, we identifiedmiRNAs andmethylation sites that are
associated with patient survival time, and then used SPLS regression to
determine those miRNAs and DNA methylation sites that are also
associated with the genes of the three coexpression modules in Table 1.
Further, within each module, we determined genes with cis-correlated
DNA methylation sites, as well as miRNA–mRNA pairs.

It is known that DNA methylation is an important epigenomic
mechanism to regulate gene expression. If there is a significant
association for one gene between its methylation level and expres-
sion level, it is called cis relationship; otherwise, it is defined as
trans relationship (Smith and Meissner 2013). Since the reproduc-
ibility of trans relationships is still in debate, we focused on genes
with cis relationships (van Nas et al. 2010; van Eijk et al. 2012). It
can be seen that only four gene sites in module 1 have cis effects
(Figure 4). The methylation levels of these four gene sites show
negative correlations with the expression levels of corresponding
genes. In modules 2 and 3, we did not identify the gene sites with
cis effects on corresponding genes.

miRNA is well known for the major function of cleaving transcripts
of its target genes at the post-transcriptional level (He and Hannon

2004). Thus, we were most interested in a negative correlation between
miRNA and gene expression. The external databases Exiqon miRSearch,
TargetScan, and microRNA.org were used to filter the miRNA–mRNA
pairs with miRNA–target regulatory relationships (Chen and Rajewsky
2007; Akhtar et al. 2016). Those miRNA–mRNA interactions with sig-
nificant negative correlations and miRNA–target relationships are kept.
As shown in Figure 4, we identified 15 miRNAs for module 1, four for
module 2, and four for module 3.

Our results highlight a numberof interesting regulatorymechanisms
that may be critical for GBM development and progress. For
example, our results suggest thatmiRNA-181c and the methylation
level of DIRAS3 both contribute to the alteration of DIRAS3 ex-
pression (module 1 in Figure 4), which may, in turn, affect the
GBM survival time. DIRAS3 (also known as ARHI) is a known
tumor suppressor gene and overexpression of DIRAS3 resulted
in suppression of glioma cell proliferation, arrest of cell-cycle pro-
gression, reduction in cell migration and invasion, and promotion
of cell apoptosis (Chen et al. 2014a). In addition,miRNA-181c was
reported as a tumor-related gene in glioma cells (Ruan et al. 2015).
Thus, our results indicate one possible regulation mechanism of
these tumor-related factors and may provide candidate targets for
gene therapy of glioma.

We combined the three modules to have a global view (Figure 5) of
the regulatory networks contributing to GBM patient survival time.
The top six miRNAs with most edges in the combined network were
miRNA-221, miRNA-204, miRNA-20a, miRNA-340, miRNA-222,
and miRNA-181c. Among these six miRNAs, miRNA-221, -204,
and -222 were shared by three modules; miRNA-181c was shared
by modules 1 and 2;miRNA-20awas shared by modules 1 and 3; and
miRNA-340 was not shared among modules. These miRNAs may
mediate cooperative regulation of different modules and thus may
play particularly critical roles in regulating GBM development and
progress. miRNA-221 and miRNA-222 are oncogenic miRNAs that
have been studied in relation to a diverse list of cancers, including
GBM. When overexpressed in vitro, both miRNA-221 and miRNA-
222 potentiate classic cancer hallmarks, i.e., proliferation, angiogen-
esis, and invasion (Henriksen et al. 2014; Singh et al. 2012; Zhang
et al. 2009). Due to their broader functional relevance, miRNA-20a,
-204, -181c, and -340 also have been identified as oncogenic genes
and may serve as targets for treatment of GBM (Wang et al. 2015;
Wei et al. 2015; Xia et al. 2015; Huang et al. 2015; Ruan et al. 2015).
Additionally, several target genes of these miRNAs have been vali-
dated in previous studies, e.g., RAB18, RSU1, GTPBP4, DIRAS3, and
F3 (Behrends et al. 2003; Chunduru et al. 2002; Lee et al. 2007;
Riemenschneider et al. 2008; Gessler et al. 2010). Taken together,
our findings highlight several miRNAs that may regulate multiple
signaling cascades crucial for gliomagenesis and therefore, these
miRNAs could be therapeutically significant.

DISCUSSION
Single-omics studies (genome/transcriptome/epigenome/proteome) fall
short of illuminating the underlying functional mechanisms and
providing a comprehensive view of the regulatory patterns of genomic
factors acrossmultiple omics datasets for the etiology of human diseases
(Farber and Lusis 2009). Integrating multi-omics datasets in network
analysis may facilitate the discovery of novel susceptibility genes for
human complex diseases, andmore importantly, yield a comprehensive
understanding of the complex regulatory mechanisms embedded in
and across multi-omics data (Farber 2010). In this study, we proposed
an integrative network analysis framework with epigenomic and tran-
scriptomic data to identify regulatory patterns relevant to the trait of

n Table 1 The identified miRNAs and methylation sites for three
modules by SPLS model

mRNAs miRNAs Methylation Sites

Module 1 50 46 353
Module 2 28 11 125
Module 3 18 33 174
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interest. The additional analysis in File S1 indicates that our framework
can produce reliable results.

Our framework started with the coexpression network analysis to
identify the coexpression modules based on the following two consid-
erations: (i) due to the complexity of human diseases, it is highly likely
that different gene functional modules may contribute to certain dis-
eases, and since different modules tend to have different biological
functions, it is reasonable to analyze eachmodule separately in the sense
that different biological functionalities should be considered separately
(Ma et al. 2012); (ii) a benefit of coexpression network analysis is that it
can greatly decrease the computational burden for the downstream
analysis, e.g., partial correlation analysis and inference of optimal sub-
networks. For example, if we have 300 trait-associated genes, there will
be 44,850 gene pairs to be tested in partial correlation analysis, and this
number will increase dramatically with the increase of the number of
trait-associated genes, which will lead to heavy computation burden
and decrease of power to identify gene pairs with significant partial
correlations.

In the case of complex diseases (such as GBM), comprehensively
identifying interactions among (epi)genomic factors is important
to systematically dissect cellular roles of those (epi)genomic factors
and to gain insights into metabolic pathways. With a coexpression
network, the number of correlations is generally considerably high,
suggesting a plethora of indirect interactions (Krumsiek et al.

2011). To remove indirect interactions among genomic factors
and refer reliable regulation networks, our proposed method in-
corporated two kinds of analyses for a given coexpression module:
partial correlation analysis and inference of optimal subnetworks.
In partial correlation analysis, GGMs were applied to distinguish
direct from indirect associations by estimating the conditional
dependence between genes based on partial correlation coeffi-
cients. However, conditional independence by itself is insufficient
to remove all indirect relationships. Thus, compiling the informa-
tion from external public databases will be helpful to further prune
those unlikely, indirect, and spurious interactions. We can retrieve
various genomic interactions from many available public data-
bases and multi-omics datasets, such as PPIs. In this study, we
incorporated interaction information from PPIs and the results
of the partial correlation analysis to compute a score as a confi-
dence score for each interaction in the module. The most reliable
interactions of each module were further inferred through search-
ing optimal subnetwork for the given module.

Since our goal is to identify regulatory patterns relevant to the trait of
interest from epigenomic and transcriptomic data, it is reasonable
to only choose the trait-associated (epi)genomic factors from
multi-omics data for the subsequent network analysis. This selec-
tion can not only remove noise but also decrease the computational
cost in the network construction of multi-omics data. During the

Figure 4 The interaction modules incorporating information of miRNAs and methylation sites. Each rectangle represents a gene; the circle
represents miRNA. The green rectangles are genes with cis effects, with brighter indicating higher. The pink dashed edges indicate miRNA–gene
interactions annotated in previously mentioned miRNA databases. The green solid edges are gene–gene connections resulting from PCST.
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selection procedure, we adopted a sparse model using L1 and L2
penalties to identify the trait-associated genomic factors, which has
the following specific advantages: (i) it accommodates tens of
thousands of features at a time and identifies joint effects of a
combination of trait-associated genomic factors, including those
with small effect sizes; (ii) using both L1 and L2 penalties, it is able to
select groups of correlated variables, which are very common in
high-dimensional genomic data. The selection of relevant corre-
lated genomic factors is essentially important for coexpression
network analysis and discovery of regulation patterns. Thus, the
sparse model using both L1 and L2 penalties demonstrates the
efficiency in feature selection and captures informative genomic
factors.

In summary, our method can not only identify disease-associated
dysregulated genomic factors, but also, more importantly, construct a

comprehensive map of interactions of all these dysregulated genomic
factors implicated in a specific disease. It is essential to understand the
intricacy of the genomicmechanisms behind complex diseases, and this
maysupport thedevelopmentofnewtherapeutics.However, it shouldbe
recognized that network representation of the complexity of biological
systems is just the beginning. This study is expected to pioneer an
innovative approach to comprehensively enhance our understanding of
molecular genomic mechanism in human complex diseases.
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