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Abstract: Lipoxygenase-derived lipid mediators can modulate inflammation and are stimulated in
response to influenza infections. We report an effect of 8-lipoxygenase (ALOX8) on the recovery of mice
after infection with Influenza virus X31. We compared the responses of 3- and 6-month-old mice with a
deletion of ALOX8 (ALOX8−/−) to influenza infections with those of age-matched littermate wild-type
mice (ALOX8+/+). The duration of illness was similar in 3-month-old ALOX8−/− and ALOX8+/+

mice. However, the 6-month-old ALOX8−/− mice showed a prolonged state of illness compared
with ALOX8+/+ mice, as evidenced by reduced body temperatures, reduced locomotor activities, and
delayed weight recovery. Although residual viral RNA in the lungs at day 10 post-inoculation was
significantly influenced by the age of the ALOX8−/−mice, there were no significant differences between
ALOX8−/− and ALOX8+/+ mice within the same age groups. The levels of cytokines interleukin 6
(IL-6) and keratinocyte chemoattractant (KC) differed significantly between 6-month-old ALOX8−/−

and ALOX8+/+ mice 10 days after viral inoculation. Our data suggest that ALOX8 deficiency in mice
leads to impaired recovery from influenza infection in an age-dependent manner.
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1. Introduction

Influenza is a transmissible disease caused by a family of RNA viruses. In humans, symptoms of
this infection include fevers, headaches, and body aches and pains. In more serious cases, influenza
can lead to life-threatening complications such as bronchitis and pneumonia. The viral infection itself
and the responding host defense mechanisms can both contribute to these symptoms. These host
defense mechanisms include humoral and cellular immune responses involving several cytokines and
chemokines. A recent study of lipids in human nasal washes of influenza patients and in bronchoalveolar
lavage fluid collected from influenza-infected mice reported that a number of bioactive lipids, including
those derived from arachidonic acid metabolism by lipoxygenases, showed marked changes over the
course of infection [1].

Lipoxygenases (LOX) are a family of non-heme iron-containing proteins that catalyze the
dioxygenation of polyunsaturated fatty acids (PUFAs) containing the 1-cis-4-cis-pentadiene moiety
to form bioactive lipids [2]. Six LOXs have been identified in humans and seven in mice.
Metabolism of arachidonic acid by LOXs leads to the formation of regioisomeric cis/trans conjugated
hydroxyeicosatetraenoic acids (HETEs), leukotrienes, lipoxins, and hepoxilins. Depending on the
predominant position of the incorporation of hydroperoxy function, LOXs are classified as 3-, 5-, 8-,
12(S)-, 12(R)-, and 15-LOXs, whose main products are 3(S)-, 5(S)-, 8(S)-, 12(S), 12(R)-, and 15(S)-HETE,
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respectively [3]. LOX metabolites, including hydroperoxy and hydroxyl fatty acids, have been implicated
in a number of cellular processes including proliferation, differentiation, and apoptosis [2].

Some of the bioactive lipids formed through LOX pathways contribute to the induction and
resolution of inflammation [1,4]. For example, two lipid mediators, 13(S)-hydroxyoctadecadienoic acid
(13(S)-HODE) and 9(S)-hydroxyoctadecadienoic acid 9(S)-HODE, were identified recently as novel
biomarkers of inflammation in influenza infection [1]. In addition, the lipid mediator protectin D1 (PD1)
shows anti-inflammatory and anti-viral activity by interfering with the replication processes of the
influenza virus [4]. The 12- and 15-LOX lipid metabolites, including lipoxins, 12(S)-HETE, 15(S)-HETE,
and hepoxilin, can influence the anti-inflammatory response and the resolution of inflammation after
infection [5]. For example, lipoxin A4 can block the migration of the neutrophils to a site of the infection
and reduce the inflammation [6]. In addition, lipoxins contribute to the resolution of inflammation by
activating the phagocytosis of dead cells by monocytes and macrophages [7].

During the course of sub-lethal infections of mice with influenza viruses PR8 and X31, the level of
8(S)-HETE, the main metabolite of ALOX8, was markedly increased in bronchoalveolar lavage fluids
at day 5 after influenza inoculation, concurrent with an increase in the expression of ALOX8 in the
lung tissues [1]. However, the role of ALOX8 in the progression or resolution of influenza infection
is unknown. Here we compared the responses of ALOX8 knockout mice (ALOX8−/−) and wild-type
controls (ALOX8+/+) to influenza infection in two age groups. We used clinical parameters such as body
temperature, activity and body weight as indicators to the illness or recovery [8]. The data suggest an
age-related role for ALOX8 in the recovery of mice after influenza infection.

2. Materials and Methods

2.1. Animals and Characterization of ALOX8 Gene Knockout

All animal studies, including breeding and experimental procedures, were approved by the
Laboratory Animal Use and Care Committee of Southern Illinois University School of Medicine in
Springfield, Illinois, USA (No. 168-13-025 and 195-10-014).

ALOX8 knockout mice (C57BL/6N-ALOX8tm1a(KOMP)Wtsi/MbpMmucd) were procured through
the University of California Davis Knockout Mouse Project (KOMP) Repository and were bred in-house.
31 ALOX8+/+, 44 ALOX8−/−, and 3 ALOX8+/− male mice were used in the experiments. Behavioral
experiments were run up to 4 times with 8 to 10 animals. Mice were housed in static micro-isolator
cages bedded with Beta chip (Northeastern Products Corporation, Warrenburg, NY, USA) to a depth
of an inch. Cages were placed in an environmentally-controlled chamber that was maintained at a
controlled temperature (22 ± 1◦C) and 12:12 h light: dark cycles under pathogen-free conditions. Cages
were changed weekly or more frequently if necessary. Mice were maintained on Purina Lab Diet 5001
(LabDiet, St Louis, MO, USA) and tap water.

Genomic DNA was extracted from tail or ear biopsies and subjected to polymerase chain reaction
(PCR) to determine the genotypes. To determine ALOX8 gene expression, RNA was extracted from the
lungs, reverse transcribed to cDNA, and subjected to quantitative PCR (qPCR) to measure ALOX8
mRNA levels. To determine ALOX8 protein levels, protein lysates obtained from the lung (80 µg per
sample) were loaded onto sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
gels and transferred to Immobilon-FL membranes from Thermo Fisher Scientific (Cat. No. IPL00010)
(Waltham, MA, USA). The membranes were incubated with a 15-LO2 (D-9) antibody from Santa Cruz
Biotechnology (Cat. No. sc-271290) (Dallas, TX, USA) at a dilution of 1:250 for one hour at room
temperature. This antibody recognizes the internal region for 15-LOX-2 of human and 8-LOX of
mouse origin. GAPDH antibody from Santa Cruz Biotechnology (Cat. No. sc-47724) at a dilution of
1:500 was used as a loading control. Goat anti-mouse or rabbit secondary antibodies from LI-COR
Biosciences (Cat. No. 92532210) (Lincoln, NE, USA) were used at a dilution of 1:5000 for one hour at
room temperature before the membranes were washed and scanned using Odyssey infrared imaging
system (LI-COR Biosciences).
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2.2. Influenza Virus

Influenza virus strain A/Hong Kong/X31(H3N2) was used in these experiments. Viral stocks were
prepared by inoculation of embryonated chicken eggs, and the resultant virus-infected allantoic fluid
was kindly provided by Dr. Robert Webster (St. Jude Children’s Research Hospital). The titer of the
stock was determined by using a 50% tissue culture infective dose (TCID50) assay in Madin-Darby
Canine Kidney (MDCK) cells. Aliquots of the allantoic fluid were frozen at −80 ◦C until use and,
if necessary, were diluted with PBS prior to use to achieve the desired dose.

To create the influenza infection in this study, mice were lightly anesthetized with isoflurane and
inoculated intranasally. An aliquot of the viral stock was thawed and then diluted with sterile PBS
to provide an infectious dose of 7 × 10ˆ4.65 plaque-forming units (PFUs)/mL infectious viruses in a
volume of 25 µL.

2.3. Surgery, Viral Inoculation, and Monitoring of the Infected Mice

One of the studies reported here used intraperitoneal telemetric transmitters to continuously
measure the temperature and locomotor activity of mice. Ibuprofen (20 mg/mL) was provided as
an analgesic in the drinking water beginning three days prior to the surgery and continuing until
day five after the surgery. During surgery, mice were maintained on isoflurane anesthesia and
under a heat lamp. The eyes were protected with a bland ophthalmic ointment to retard dryness.
A telemetric transmitter was implanted intraperitoneally by using sterile instruments and aseptic
technique. During the implantation, mice received 1 mL saline intraperitoneally to maintain the
hydration and lubrication of the transmitter and abdominal cavity. Next day, another 1 mL saline was
administered intraperitoneally [9].

Mice were housed in groups of five before surgery and individually after surgery. Baseline data
were measured at 10 days after surgery and two days before inoculation with the Influenza virus,
and continuously thereafter until the end of the experiment. Temperature and locomotor activity
were collected continuously from the implanted transmitters, and the average values over the day
were reported [10]. Body weights were measured daily. Temperature and activity signals from each
individual mouse were obtained through physioTelTM receivers (Data Scientific International, St. Paul,
MN, USA) located beneath the animal cage. Dataquest A.R.T.22 software was used to process the data
from the data exchange matrix (Data Scientific International, St. Paul, MN, USA). Locomotor activity
was detected as movement within the cage based on the transmitter location above the receiver and
was recorded as the number of events per 10 min [10]. Data collection continued for up to 19 days
after inoculation, by which time all mice had almost recovered, died, or been euthanized during
the experiment due to a moribund condition (temperature below 28◦C, unresponsive to handling).
Euthanasia was performed by isoflurane overdose followed by cervical dislocation.

In another study, IPTT-300 electronic identification transponders (Bio Medic Data System, Inc.,
Seaford, DE, USA) were subcutaneously implanted in the interscapular region of mice. Mice were
housed in a group of four or less after the implantation. These transponders permit remote collection
of temperatures using a wand (model # DAS-6007). The baseline temperature and body weight were
collected at 10 days after implantation and daily thereafter until day 10 post-inoculation. On day 10,
the mice were euthanized by isoflurane overdose. The lungs were collected for cytokine and residual
viral RNA measurements and for eosin and hematoxylin staining.

2.4. Hematoxylin and Eosin Staining of Lung Sections

Lung tissue samples from 6-month-old infected ALOX8+/+ and ALOX8−/− mice were fixed in
10% formalin and embedded in paraffin. Seven micrometer sections were stained with eosin and
hematoxylin [11]. Slides were read in a blinded manner. Lung histopathology was visually scored
based on the extent of inflammation and the overall appearance of lung architecture [12]. Inflammation
was scored as the following: 0 for no inflammation, 1 for mild inflammation (10%–25%; scattered
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neutrophils), 2 for moderate inflammation (26%–50%) and 3 for marked inflammation (>51%; dense
infiltrate). Lung architectural pathology was scored as the following: 0 for normal architecture, 1
for low numbers of necrotic alveolar cells and the presence of swollen alveolar walls, and 2 for high
numbers of necrotic alveolar cells, desquamation of the alveolar cells, and swollen alveolar walls.

2.5. Measurement of Residual Viral RNA

The M gene, which encodes for viral matrix and membrane proteins [13], is considered highly
conserved and is usually used to diagnose all influenza A subtypes [14]. We used qPCR to evaluate
the residual viral content that was not cleared using RNA extracted from the 100 mg lung tissue of
infected mice. qPCR was used as a surrogate for replication and spreading of the infectious virus
because it detected the viral genome in the dead and living infected cells [15]. To detect M gene
RNA levels, we used the forward primer (CATGGAATGGCTAAAGACAAGACC) and reverse primer
(TGTCCAAAATGCCCTTAATGG). The Eukaryotic Translation Elongation Factor 1 Alpha 1 (eEF1a1)
gene was used as a normalization control with forward primer (TCCCTGTGGAAATTCGAGAC)
and reverse primer (CCAGGGTGTAAGCCAGAAGA) (n = 3 for each genotype and age). M gene
expression is presented as fold changes compared to the internal control (eEF1a1), with raw values
further normalized against the mean of the 3-month-old ALOX8+/+ mice. Normalization of all the
groups to one standard helps to test if the age and genotype influence the viral RNA copies by using
ANOVA. Values shown are mean ± standard error of the mean (SEM), with N = 3 per group and with
each sample analyzed in triplicate.

2.6. Measurement of Cytokines and Chemokines

Lung tissue (200 mg) from each mouse was homogenized with 500 µL of calcium- and magnesium-
free Dulbecco’s phosphate-buffered saline (DPBS) containing 1X protease inhibitor. The samples
were stored at −80 ◦C overnight and then centrifuged at 12,000 rpm for 10 min at 4◦C. Protein
concentrations in the supernatants were determined using the Pierce bicinchoninic acid (BCA) protein
assay. All samples were adjusted to 3 mg/mL protein concentration for measurement of cytokines
by using Milliplex®Map kit (Cat. No. MCYTOMAG-70K) (EMD Millipore, Burlington, MA, USA).
Direct quantification of the cytokine levels was obtained by using a Power Wave HT Microplate
Spectrophotometer (BioTek Instruments, Winooski, VT, USA). The cytokines measured in 6-month-old
mice were granulocyte-colony stimulating factor (G-CSF), interleukin-1β (IL-1β), IL-6, interferon
γ-inducible protein 10 (IP-10) (also known as C-X-C motif chemokine 10, CXCL10), KC (also known
as C-X-C motif chemokine 1, CXCL1), monokine induced by gamma interferon (MIG) (also known
as C-X-C motif chemokine 9, CXCL9), interleukin-5 (IL-5) and monocyte chemoattractant protein-1
(MCP-1) (also known as chemokine C-C motif ligand 2, CCL2).

2.7. Statistical Analysis

All data are presented as mean values ± SEM. P values of <0.05 were considered to indicate a
statistically significant effect. P values were corrected for multiple comparisons if necessary, by using
either the Tukey test or Bonferroni corrections, as indicated below.

Temperature, body weight, and, in the transmitter study, activity data were analyzed by using a
mixed model ANOVA with between-subject factors of genotype (ALOX8+/+ and ALOX8−/−) and age (3-
and 6-months old) and a within-subject factor of time (baseline and 19 or 10 days of post-inoculation
measurements in the transmitter and chip experiments, respectively). Baseline values represented the
average values collected on the two days prior to inoculation. A Bonferroni correction was used to
adjust for multiple comparisons within the full model.

For the residual viral RNA measurements, a two-way ANOVA with post-hoc Tukey testing was
used to test for significant differences among the four infected groups as a function of age and genotype.
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Cytokine and chemokine data were log-transformed for analysis and presentation to avoid
violations of normality and equal variance. Data were analyzed by using a 2-way ANOVA (infection
status and genotype) with post hoc Tukey testing.

Histopathology (inflammation and architectural scores) was evaluated using 2-way ANOVA
(infection status and genotype) with post hoc Tukey testing.

3. Results

3.1. Characterization of ALOX8 Knockout Mice

The open reading frame of ALOX8 gene has 677 base pairs coding for 76,230 Dalton protein with
78% homology to human ALOX15B gene product [16]. To determine the potential role of ALOX8 in
host responses to influenza infections, we obtained mice with ALOX8 gene knocked out, as evidenced
by the genotyping (Figure 1A). Mouse lung tissues collected were also evaluated for ALOX8 expression
at RNA and protein levels. As shown in Figure 1B, ALOX8 expression at the RNA level was reduced
by approximately half in heterozygous ALOX8+/− mice and was minimal in homozygous ALOX8−/−

mice. ALOX8 expression at protein level was also minimal in the ALOX8−/− mice as compared with
the ALOX8+/+ mice (Figure 1C). A faint band was noticed in the ALOX8−/− mice which may be due to
low endogenous level of ALOX8 or unspecific detection of other isoforms of lipoxygenases.
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Figure 1. Characterization of ALOX8−/−mice. All data shown are from uninfected mice. (A) Representative
genotyping of ALOX8+/+, ALOX8−/− and ALOX8−/− mice. (B) qPCR analysis of ALOX8 mRNA levels
in the lung of ALOX8+/+, ALOX8+/− and ALOX8−/− mice. (C) Western blot analysis of ALOX8 protein
levels in the lung of ALOX8+/+ and ALOX8−/− mice.

3.2. Responses Of 3- and 6-Month-Old Littermate ALOX8+/+ and ALOX8−/− After Inoculation with Influenza
Virus as Measured by Intraperitoneal Transmitter

Body temperature and locomotor activities before and after inoculation with influenza virus were
collected by the intraperitoneal transmitter. Analysis of baseline temperatures by 2-way ANOVA
(between subject factors of age and genotype) revealed no significant differences (p = 0.6061). After
intranasal inoculation with influenza virus, the 3-month-old ALOX8−/− and ALOX8+/+ mice both
developed significant reductions in body temperature during days one through 10 post-inoculation,
with a reduction persisting in the ALOX8−/− mice through day 11 and with no significant differences
between same-day values for ALOX8+/+ and ALOX8−/− (Figure 2A). In the 6-month-old mice, significant
temperature reductions were detected only at day two for ALOX8+/+ mice, whereas temperatures were
significantly lower in the ALOX8−/− mice for the duration of the post-inoculation period (Figure 2B).
Mice entering a moribund state accounted for large temperature variations in the ALOX8−/− mice
between days seven through 16. Temperatures of 6-month-old ALOX8+/+ and ALOX8−/− mice differed
significantly from each other on days eight through 12 and 15. An overall mixed model repeated
measures ANOVA revealed significant effects of genotype (p = 0.0365) and time after inoculation
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(p < 0.0001), with significant interactions of age*time (p < 0.0001), genotype*time (p = 0.0063) and
age*genotype*time (p = 0.0061).
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Figure 2. Locomotor activity, temperature and body weight in ALOX8+/+ and ALOX8−/− mice before
and after influenza inoculation. Activity and temperature data were collected using an intraabdominal
transmitter. These data are presented as average daily values and SEM based on continuous 10-minute
periods of data acquisition for locomotor activity and one reading every 10 minutes for temperature.
Body weight was measured daily. Left panels show data from 3-month-old mice (n = 6 ALOX8+/+ mice
and n = 8 ALOX8−/− mice); right panels show data from 6-month-old mice (n = 6 ALOX8+/+ mice and n
= 8 ALOX8−/− mice). Horizontal lines denote significant differences from baseline values (ALOX8+/+,
solid; ALOX8−/−, dashed). Asterisks denote significant difference between ALOX8+/+ and ALOX8−/−

mice at the designated time point.

Analysis of baseline locomotor activity by 2-way ANOVA (between subject factors of age and
genotype) revealed no significant differences among groups (p = 0.180). An overall mixed model
repeated measures ANOVA revealed a significant effect of time after inoculation (p < 0.0001), with
a significant interaction of age*time (p = 0.0131). Post-hoc analysis revealed that after intranasal
inoculation with influenza virus, 3- and 6-month-old mice of both genotypes developed significant
reductions in locomotor activity (Figure 2C,D), with the duration of these reductions lasting one to
two days longer in ALOX8−/− mice when compared with ALOX8+/+ mice at both ages. No significant
effects were detected with respect to age (p = 0.0642) or genotype (p = 0.35).

Analysis of baseline body weights by 2-way ANOVA (between subject factors of age and genotype)
revealed significant differences among groups (p < 0.0001). Post-hoc analysis revealed significant
differences related to age (3- versus 6-month-old ALOX8+/+ mice, p = 0.002; 3- versus 6-month-old
ALOX8−/− mice, p = 0.0003), with no significant effect of genotype. An overall mixed model repeated
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measures ANOVA revealed significant effects of age (p = 0.0015), genotype (p = 0.0481) and time
after inoculation (p < 0.0001), with a significant interaction of genotype*time (p = 0.0014). Post-hoc
analysis revealed that after intranasal inoculation with influenza virus, 3- and 6-month-old mice of
both genotypes developed significant reductions in body weight (Figure 2E,F), with the duration of
these reductions lasting one to two days longer in ALOX8−/− mice when compared with ALOX8+/+

mice at both ages. Significant differences between 6-month-old ALOX8−/− and ALOX8+/+ mice were
present on days 10 and 11 post-inoculation. No significant effects were detected with respect to age.

3.3. Responses of 3- and 6-Month-Old Littermate ALOX8+/+ and ALOX8−/− to Inoculation with Influenza
Virus, Monitored Using Subcutaneous Chips

To confirm the observations described above, we used a second approach to monitor the
temperature responses of 3- and 6-month-old ALOX8+/+ or ALOX8−/− mice to influenza infection.
In this study, IPTT-300 electronic identification transponders were subcutaneously implanted in the
interscapular region of mice, thereby avoiding potential adverse effects of invasive abdominal surgeries.
Subcutaneous temperature and body weight were measured daily pre-inoculation and for 10 days
post-inoculation with the influenza virus.

For temperature, baseline values were not significantly different among groups. The overall mixed
model repeated measures ANOVA revealed significant effects of genotype (p = 0.0093) and of time
after inoculation (p < 0.0001), with significant interactions of age*time (p = 0.0128) and genotype*time
(p < 0.0001). Post-hoc analysis revealed that baseline temperatures of ALOX8+/+ and ALOX8−/− mice
were not significantly different from each other at either age. After intranasal inoculation with influenza
virus, the 3-month-old ALOX8+/+ mice developed significant reductions in body temperature during
days one through nine after inoculation, whereas in the ALOX8−/− mice, the reduction persisted
through day 10, with no significant differences between the two strains on any day of the study
(Figure 3A). In the 6-month-old mice, both genotypes showed significant reductions in temperature on
days one through 10 (Figure 3B). Temperatures of 6-month-old ALOX8+/+ and ALOX8−/− mice differed
significantly from each other on post-inoculation days 7, 8 and 10.

For body weight, baseline values differed significantly among groups (p = 0.0006), with post-hoc
analysis showing that 6-month-old mice of both strains weighing significantly more than 3-month-old
mice of the same strain (ALOX8+/+ mice, p = 0.0293; ALOX8−/− mice, p = 0.0175). The overall mixed
model repeated measures ANOVA revealed significant effects of age (p = 0.0007), genotype (p =

0.0122), and time after inoculation (p < 0.0001), with significant interactions of age*time (p<0.0001),
genotype*time (p < 0.0001), and age*genotype* time (p < 0.0001). Baseline weights of ALOX8+/+ and
ALOX8−/− mice were not significantly different from each other at either age, but both strains showed a
significant age-related increase in weight (p = 0.0293 and p = 0.0175 for ALOX8+/+ and ALOX8−/− mice,
respectively) (Figure 3C,D). All four groups showed significant reductions in body weight during
post-inoculation days one through 10. Post-hoc analysis revealed that body weights of 6-month-old
ALOX8+/+ and ALOX8−/− mice differed significantly from each other on post-inoculation days seven
through 10.
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Age ALOX8+/+ ALOX8−/− 
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Figure 3. Daily temperature and body weight of ALOX8+/+ and ALOX8−/− mice before and after
influenza inoculation. Mice were implanted with subcutaneous chips to allow remote acquisition
of body temperature. Temperature and body weights were measured daily before and for 10 days
after influenza inoculation. Data are presented as average daily values ± SEM. Left panels show
body temperature (A) and weight (C) data from 3-month-old mice (n = 7 ALOX8+/+ mice and n = 11
ALOX8−/− mice); right panels show body temperature (B) and weight (D) data from 6-month-old mice
(n = 7 ALOX8+/+ mice and n = 10 ALOX8−/− mice). Horizontal lines denote significant differences from
baseline values (ALOX8+/+, solid; ALOX8−/−, dashed). Asterisks denote significant difference between
ALOX8+/+ and ALOX8−/− mice at the designated time point.

3.4. Residual Viral RNA in 6-Month-Old ALOX8−/− and ALOX8+/+ Mice 10 Days After Inoculation

To determine the mechanism for the impaired recovery of 6-month-old ALOX8−/− mice from
influenza A infections as compared to their littermate wild-type mice, we examined whether there
are differences in the levels of residual viruses, as result of delayed viral clearance, between the two
groups of mice 10 days after inoculation. The M gene, which encodes for viral matrix and membrane
proteins [13], is considered highly conserved and is often used to diagnose all influenza A subtypes [14].
As shown in Table 1, the 6-month-old ALOX8−/− infected mice had a significantly higher residual
viral RNA than the 3-month-old ALOX8−/− infected mice, whereas the ALOX8+/+ mice did not show a
statistically significant effect of age. However, no statistically significant differences in residual M gene
RNA levels were detected between ALOX8+/+ and ALOX8−/− mice at either age (Table 1). The data
suggest that the impaired recovery of 6-month-old ALOX8−/− mice from influenza A infections is not
likely caused by impaired viral clearance or increased residual viruses.

Table 1. Residual M gene RNA levels in the lungs of influenza-infected mice at 10 days after inoculation. †

Genotype

Age ALOX8+/+ ALOX8−/−

3 months 0.001 ± 0.000 0.002 ± 0.001
6 months 0.017 ± 0.008 0.018 ± 0.002 *

†M gene expression is presented as fold changes compared with the internal control (eEF1a1), with raw values
further normalized against the mean of the 3-month-old ALOX8+/+ mice. Values shown are mean ± SEM, with n = 3
per group. * Post-hoc analysis revealed a significant effect of age for ALOX8−/− mice but not for ALOX8+/+ mice.



Med. Sci. 2019, 7, 60 9 of 14

3.5. Histopathology of Lungs of 6-Month-Old ALOX8−/− and ALOX8+/+ Mice 10 Days After Infections

Next, we evaluated lung histology to determine whether the impaired recovery of 6-month-old
ALOX8−/− mice from influenza A infections was due to increased tissue inflammation. Lung tissues
were collected from mice 10 days after infections, when most littermate wild-type mice recovered,
processed for hematoxylin and eosin staining, and evaluated for inflammatory infiltrates and changes
in tissue architectures. As shown in Table 2, with regard to inflammation, 2-way ANOVA revealed
significant effects of both infection status (p = 0.004) and genotype (p = 0.009). Post-hoc Tukey testing
revealed that infected ALOX8−/−mice had significantly higher inflammation scores than ALOX8+/+mice
(p = 0.024). Qualitatively, lung sections from the infected ALOX8+/+ mice showed mild peribronchiolar
inflammation and almost complete resolution of inflammation, while interstitial and peribronchiolar
inflammation were significantly more severe in the infected 6-month-old ALOX8−/− mice (Figure 4).

Table 2. Histopathology in lungs of infected and uninfected ALOX8+/+ and ALOX8−/− mice (10 days
after inoculation).

ALOX8+/+ ALOX8−/−

Inflammation Score
Uninfected 0 ± 0 (n = 3) 0.6667 ± 0.57735 (n = 3)

Infected 0.8333 ± 0.75277 (n = 6) 2.375 ± 0.91613 (n = 8)*
Architectural Pathology Score

Uninfected 0 ± 0 (n = 3) 0.3333 ± 0.57735 (n = 3)
Infected 0.50 ± 0.54722 (n = 6) 1.50 ± 0.75593 (n = 8) * †

Data are presented as mean ± STD. * significant difference from uninfected mice of the same genotype; † significant
difference between infected ALOX8+/+ and ALOX8−/− mice.Med. Sci. 2019, 7, 60 10 of 14 
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Figure 4. Lung histology changes on day 10 after inoculation of 6-month-old mice. Yellow arrows
indicated the inflammation and the green arrows indicated the alveolar pathology changes.

Regarding the alveolar architecture, a 2-way ANOVA revealed significant effects of both infection
status (p = 0.043) and genotype (p = 0.014), with no significant interactions (Table 2). Post-hoc analysis
using the Tukey test revealed that infected ALOX8−/− mice had significantly higher architectural
pathology scores than both ALOX8+/+ mice (p = 0.02) and uninfected ALOX8−/− mice (p = 0.021). Lung
sections from the infected ALOX8−/− mice showed high numbers of necrotic cells, desquamation of the
alveolar epithelium, and swollen alveolar walls. These features were absent or comparatively mild in
the ALOX8+/+ mice. The data suggest that in 6-month-old ALOX8−/− mice, even 10 days after influenza
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A infections, there were significantly increased inflammation found in the lungs when compared with
their littermate wild-type controls.

3.6. Cytokine and Chemokine Levels in Lung of Infected and Uninfected 6-Month-Old ALOX8−/− and
ALOX8+/+ Mice

We next measured the levels of various cytokines and chemokines in mouse lungs 10 days after
inoculation to determine which ones may account for the increased inflammation or impaired recovery
of 6-month-old ALOX8−/− mice. As shown in Table 3, ANOVA revealed no significant differences for
IL-1β or IL-5 with respect to infection status or genotype, with no significant interactions. G-CSF,
IL-6, KC, MCP-1 and MIG showed significant effects of infection status (p < 0.0001) but not genotype.
IP-10 showed significant effects of both genotype (p < 0.0001) and infection status (p = 0.004), with no
significant interactions.

Table 3. Cytokine and chemokine concentrations in the lung of 6-month-old ALOX8+/+ and ALOX8−/−

mice at 10 days after inoculation with influenza virus.

Cytokines ALOX8+/+ ALOX8−/−

IL-1β
Uninfected 1.38 ± 0.15 1.36 ± 0.10

Infected 1.26 ± 0.11 1.23 ± 0.09
IL-5

Uninfected 0.22 ± 0.19 0.14 ± 0.16
Infected 0.14 ± 0.04 0.54 ± 0.07
G-CSF

Uninfected 0.75 ± 0.05 0.75 ± 0.06
Infected 1.95 ± 0.25 * 1.89 ± 0.10 *

IL-6
Uninfected 0.82 ± 0.09 0.75 ± 0.03

Infected 1.32 ± 0.16 * 1.73 ± 0.05 * †
IP-10 (CXCL10)

Uninfected 1.75 ± 0.03 1.84 ± 0.03
Infected 3.09 ± 0.08 * 3.23 ± 0.02 *

KC (CXCL1)
Uninfected 1.49 ± 0.07 1.50 ± 0.04

Infected 1.78 ± 0.05 * 1.97 ± 0.04 * †
MCP-1 (CCL2)

Uninfected 1.61 ± 0.19 1.55 ± 0.14
Infected 2.65 ± 0.20 * 2.31 ± 0.06 *

MIG (CXCL9)
Uninfected 1.73 ± 0.03 1.78 ± 0.04

Infected 2.99 ± 0.05 * 3.07 ± 0.02 *

Data are presented as pg/mL, of lung homogenate; values were analyzed and are presented as log-transformed
values to avoid violations in normality and equal variance that were present in the non-transformed data. Data
are expressed as mean ± SEM. Numbers of samples in each group were as follows: uninfected ALOX8+/+, N = 3;
infected ALOX8+/+, N = 6; uninfected ALOX8−/−, N = 3; uninfected ALOX8−/−, N = 8.* p < 0.01 as compared with
uninfected mice of the same genotype †, p < 0.05 as compared with infected mice of the other genotype.

Post-hoc analysis revealed no significant differences between uninfected ALOX8+/+ and ALOX8−/−

mice for any of the analyses. Significant effects (p < 0.01) due to infection status were present for G-CSF,
IL-6, IP-10, KC, MCP-1, and MIG for both ALOX8+/+ and ALOX8−/− mice. Infected ALOX8+/+ and
ALOX8−/− mice showed significant differences with respect to IL-6 (p = 0.017) and KC (p = 0.024).

4. Discussion

Data from two independent experiments with two different monitoring devices suggest that
mice with deletion of the 8-lipoxygenase gene (ALOX8−/−) have an age-related delay in recovery from
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influenza viral infection. While the 3-month-old ALOX8−/− and ALOX8+/+ mice showed no statistically
significant differences in any of the tested variables, in 6-month-old mice, the recovery was significantly
slower in ALOX8−/− mice, as evidenced by delays in the recoveries of baseline locomotor activity,
weight, and body temperature. Researchers showed that mice infected with influenza developed
hypothermia and decreased locomotor activity when compared to their conditions one or two days
before inoculation [17,18]. Hypothermia, hypoactivity and increased sleeping hours resulting in
reducing the food intake and body weight of the virus-infected mice [19]

The two approaches used in the experiment both showed an obvious difference in the body
weight between the 6-month knockout and the wild-type group but at slightly different time course.
The differences in the time-course might be due to the different experimental settings like the size and
the position of the transmitters, surgical procedures used, and the post-surgical housing conditions
which can affect the food intake and recoveries of mice. Nevertheless, the two different monitoring
approaches both confirmed the delayed recoveries of 6-month ALOX8−/− mice when compared to their
wild-type controls.

One possibility for the delayed recovery of 6-month-old ALOX8−/− mice from influenza infection
may be related to delayed clearance of residual viruses. However, in this study, ALOX8−/− and
ALOX8+/+ infected mice showed no significant difference in residual viral RNA in either of the two
age groups. There were increased levels of residue RNAs in 6-month-old mice compared with the
3-month-old groups in both genotypes. However, only the 6-month-old ALOX8−/− infected mice
showed a significant difference in the residual viral RNA as compared with 3-month-old ALOX8−/−

mice. Several studies on mice reported an increase in influenza viral burden and mortality over
time [20,21]. For other lipoxygenases, it was reported that ALOX5−/− mice had lower virus titers in the
lungs but greater susceptibility to the infection, enhanced immunopathology and decreased pulmonary
function [22]. But in our study, the 3-month-old mice of both genotypes had the similar residual viral
RNA and recovery patterns, whereas recovery was delayed in the 6-month-old ALOX8−/− mice when
compared with ALOX8+/+ mice despite similar levels of residual viral RNA. Our data suggest that
factors, besides residual viruses, are involved in the delayed recovery of 6-month-old ALOX8−/− mice
after infections of influenza viruses.

During immune responses to influenza infections, the innate immune responses are activated at
the site of infection, followed by activation of adaptive immune responses. Natural killer (NK) cells
enter the location of the infection to eradicate the cells infected with influenza viruses [23]. In addition,
monocytes and neutrophils can be recruited rapidly to the infection site and with the assistance of
alveolar macrophages, help in viral clearance by engulfing the dead infected cells [24]. Resolution of
viral infections is governed by multiple factors. In our studies, although the kinetics of changes in
body temperature and body weight are similar in both genotypes in first several days after inoculation,
the recovery of 6-month-old mice was delayed in terms of locomotor activities, body weight and
temperature. Histochemical analysis revealed the presence of persistent inflammation in the lung
tissues of ALOX8−/− mice at day 10 after viral infections. At this time point, most inflammation was
resolved in the wild-type control mice. The data suggest that ALOX8 is involved in the host responses
and/or subsequent resolution of inflammation after influenza viral infections.

The progression and resolution of symptoms from influenza infection can be related to the viral
load and the elevation of inflammatory cytokines such as IL-6 and IP-10 [25]. In our studies, the levels
of G-CSF, IP-10, IL-6, MCP-1, MIG, and KC were increased in the lung tissue extracts from mice infected
with the X31 virus when compared with uninfected mice. Loss of body weight can result from the
elevated pro-inflammatory cytokines such as KC [26]. Increased G-CSF can lead to the stimulation,
proliferation and differentiation of white blood cells [27] and mobilization of hematopoietic stem
cells [28]. IP-10 recruits macrophages, lymphocyte T cell, natural killer cell and dendritic cells to the
site of the infection [29].

In our study, IL-6 and KC were found to have higher levels in the infected ALOX8−/− mice than
in ALOX8+/+ mice on day 10 after inoculation, which may account for the differences in lung tissue



Med. Sci. 2019, 7, 60 12 of 14

inflammation or recoveries. KC recruits neutrophils to the infected lung [30] while IL-6 is usually
involved in the acute phase responses toward infections. Further studies are needed to elucidate
how ALOX8 loss leads to the changes in IL-6 and KC levels and whether those changes lead to
delayed resolution of inflammations. In addition to cytokines, lipoxygenase metabolism of arachidonic
acid or other unsaturated free fatty acids can generate a number of bioactive lipids, some of which
have a protective role against influenza-induced immunopathology [22]. These mediators can block
the expression of some inflammatory cytokines such as IL-6 and KC [31]. For example, mice with
ALOX15, an isoform of ALOX8, knocked out had arthritis, with increased levels of IL-6 and IL-1β
as compared with their wild-type controls, and the level of KC was correlated to their body weight
loss [26]. More studies are needed to determine whether the bioactive lipid products of ALOX8 can
modulate inflammatory responses toward influenza infections directly or through modulating the
expression of cytokines IL-6 and KC.

An interesting aspect of the data is the relationship of the findings to age. Three-month-old mice
are the biological equivalent of teenagers and college freshmen, technically post-pubertal but not yet
mature adults and still undergoing maturation [32]. Differences between 3- and 6-month-old mice
could be relevant to factors such as thymic involution, which is on-going in that age range [33]. In our
study, 3-month-old ALOX8−/− mice recovered as quickly as ALOX8+/+ mice, yet the 6-month-old mice
did not. On the other hand, ALOX8−/− mice infected at 6 months of age had a higher residual viral
load than did ALOX8−/− mice infected at 3 months of age. The human orthologue of mouse ALOX8 is
15-lipoxygenase-2 (ALOX15B), which is a senescent gene, with its expression increased when prostate
epithelial cells become senescent [34]. However, the exact role of ALOX8 in aging is unknown. Further
studies are needed to elucidate the mechanism for age-dependent functions of ALOX8.

In summary, loss of the ALOX8 gene delays mouse recovery from influenza viral infections in an
age-related manner. The delay in recovery is accompanied by changes in lung cytokine levels, possibly
leading to persistent inflammation in the lung. Our studies demonstrate a functional role for ALOX8
in host recovery from influenza infection.
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