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Abstract

Background: In malaria endemic areas such as sub-Saharan Africa, repeated exposure to 

malaria results in acquired immunity to clinical disease but not infection. In prospective studies, 

time-to-clinical malaria and longitudinal parasite count trajectory are often analysed separately 

which may result in inefficient estimates since these two processes can be associated. Including 

parasite count as a time-dependent covariate in a model of time-to-clinical malaria episode may 

also be inaccurate because while clinical malaria disease frequently leads to treatment which may 

instantly affect the level of parasite count, standard time-to-event models require that time-

dependent covariates be external to the event process. We investigated whether jointly modelling 

time-to-clinical malaria disease and longitudinal parasite count improves precision in risk factor 

estimates and assessed the strength of association between the hazard of clinical malaria and 

parasite count.

Methods: Using a cohort data of participants enrolled with uncomplicated malaria in Malawi, a 

conventional Cox Proportional Hazards (PH) model of time-to-first clinical malaria episode with 

time-dependent parasite count was compared with three competing joint models. The joint models 

had different association structures linking a quasi-Poisson mixed-effects of parasite count and 

event-time Cox PH sub-models.
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Results: There were 120 participants of whom 115 (95.8%) had >1 follow-up visit and 100 

(87.5%) experienced the episode. Adults >15 years being reference, log hazard ratio for children 

<5 years was 0.74 (95% CI: 0.17, 1.26) in the joint model with best fit vs. 0.62 (95% CI: 0.04, 

1.18) from the conventional Cox PH model. The log hazard ratio for the 5–15 years was 0.72 (95% 

CI: 0.22, 1.22) in the joint model vs.0.63 (95% CI: 0.11, 1.17) in the Cox PH model. The area 

under parasite count trajectory was strongly associated with the risk of clinical malaria, with a unit 

increase corresponding to-0.0012 (95% CI: −0.0021, −0.0004) decrease in log hazard ratio.

Conclusion: Jointly modelling longitudinal parasite count and time-to-clinical malaria disease 

improves precision in log hazard ratio estimates compared to conventional time-dependent Cox 

PH model. The improved precision of joint modelling may improve study efficiency and allow for 

design of clinical trials with relatively lower sample sizes with increased power.
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Introduction

Malaria remains one of the most common parasitic infections globally with a 

disproportionately high burden in sub-Saharan Africa [1]. In malaria-endemic areas, 

repeated exposure results in acquired immunity to clinical malaria disease but not infection. 

Of interest in many malaria studies is to estimate time-to-clinical malaria but repeated 

exposure may give rise to a relationship between the disease and time-dependent covariates 

such as parasite count. However, time-to-clinical malaria and parasite count data are often 

analysed separately, mostly using Cox proportional hazards (PH) models and mixed-effects 

models or generalised estimating equations (GEE) respectively [2–4]. Separate analysis of 

time-to-clinical malaria disease and parasite count data may result in inefficient estimates 

when these two processes are strongly associated [5].

For accurate estimation of the risk of clinical malaria, analytical methods are required that 

account for historical exposure and the relationship between clinical malaria and infection 

parasite count. To investigate the strength of this association, one approach would be 

including the parasite countas a time-dependent covariate in the model of time-to-clinical 

malaria episode. However, this approach may be inaccurate because it does not account for 

the fact that parasite count in this case is an endogenous covariate whose existence and 

future path can be directly related to the occurrence of the episodes [6]. Standard time-to-

event models require that time-dependent covariates be external to the event process [7] but 

clinical malaria disease frequently leads to treatment which may instantly affect the level of 

parasite count.

A second approach is to fit a joint model of time-to-clinical malaria and longitudinal parasite 

count profile. Previous applications of the joint modelling framework are many. These 

include, for example, analysis of CD4 count jointly with time-to-development of AIDS [8–

12] and modelling quality of life performance scores jointly with time-to-death or disease 

progression among patients with cancer [11,13,14]. In order to fit joint models to data from 
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malaria studies, there are certain aspects of these types of data that require consideration. In 

particular, following treatment it is possible for the parasite count to equal zero, so the joint 

model should allow for that.

We investigated whether modelling time-to-new clinical malaria disease jointly with parasite 

count trajectory data may improve precision in log hazard ratio estimates when compared to 

the conventional Cox PH model with time-dependent parasite count. We also assessed the 

strength of the association between the hazard of clinical malaria and a time-varying parasite 

count.

Methodology

Data source

The study was motivated by data from the Mfera prospective cohort study conducted in 

Chikwawa district, southern Malawi, described previously by Buchwald and others [15]. 

Malaria disease is endemic in Malawi [16] and transmission of the Plasmodium falciparum 
parasite is high in Chikwawa [17,18]. The cohort enrolled 120 participants who presented 

with uncomplicated malaria at the Mfera health centre in the Chikwawa district between 

June 2014 and March 2015. Initial diagnosis was made by rapid diagnostic test (RDT) and 

confirmed by microscopy using thick blood smears. Exclusion criteria from the Mfera 

cohort included: acute illness requiring hospitalization, signs or symptoms of severe malaria 

or moderate to severe anemia, and chronic medication with any drug that has antimalarial 

activity e.g. HIV treatment. Participants underwent passive and active surveillance on a 

monthly basis and whenever sick for up to two years to assess re-infection, host response 

and parasite count.

Primary outcome

In the current analyses, the outcome of interest was time-to-first new clinical malaria disease 

which was defined by participants’ self-reported fever and apositive RDT result.

Notation and specification of the models

The conventional Cox PH model with time-dependent parasite count is defined as in [9] with 

the hazard function λi(t) for participant at given time expressed as.

λi t = λ0(t)exp βsXsi′ t , (1)

where and λ0(t) is the unspecified baseline hazard function and the covariate vector Xsi(t) 
for participant includes participant’s age and frequency of insecticide treated bed nets use in 

the previous month of the visit. Covariates were included in multivariable models if they 

were significant at alpha level of 0.1 in univariate Cox PH models.

For the joint models, we utilised the Bayesian joint modelling approach for longitudinal and 

survival data proposed by Chen et al [12] which fits a model with Markov Chain Monte 

Carlo (MCMC) methods as presented by Ibrahim et al [19]. The joint model is composed of 
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longitudinal and survival sub-models. The longitudinal sub-model takes the form of a 

mixed-effects model as follows; supposing data is available from N participants with ni 

observations recorded for participant i, (i=1,……,N). The response yij (j=1,…….,ni), fixed-

effect covariate vector Xij=(X1ij ,…….,Xpij)’, and random-effect covariate vector Zij=(Z1ij ,
…….,Zqij)’ are recorded at times tij. The longitudinal sub-model is

yi j = βXi j′ + biZi j′ + εi j, (2)

where β is the p×1 fixed-effect parameter vector, bi is the q×1 vector of random effects for 

participant which is assumed to be multivariate normal with mean zero, i.e., bi~Nq (0,∑b), 
and ∑b is the variance-covariance matrix of the subject specific effects. The error vector 

εi = (εil, .., εn j
i )′ is assumed to be distributed εi Nn

i 0, δ2lni  where δ2 is variance and Ini is the 

ni× ni identity matrix.

The survival sub-model takes a Cox PH model form [9] where the hazard function for λi (t) 
participant i at time t as given in equation (1) is modelled as

λi t = λ0 t exp θh β, bi, t + βsXsi′ (t) , (3)

where h(β,bi,t) is a function of the fixed and random effects in the longitudinal sub-model, 

and θ is an association parameter linking the two sub-models: survival and longitudinal 

models. The βs is a parameter vector for covariates unique to the survival sub-model. The 

survival covariate vector Xsi(t)=(xsi1,..,xsir)’ may include baseline covariates for participant i 
with βs representing r×1 parameter vector. The functional form of h(β,bi,t) determines the 

type of the association structure between longitudinal parasite count and the time-to new 

clinical malaria episode. Taking the first derivative of h(β,bi,t) is interpreted in terms of an 

association of the rate of change in parasite count at time and the hazard of new clinical 

malaria episode at the same time, while the integral of h(β,bi,t) would relate the hazard and 

the cumulative parasite count trajectory defined as area under parasite count profile from 

baseline up to the time of the new episode.

Once the two sub-models are specified, the likelihood for the joint model can be constructed 

as follows. Let Ti and Ci represent potential failure and censoring times respectively for 

participant i. Let Si=min {Ti,Ci} be the minimum of the observed failure and censoring 

times for participant i, and let τi be the failure indicator taking value 1 if Ti < Ci and 0 

otherwise. Then the value of the longitudinal trajectory for participant i at time t can be 

defined as φi (β,bi,t) and at visit j as φij (β,bi). Using the full longitudinal trajectory, then the 

likelihood of the joint distribution of the observed data and random effects for participant 

can be decomposed as

Li ∝ f i Survival longitudinal × f i longitidinal
= f Si θ, τi, βs, φi β, bi, t , Xsi × f yi xi, zi, β, bi f bi

(4)
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and the joint likelihood for all participants can be written as L = ∏i = 1
N Li = 1.

Denoting parasite count as PC, the likelihood of the joint distribution of observed data, 

random effects and PC can be expressed as

L = f (S θ, τ, βs, φ β, b, t, PC) × f b, PC β (5)

and integrating out the random effects of the conditional likelihood yields the marginal 

likelihood. Under the Bayesian framework, the random effects are sampled in MCMC 

algorithm as extra parameters. The survival and longitudinal sub-models are linked by 

sharing common random effects structure. The MCMC computations of the model 

parameters proceed assuming that given the random effects, the longitudinal parasite 

countand time-to-clinical malaria process are independent as are the longitudinal responses 

of each participant.

Data analysis

Baseline data was summarised using frequencies and percentages if categorical and medians 

with ranges were presented if continuous and skewed. Failure functions for time to new 

clinical malaria disease were summarised using Kaplan Meier plots, and compared across 

age and bed net usage using logrank test. Four models of time-to-new clinical malaria 

disease were fitted. These included the reference model (model 1), a conventional Cox PH 

model fitted with time-dependent parasite count measured at each visit, and three competing 

joint models. The three joint models take a common formulation only differing in the 

assumed association structure linking the hazard of clinical malaria with parasite count. The 

hazard of clinical malaria disease at any time was linked with: 1) the current underlying 

value of parasite count at the same time point (model 2), 2) the rate of change in parasite 

count trajectory at time (model 3), and 3) the cumulative trajectory or area under profile of 

parasite count from baseline up to time (model 4). Each joint model involved fitting a quasi-

Poisson mixed-effects sub-model of parasite count longitudinal trajectory with natural spline 

functions of time and including the resulting estimates as covariates in the Cox PH sub-

model. Other covariates in the conventional Cox PH and survival sub-models included age 

of the participant and frequency of insecticide treated bed net use in previous month. 

Parameters were estimated using MCMC through the random walk Metropolis–Hastings 

(M-H) algorithm. Diffused normal priors were assumed for the covariates including the 

association parameter. Diagnostic assessments were conducted to assess the convergence of 

the MCMC samples using trace and kernel density estimator plots, for the final optimal 

model. Analyses were done in Stata SE version 15.1 (Stata Corp., College Station, TX) [20] 

using programme bayesmh and R version 3.4.3 using packages JMbayes, survival and 

glmmPQL [21].

Results

There were 120 participants in the cohort, of which 69 (57.5%) were females. The overall 

median age was7.5 years [inter-quartile range (IQR): 4.7–18.1], 6.3 years (IQR: 3.2–13.1) 
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for males and 9.2 years (IQR: 5.3–18.5) females (Table 1). The median number of malarial 

parasites per μL was 11,060 (IQR: 840–54,000) overall, 24,840 (IQR: 1,600–68,600) in 

males, and 5,640 (IQR: 520–540, 000) for females. During enrolment, 48 (44.9%) out of 

107 particiants reported to have been using bed nets every night in previous month.

Follow up and time-to-first new clinical malaria disease

Analyses of time-to-new clinical malaria disease included 115 participants who had a least 

one follow-up visit post enrolment and together contributed a total 894 observations. The 

median follow-up time to new clinical malaria disease episode was 3.5 months (IQR: 1.1–

7.9). Out of the 115 participants, 100 (87.5%) experienced the episode while 15 (12.5%) 

were administratively right censored (Table 2). Among 100 participants who experienced the 

episode, 58 (58%) were females, 48 (48%) were aged 5–15 years, 37 (37%) reported using 

bed net nightly in prior month to enrolment and their median parasite count was 13640 

(IQR: 840 – 52040).

Parameter estimation

Regression coefficient estimates are log hazard ratios, log (HRs). Overall, the joint models 

gave larger log (HR) estimates with consistently smaller standard errors and narrower 

credible intervals when compared to the conventional Cox PH model with time-dependent 

parasite count (Table 3). Comparing the Deviance Information Criteria (DIC) from the three 

joint models showed that joint model 4 with cumulative parasite count had the lowest value 

(Table 4), suggesting the best fit [22]. For the rest of the manuscript, the joint model is 

referencing to the joint model 4 with cumulative parasite count which is being compared to 

the conventional Cox PH model (model 1). Considering adults above 15 years as reference 

group, the log(HR) of clinical malaria disease for children under 5 years,was 0.74 [95% 

Credible Interval (CI): 0.17, 1.26] in the joint model compared to 0.62(95% CI: 0.04, 1.18) 

from the conventional Cox PH model. The log (HR) for participants aged 5–15 years was 

0.72 (95% CI: 0.22, 1.22) in the joint model compared to 0.63(95% CI: 0.11, 1.17) in the 

conventional Cox PH model. Considering participants who used a bed net nightly in the 

previous month as reference, the log (HR) of clinical malaria disease for those who did not 

use a bed net every night was 0.58 (95% CI: 0.13, 1.07) from the joint model compared to 

0.52 (95% CI: 0.07, 1.08) in the conventional Cox PH model. From the joint model, the area 

under the longitudinal trajectory of parasite count was strongly associated with the risk of 

clinical malaria, with a unit increase corresponding to a −0.0012 (95% CI: −0.0021, 

−0.0004) decrease in the log hazard ratio. Neither current underlying value of parasite count 

nor rate of change in parasite count trajectory at the same time point were significantly 

associated with the occurrence of a new clinical malaria episode.

MCMC convergence of estimated log (HR) parameters from final optimal joint model

The MCMC sampler trace plots from the final joint model4 seemed to mix well for 

parameters of children under 5 years, 5–15 years and infrequent bed net use and never 

moved beyond 1.5 achieving convergence (Figure 2A–2C). The sampler for cumulative 

parasite count parameter, showed noisy pattern before converging at about 1000 iterations 

(Figure 2D). From the Kernel density estimator plots, all the four parameters were roughly 
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normal suggesting that the M-H algorithm sampled within the target normal distribution 

(Figure 3A–3D).

Factors associated with risk of new clinical malaria episode

In unadjusted analyses using Kaplan Meier failure estimator, the risk of experiencing new 

clinical malaria episode was higher in children under 5 years and the 5–15 years compared 

to adults above 15 years (log-rank p-value=0.016) (Figure 1A). The risk of getting a new 

clinical malaria episode was also higher in participants who did not use bed net every night 

compared to those who used a bed net nightly in previous month (log-rank p-value=0.016) 

(Figure 1B). Based on the joint model, conditional on cumulative parasite count profile, the 

hazard of getting new clinical malaria episode was higher in children under 5 years by 2.1-

fold (95% CI: 1.2, 3.4) and those aged 5–15 years by 2.0-fold (95% CI: 1.2, 3.5) when 

compared to adults over 15 years old and controlling for bed net usage. Among participants 

of the same age, the conditional hazard was also higher for participants who did not use a 

bed net every night by 1.8 -fold (95% CI: 1.1,3.3) compared to those who used the bed net 

nightly in previous month.

Discussion

This study has demonstrated that jointly modelling longitudinal parasite count and time-to 

clinical malaria episodes improves precision in risk factor estimates associated with clinical 

malaria disease. The joint model yielded larger parameter estimates with consistently 

smaller standard errors and narrower credible intervals when compared to a conventional 

Cox PH model with time-dependent parasite count. These results are consistent with 

findings from other areas including HIV [8,12] and cancer [13,14,23 ] where joint modelling 

out-performs separate analyses in terms of optimal use of the available information giving 

both more precise and less biased estimates. The improved precision provided by the joint 

model may improve study efficiency, for example, clinical trials may be designed with 

relatively lower sample sizes while still yielding high power. In general, the conventional 

time-dependent Cox PH model like any other standard time-to-event model assume that 

time-dependent covariates are external to the event process [7]. However, parasite count in 

this case is an endogenous covariate whose existence and future path can be directly related 

to the occurrence of the malaria episodes. By postulating a model for the joint distribution of 

the covariate parasite count and the time-to-malaria processes, the joint model explicitly 

accounts for possible inter-dependence between the two processes through shared random 

effects [24]. Moreover, the time-dependent covariate model assumes that the value of the 

parasite count does not change until a new measurement is taken which may not be correct. 

When we modelled parasite count using a quasi-Poisson mixed effects model, we were 

creating a model for the outcome at any time-point there by indirectly addressing the 

measurement error. The joint model also offered flexibility to investigate the appropriate link 

structure between longitudinal parasite count and time-to-new clinical malaria episode. 

Among the fitted joint models, only the model with cumulative parasite count was strongly 

associated with the hazard of new clinical malaria episode suggesting that the risk can better 

be explained by conditioning on the cumulative effect of the longitudinal parasite count 

trajectory from baseline up to the episode time. The underlying current value of the parasite 
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count or change in parasite count at any time was not associated with the risk of 

experiencing new clinical malaria episode at the same.

Factors associated with a high risk of experiencing a new clinical malaria episode were 

young age and infrequent use of bed nets as have been reported in other studies [25–28]. 

Children aged up to 15 years had higher risk for clinical malaria disease when compared to 

adults over 15 years. The higher risk of experiencing a clinical malaria episode among 

children is possibly be due to the naturally under-developed humoral immune responses to 

different stage-specific antigens of P. Falciparum otherwise acquired with age [29]. In this 

study in an endemic area, high cumulative parasite count was associated with lower risk of 

getting a new clinical malaria episode suggesting that increased exposure to malaria 

parasites with time may result into protective effect to future clinical malaria episodes.

This study may be limited by focusing on time-to-first malaria episode only, thus estimates 

obtained here may not be applicable to analyses examining all clinical malaria episodes over 

a follow up period. This paper has established the optimal way of incorporating parasite 

count in estimating time-to-first new clinical malaria which may further be extended to study 

recurrent episodes over entire follow-up, but this may require different distributional 

assumptions. There were missing values for bed net use which may have affected the 

findings. Future studies should include multiple imputation of missing covariate data and 

also investigate the role of measurement error due to detection limit of parasite count in 

these joint models. Further work is required to consider joint modelling of parasite count 

with recurrent episodes and to predict risk of future clinical malaria episodes.

Conclusions

In conclusion, jointly modelling longitudinal parasite count and time-to-new clinical malaria 

improved precision in log hazard ratio estimates for clinical malaria when compared with 

the conventional Cox PH model with time-dependent parasite count. The improved precision 

of joint modelling may improve study efficiency and allow for design of clinical trials with 

relatively lower sample sizes with increased power.
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Figure 1. 
Kaplan-Meier estimator for time-to-new clinical malaria episode by A) baseline age, and B) 

use of bed net in previous month. The risk of experiencing clinical malaria episode was 

significantly higher in children under 5 years and of 5–15 years, and among participants who 

did not use bed nets every night.
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Figure 2. 
Trace plots for parameters from final joint model. Trace plots show values that the parameter 

took during the runtime of the MCMC sampling until it reached convergence. Trace plots for 

parameters θ5–15 years, θ<5 years and θnet use not every night show that the M-H samplers 

explored the distribution by traversing to areas where its density is very low with very small 

fluctuations, suggesting that the chains mixed well to the target distributions. In D, the 

sampling for the parameter of cumulative parasite count θcumulative shows noisy pattern 

before converging at about 1000 iterations.
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Figure 3. 
Kernel density estimator plots for the parameters of the final joint model. The MCMC 

sampling process of the parameters portrays the target poster distribution. The plots suggest 

that algorithm sampled successfully within the assumed normal distribution for all 

parameters θ5–15 years, θ<5 years, θnet use not every night and θcumulative.
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Table 1.

Baseline demographic, clinical conditions and vital signs for Mfera malaria cohort in Malawi.

Variable Total (n=120)

Gender, female, n (%) 69 (57.4)

Age, n (%)

 < 5 years 34 (28.3)

 5–15 years 51 (42.5)

 >15 years 35 (29.2)

Weight (kg), median (IQR) 21.5 (15.0 – 46.0)

Height (cm), median (IQR) 119.5 (103.0 – 151.8)

Temperature (°C), median (IQR) 36.7 (36.2 – 38.6)

Respiratory rate (breaths/minute), median (IQR) 28 (22 – 36)

Heart rate (beats/minute), median (IQR) 112 (92 – 139)

Haemoglobin (g/dl), median (IQR) 11.5 (10.2 – 12.4)

Parasite count (number of parasites/µL), median (IQR) 11060 (840 – 54000)

Cough, n (%) 15 (12.5)

Musculoskeletal pain, n (%) 40 (33.3)

Headache, n (%) 36 (30.0)

Vomiting, n (%) 32 (26.7)

Abdominal pain, n (%) 15 (12.5)

Bed net use previous month*, n(%)

 Every night 48 (44.9)

 Most nights (> half) 13 (12.1)

 Some nights (< half) 8 (7.5)

 No nights 38 (35.5)

Season enrolled, n(%)

 Dry: May - November 91 (75.8)

 Rainy: December - April 29 (24.2)

*
not adding up to column total due to missing
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Table 2.

Characteristics by clinical malaria statusfor Mfera malaria cohort in Malawi.

 Variable Clinical malaria episode (n=100)  No clinical malaria episode (n=15)

Sex, n (%)

 Male 42 (42.0) 8 (53.3)

 Female 58 (58.0) 7 (47.7)

Age, n (%)

 <5 years 27 (27.0) 4 (26.7)

 5–15 years 48 (48.0) 2 (13.3)

 >15 years 25 (25.0) 9 (60.0)

Net use previous month, n(%)

 Every night 37 (37.0) 8 (53.3)

 Not every night 63 (63.0) 7 (46.7)

Haemoglobin (g/dl) 11.4 (10.0 – 12.3) 12.3 (10.9 – 13.9)

Parasite count, number of parasites per µL, median (IQR) 13640 (840 – 52040) 2800 (560 – 60040)

Note: clinical malaria status data available for 115 participants who had a least one follow-up visit.
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