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Abstract: Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor,
characterized by a high degree of intertumoral heterogeneity. However, a common feature of
the GBM microenvironment is hypoxia, which can promote radio- and chemotherapy resistance,
immunosuppression, angiogenesis, and stemness. We experimentally defined common GBM adaptations
to physiologically relevant oxygen gradients, and we assessed their modulation by the metabolic drug
metformin. We directly exposed human GBM cell lines to hypoxia (1% O2) and to physioxia (5% O2).
We then performed transcriptional profiling and compared our in vitro findings to predicted hypoxic
areas in vivo using in silico analyses. We observed a heterogenous hypoxia response, but also a
common gene signature that was induced by a physiologically relevant change in oxygenation from
5% O2 to 1% O2. In silico analyses showed that this hypoxia signature was highly correlated with
a perinecrotic localization in GBM tumors, expression of certain glycolytic and immune-related
genes, and poor prognosis of GBM patients. Metformin treatment of GBM cell lines under hypoxia
and physioxia reduced viable cell number, oxygen consumption rate, and partially reversed the
hypoxia gene signature, supporting further exploration of targeting tumor metabolism as a treatment
component for hypoxic GBM.

Keywords: hypoxia; physioxia; glioblastoma; glioblastoma microenvironment; metformin; hypoxia
gene signature

1. Introduction

Glioblastoma (GBM) is a diffuse astrocytic tumor, which in the 2016 WHO classification is divided
into those that are isocitrate dehydrogenase (IDH)-wildtype and those that are IDH-mutant [1]. It is the
most common and aggressive primary tumor in the central nervous system [2] and median survival of
GBM patients is only 12–15 months [3], despite a standard of care consisting of surgical resection and
radio-chemotherapy. An important characteristic of these tumors is the high level of heterogeneity,
both intertumoral [4,5] and intratumoral [6,7].
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A common feature found in most solid tumors is the presence of hypoxia as a result of rapid cancer
cell proliferation and aberrant vasculature that is unable to maintain oxygen supply [8]. Tumor hypoxia
drives malignancy by promoting chemo- and radiotherapy resistance, an immunosuppressive
microenvironment, cancer cell stemness, angiogenesis, and metabolic modulation [9–11]. The study
of tumor hypoxia in vitro frequently uses cell cultures exposed to atmospheric conditions (21% O2)
as a control, although this does not represent any physiological oxygen fraction found in vivo [12]
and does not always recapitulate cellular functions under physioxia [13]. Physiological oxygen
availability is tissue-dependent, with 2%–9% O2 (10–40 mmHg) being reported for the healthy
brain [14]. Oxygen fractions used to refer to tumor hypoxia vary between studies, but 0.5%–2% O2

(i.e., less than physiological values, and thereby inadequate oxygenation) are observed in vivo in the
tumor bed and are used experimentally in vitro [15,16]. One of the key regulators of the hypoxia
response is hypoxia-inducible factor (HIF)-1α [17], but HIF-independent cellular pathways have also
been reported [18,19].

Aberrant signaling pathways such as mTOR or pro-tumoral functions such as VEGF release have
been individually targeted in GBM therapy, using rapamycin (or its derivatives) or bevacizumab,
respectively, but have shown a limited influence on overall survival of GBM patients to date [20,21].
Metformin, a type 2 diabetes drug, has been shown to decrease the risk of developing certain types
of cancer [22], and can potentially target mTOR signaling and also reprogram oxygen metabolism,
thereby reducing hypoxia in the tumor microenvironment. Metformin has been shown to improve
the anti-tumor immune response in several mouse tumor models [23–25]. In the context of GBM,
metformin can inhibit cell growth through mTOR inhibition, and has been observed to enhance the
therapeutic effect of temozolomide in human xenografts [26]. The effects of metformin have therefore
generated interest in the anti-cancer effects of metabolic drugs, but questions remain concerning their
impact on GBM cells, particularly under in vivo-relevant oxygen deprivation.

In the treatment of GBM, a better understanding of its genetic, epigenetic, and/or transcriptional
characteristics could help to identify markers or signatures that predict outcomes or responses to
specific therapies, as exemplified by MGMT promoter methylation status, which predicts responses
to temozolomide [27]. More recently, gene mutations and expression profiles are being studied to
associate specific gene signatures with clinical outcomes [28,29], including hypoxia-induced gene
signatures in multiple cancer types [8,30]. Here, we evaluated the GBM response to low levels of
oxygen and, despite GBM heterogeneity, we identified a common hypoxia gene signature that was
determined experimentally and that was associated with pseudopalisading and necrotic areas of GBM
from patient data. The signature correlated with expression of certain glycolysis- and immune-related
genes, and importantly, survival. We validated the use of metformin to force metabolic changes in
GBM cells and to reduce oxygen consumption and numbers of viable tumor cells.

2. Materials and Methods

2.1. In Vitro Cultures

Human Ge904 at passage (p11), Ge835 (p8), and Ge898 (p10) were obtained in house from resection
of primary IDH wildtype (WT) GBM. Research use of this human material was approved by the
local Institutional Review Board and Ethics committee, with signed informed consent obtained for
all patients. LN18 (p560) and LN229 (p209) were obtained from American Type Culture Collection
(ATCC), U87 (unknown passage number), and U251 (p590) were obtained from European Collection
of Authenticated Cell Cultures (ECACC); mouse SB28 was kindly provided by H. Okada, University
of California, San Francisco (UCSF), USA [31]; and GL261-OVA was kindly provided by O. Grauer,
University Hospital of Münster, UKM, Germany [32]. Normal human astrocytes were obtained
from ScienCell. All cell lines were cultured in serum-containing Dulbecco’s Modified Eagle Medium
(DMEM)-based media and passaged every 2–3 days. GBM cell lines were exposed to atmospheric O2

conditions in a conventional hood and incubator, or to 1% O2 or 5% O2 using the Ruskinn 300 InVivO2
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hypoxia workstation (Baker) for 48 h. Media were pre-equilibrated to the desired oxygen level by
flushing with the corresponding gas mix. All cell lines tested negative for mycoplasma.

All subjects gave their informed consent for inclusion before they participated in the study.
The study was conducted in accordance with the Declaration of Helsinki, and the protocol was
approved by the Ethics Committees of Geneva University Hospitals and the Canton of Geneva
(CCER) (03-126).

2.2. Sequencing and Polymerase Chain Reaction (PCR)

Total RNA was extracted using Qiagen RNeasy Kit, following manufacturer′s instructions.
Gene expression by microarray was employed for Ge835, Ge898, Ge904, LN18, and LN229 using
Microarray PrimeView Human Gene Expression Array (Affymetrix) probes and associated analysis
files, with gene annotation for each set of probes (PrimeView Human Gene Expression Array Library
files, version 2014).

qPCR of the hypoxia signature genes was performed to quantify mRNA levels of metformin
or vehicle-treated cells exposed to hypoxia or physioxia. Briefly, DNase-treated RNA was used to
synthesize cDNA (PrimerScript RT; Takara Bio Inc., Shiga, Japan) The genes analyzed and the primers
used are indicated in Table 1.

Table 1. Hypoxia signature genes and primers used for qPCR analysis.

Gene ID Forward Primer Reverse Primer

ADM TGCCCAGACCCTTATTCG CCGGAGGCCCTGGAAGT

ALDOC ATGCCTCACTCGTACCCAG TTTCCACCCCAATTTGGCTCA

ANGPTL4 GGCTCAGTGGACTTCAACCG CCGTGATGCTATGCACCTTCT

ANKRD37 TTAGGAGAAGCTCCACTACACAA CACTGGCTACAAGCAGGCT

ARRDC3 TGTATTCTAGTGGGGATACCGTC TCGCATGTCCTCTTGCATGAA

BHLHE40 ATCCAGCGGACTTTCGCTC TAATTGCGCCGATCCTTTCTC

CA9 GGATCTACCTACTGTTGAGGCT CATAGCGCCAATGACTCTGGT

DDIT4 TGAGGATGAACACTTGTGTGC CCAACTGGCTAGGCATCAGC

EGLN3 TCCTGCGGATATTTCCAGAGG GGTTCCTACGATCTGACCAGAA

HAS2 CACTGGGACGAAGTGTGGATTA GCATAGTGTCTGAATCACAAACCTG

HILPDA GCGCTTTTGTCTCCGGGTC GTAAGCCCTCTAGGGACTCCA

HK2 GAGCCACCACTCACCCTACT CCAGGCATTCGGCAATGTG

PGK1 GAACAAGGTTAAAGCCGAGCC GTGGCAGATTGACTCCTACCA

NDRG1 CTCCTGCAAGAGTTTGATGTCC TCATGCCGATGTCATGGTAGG

PDK1 GGATTGCCCATATCACGTCTTT TCCCGTAACCCTCTAGGGAATA

SLC2A1 TCTGGCATCAACGCTGTCTTC CGATACCGGAGCCAATGGT

SLC2A3 TCCACGCTCATGACTGTTTC GCCTGGTCCAATTTCAAAGA

STC1 AGGTGCAGGAAGAGTGCTACA GACGACCTCAGTGATGGCTT

TMEM45A GCATGGCTTTAACTGGCATGG CAGCCCAGGAGTTGATTCCA

VEGFA AGGGCAGAATCATCACGAAGT AGGGTCTCGATTGGATGGCA

2.3. TP53 Analysis

DNA from cell lines Ge898 and Ge904 was sequenced using an Illumina NextSeq 500 instrument
using standard protocols. Briefly, libraries were prepared from 100 ng of genomic DNA that was
fragmented using a Kapa hyperplus kit (Roche, Basel CH, Switzerland). TP53 sequences were captured
using a custom SureSelect panel (Agilent, Santa Clara, CA, USA). Libraries were prepared using an
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Illumina NextSeq 550/500 v2.5 sequencing reagent kit (Illumina, San Diego, CA, USA) and sequencing
was performed on an Illumina NextSeq 500 instrument (Illumina, San Diego, CA, USA) with pair end
reads of 150 bp. Variants were called using a custom bioinformatics pipeline based on MuTect 2 [33].
The information regarding the TP53 status of the other GBM cell lines was extracted from the literature
for Ge835 [34], SB28 [35], and GL261 [36], or from available databases [37].

2.4. Western Blot

Fifteen µg of whole protein lysates (NP-40-based lysis buffer) or nuclear fractions (NE-PER™
Nuclear and Cytoplasmic Extraction Reagents, ThermoFisher, Waltham, MA, USA) were loaded
onto 12.5% SDS-PAGE gel and transferred onto nitrocellulose membranes. Membranes blocked
with 5% non-fat dry milk were incubated with the following antibodies: rabbit anti-HIF-1α (Bethyl,
Montgomery, TX, USA), mouse anti-TBP (Novus Biologicals, Littleton, CO, USA), followed by goat
anti-rabbit IgG-HRP (Sigma, St. Louis, MO, USA) or goat anti-mouse IgG-HRP (Sigma). Enhanced
chemiluminescent (ECL, Novus Biologicals, Littleton, CO, USA) detection (SuperSignal West Pico,
ThermoFisher) was used to observe reactive bands.

2.5. In Vitro Assays

All assays were performed for 48 h under the corresponding oxygenation conditions. Viable cell
numbers were assessed using CellTiter Glo (Promega, Madison, WI, USA), following manufacturer’s
protocols, with luminescence measured using a Cytation3 reader (BioTek, Winooski, VT, USA).
For metabolic assays, oxygen consumption rate (OCR) and extracellular acidification rate (ECAR)
were measured using a Seahorse XFe96 Analyzer (Agilent) installed in a hypoxia workstation to
perform experiments at the indicated O2 concentrations. To achieve an even distribution of cells within
wells, plates were rocked for 20–40 min. The plate was then incubated at 37 ◦C overnight to allow
the cells to adhere. The following day, growth media was exchanged with XF media (DMEM-based
Phenol Red-free media, Agilent) with additional 1 g/L glucose, 2 mM glutamine and 1 mM sodium
pyruvate. The plate was then incubated at 37 ◦C and atmospheric CO2 for 1 h. The Cell Mito Stress kit
(Agilent) was used following the manufacturer’s instructions. Briefly, 2.25 µM Oligomycin (to inhibit
ATP synthase) was injected first in the assay following basal measurements in order to reduce OCR.
Then 2.25 µM 7 Carbonyl cyanide-4 (trifluoromethoxy) phenylhydrazone (FCCP) was injected to
disrupt the mitochondrial membrane potential and to calculate spare respiratory capacity, defined as
the difference between maximal respiration and basal respiration. Finally, 1.13 µM Rotenone/Antimycin
A was injected (inhibiting complex I and complex III) to shut down mitochondrial respiration and to
enable the calculation of nonmitochondrial respiration driven by processes outside the mitochondria.
Results from all wells were normalized to cell number.

2.6. Bionformatic and Statistical Analysis

The Microarray was performed with 3 Affymetrix Prime View chips, 15 samples per chip, 5 groups
of samples with 3 replicates and 3 treatments. The robust multi-array average (RMA)-normalized
intensities were analyzed for differential expression [38]. The following comparisons were done on
each of the 3 independent experiments with a t-test for each cell line and on all samples with a paired
sample ANOVA (Fold change (FC) ≥ 1.3 and FC ≤ −1.3, p < 0.05), using Partek® Genomics Suite®

software, version 6.6. The following comparisons were done: 1 versus 5, 1 versus 21, and 5 versus 21.
The hypoxia gene signature obtained from the ANOVA analysis comprised 33 coding genes with gene
ontology annotation according to the PrimeView Human Gene Expression Array Library used.

In silico analysis included several datasets: for GBM, The Cancer Genome Atlas (TCGA, n = 528
grade IV) [39] and IvyGAP (n = 270 grade IV) [40] were used; for high grade glioma including GBM,
Rembrandt (n = 267, of which n = 79 grade III and n = 188 grade IV), Phillips (n = 100, of which
n = 24 grade III and n = 76 grade IV) [5], and Freije (n = 85, of which n = 26 grade III and n = 59 grade
IV) [41] were used. The GlioVis data portal was employed for visualization and analysis of brain tumor
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expression datasets, and downloading of clinical data and normalized counts [42]. Data cleaning and
merging was performed in R version 3.3.2, using library dplyr to join phenotype and expression data
for TCGA, Freije, Phillips, and Rembrandt datasets [43,44]. K-means clustering allowed us to group
patients in high risk or low risk categories, according to signature expression (one minus Pearson
correlation metric) and the similarity matrix was used to compare the expression of different gene
families in the signature and to estimate the correlation (Pearson correlation metric). Analysis and
graphs were generated using Morpheus [45]. Kaplan–Meyer survival analysis and curves were done
with Prism 8, Version 8.2.1, 2019.

Gene set enrichment analysis (GSEA) was performed as previously described, using GSEA
v.4.0.1 graphical user interface (GUI) and the hallmarks gene set from MSigDB v7.0 [43], with the
following parameters: Signal2Noise metric, weighted scoring, and n = 1000 permutations. TCGA
patient characteristics were compared using the Chi-Square test by IBM SPSS® statistics, version 25.0.5.
DAVID functional annotation clustering and chart analysis was performed with version 6.8 (selected
options: BBID, BIOCARTA, KEGG_PATHWAY, thresholds: count = 2, EASE = 0.1).

3. Results

We exposed five human GBM lines (Ge835, Ge898, Ge904, LN18, and LN229) to various
oxygen conditions: inadequate oxygenation (hypoxia, 1% O2), physiological (physioxia, 5% O2),
and atmospheric (hyperoxia, 21% O2) conditions, and performed transcriptional profiling using the
Affymetrix Microarray. Comparing 1% O2 to 5% O2 showed an enrichment in the hallmark hypoxia
gene set after performing gene set enrichment analysis (GSEA) (Figure 1a). Our experimental approach
consisted of directly modulating oxygenation levels, thereby reproducing in vivo attainable oxygen
gradients. This allowed us to identify transcriptional changes reported in GSEA [43]. We confirmed
hypoxia adaptation by quantifying nuclear stabilization of HIF-1α by Western blot analysis (Figures S1a
and S4).
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Figure 1. Whole transcriptome analysis of Ge835, Ge898, Ge904, LN18, and LN229 glioblastoma
multiforme (GBM) cell lines cultured under hypoxia (1% O2), physioxia (5% O2), or hyperoxia (21%
O2) for 48 h. (a) Gene set enrichment analysis for hypoxia geneset comparing transcriptional profiles
of hypoxia versus physioxia; (b) Venn diagram of comparisons between hypoxia and physioxia, and
hypoxia and hyperoxia; (c) Enrichment scores of gene families from DAVID analysis.

Comparing hypoxia (1% O2) to hyperoxia (21% O2), we identified 1040 common differentially
expressed genes (ANOVA), whereas comparing hypoxia to physioxia (5% O2) revealed only 36
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differentially expressed genes (Figure S1d). Twenty-five of these 36 genes (69%) were common to
the 21% to 1% O2 comparison, but 11 genes were unique to the 5% to 1% O2 comparison (Figure 1b).
This suggests that using atmospheric conditions as a control not only leads to an overestimation of
the adaptation of GBM cells to hypoxia, but might also obscure important biological processes taking
place under physiological conditions.

We were able to build a hypoxia gene signature by selecting the differentially expressed genes
between hypoxia and physioxia from the ANOVA analysis, considering all five cell lines together
(FC≥ 1.3 and FC≤−1.3, p < 0.05, Supplementary File 1). Performing DAVID analysis [46], we determined
that this experimentally defined signature was significantly enriched for hypoxia, glycolysis, and
angiogenesis and extracellular matrix gene clusters (Figure 1c). Of note, 18 of the genes in the
signature are not reported to have a hypoxia-responsive element (HRE) sequence [47,48], and therefore
may represent HIF-independent hypoxia-regulated responses (Figure S1e). However, the GBM
lines analyzed showed a significant level of heterogeneity. Indeed, unsupervised clustering of the
transcriptional data grouped the samples by cell line, rather than by the effect of hypoxia (Figure S1c,
Table S1). In addition, when different cell lines were separately analyzed for differential expression
comparing hypoxia to physioxia, there were no common hits between the five cell lines (Figure S1b,
Supplementary File 2).

Interestingly, the signature identified with this experimental approach, directly modulating the
availability of oxygen in our GBM cell lines, was highly enriched in predicted hypoxic regions from
existing GBM databases. We interrogated our hypoxia signature in the Ivy-GAP platform [40,42],
a GBM dataset originating from biopsies and microdissections. The hypoxia signature was highly
expressed within perinecrotic and pseudopalisading areas of tumors (predicted to include hypoxic
zones) confirming that our signature reflects in vivo observed features (Figure 2a). Our signature was
strongly correlated with an inflammatory phenotype that included expression of genes encoding IL-1β,
IL-6, and IL-8 (Figure 2b), and with the glycolytic pathway (Figure 2c). Analysis of the microarray
data of GBM cell lines also showed a correlation of our hypoxia signature with expression of genes
related to inflammation, suggesting that the tumor cells may have contributed to the database findings,
in which gene expression of both tumor cells and infiltrating immune cells is measured (data not
shown). GBM (TCGA Table 2) and high-grade glioma patients (from Rembrandt, Phillips, and Freije
databases) [5,39,41,49] were clustered in two groups according to signature expression, based on a
supervised clustering method that allows group partitioning such as k-means cluster analysis (k = 2,
one minus Pearson correlation). Importantly, a high expression of our signature correlated with poor
survival (Figure 3 and Table S4). The TCGA dataset included IDH mutational status. A high expression
of our signature was strongly correlated with the absence of IDH mutations (Table 2). Moreover,
our signature was highly associated with survival in a univariate analysis, but not in a multivariate
analysis combined with IDH status, suggesting that it could be an important feature linked to the
genetic characteristics of the tumor and not an independent prognostic biomarker (Table S3).

Table 2. The Cancer Genome Atlas (TCGA) patient characteristics.

Hypoxia Signature

Tumor Variables
Initial Diagnosis, n

Low Expression
(n = 161)

High Expression
(n = 367) p-Value

MGMT gene promoter status, n 0.574
Unmethylated 52 125

Methylated 57 113
Unknown 52 129

IDH gene status, n <0.001
Mutant 23 7

Wildtype 109 263
Unknown 29 97
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Figure 2. Expression and correlation of the hypoxia gene signature using the Ivy-GAP database.
(a) Expression of the hypoxia gene signature in different areas of human GBM (n = 270) biopsies;
(b,c) Correlation matrix of the hypoxia signature with (b) immune-related genes or (c) three metabolic
pathways gene lists. List of immune-related genes (from left to right and top to bottom): ARG2, ARG1,
TGFB1, IDO1, IL10, CD163, MRC1, CCR4, CCR7, CD80, CD3G, CD3D, CD3E, GZMB, PRF1, CD86, IL1A,
IL6, IL1B, IL8, CCL20, TNF, IFNG, IL2, ICAM1, ITGAL, ITGA4, ITGB2.
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Figure 3. Correlation of the hypoxia signature with survival of high-grade glioma patients.
(a) Expression of the hypoxia gene signature (z-score) across patients from TCGA database (n = 528),
segregated by high and low expression of the signature; (b–e) Kaplan–Meier survival curves
corresponding with high (red) or low (black) expression of the hypoxia signature in (b) TCGA
(n = 528), (c) Rembrandt (n = 267), (d) Phillips (n = 100), and (e) Freije (n = 85) databases.

Tumor hypoxia could potentially be modulated by the metabolic drug metformin. We therefore
investigated its effects on GBM viable cell number and oxygen consumption rate, which were previously
only described using non-physiological oxygen conditions. In these in vitro assays, we used several
human GBM cell lines (including Ge835, Ge904, and LN18, for which transcriptional profiling had
been performed), and two mouse glioma models (SB28 and GL261-OVA). As expected, metformin
reduced the number of viable cells of several of the cell lines in culture (based on ATP quantitation)
under physioxia (Figure 4a), and we confirmed that this tendency was maintained under hyperoxia
and hypoxia (Figure S2a). There was no significant influence of metformin on normal T cells, but there
was a modest, dose-dependent reduction in the number of viable cells from cultures of non-malignant
astrocytes (Figure S2b). The influence of metformin on numbers of viable human GBM line cells under
physioxia was principally due to a cytotoxic mechanism, through apoptosis and necrosis (Figure S2c),
rather than cytostasis, as proliferation was not reduced (data not shown).

Since mutational status can have an effect on metabolism [50], we assessed whether mutations in
PTEN, IDH, and TP53, or the promoter methylation status of the gene encoding for the repair enzyme
O6-methylguanine-DNA methyltransferase (MGMT), had an effect on metformin responsiveness.
Although those cell lines (U251, SB28, GL261 OVA, and LN18) that had a statistically significant
reduction in viable cell numbers in response to metformin when assessed by ATP content (p < 0.001)
were all TP53-mutant (Figure 4b), LN229, which was also TP53-mutant, showed no sensitivity to
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metformin in this assay. However, when the more sensitive flow cytometry-based assay assessing
apoptotic and necrotic cells was used, LN229, as well as Ge904 and Ge898 (both TP53 WT), were all
significantly affected by metformin treatment (Figure S2c), establishing no correlation between the
response to metformin under physioxia and TP53 mutation status. We cannot exclude the potential
importance of mutated IDH, as none of the lines harbored IDH mutations; however, the response to
metformin under physioxia was not associated with MGMT promoter methylation or PTEN mutation
status (Fischer’s exact test, p > 0.05).

We evaluated oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) on
metformin-treated GBM cell lines under hypoxia, physioxia, and hyperoxia. We first validated
the reduction in OCR induced by metformin under hyperoxic conditions (Figure 4c, Figure S3a,b).
Metformin reduced OCR under physioxia in human GBM cell lines in vitro (Figure 4c, Figure S2a,b).
Under hypoxic conditions, the availability of oxygen was clearly a limiting factor in these measurements,
indicated by the lower OCR (Figure 4c), which did not permit us to observe significant changes after
treatment. Overall, our results suggest that metformin shifted metabolism; this also resulted in a
modest trend towards an increased ECAR, but only with high doses, in LN18, Ge904, U251, SB28, and
GL261-OVA cell lines (Figure 4d, Figure S2c).
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Figure 4. Functional assays of human and mouse GBM cell lines exposed to metformin. (a) Effect of
10 mM metformin on viable cell number under physioxia; (b) Table indicating TP53 mutation status
of all GBM cell lines used; mutant or wild type (WT); (c) Basal oxygen consumption rate (OCR) and
(d) basal extracellular acidification rate (ECAR) of Ge835 and Ge904 GBM cell lines in vitro at 21%, 5%,
and 1% O2, with the indicated concentrations of metformin (mean of 3 independent experiments +/-
SD; 2-way ANOVA, Sidak’s adjusted p-value. ** p < 0.01, *** p < 0.001, **** p < 0.0001).

To further assess the consequences of metformin treatment, we tested three of the human GBM
lines for which we had both transcriptome data and metabolic analyses (Ge835, LN18, Ge904) and
measured expression of our hypoxia signature after metformin treatment. There was a downregulation
of most genes of the signature after exposure of these GBM lines to hypoxia or physioxia, although
there was a certain level of heterogeneity (Figure 5, Table S2). This effect was more pronounced
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under hypoxia, compared to physioxia. Some genes, such as DDIT4 and VEGFA, instead showed
upregulation in response to metformin treatment, although this was mostly cell line-specific.Biology 2020, 9, x FOR PEER REVIEW 10 of 17 
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physioxia or hypoxia. Fold change values are tabulated in Table S2.

4. Discussion

The intertumoral heterogeneity of GBM is a known and expected feature. Here we provide detailed
evidence of intertumoral heterogeneity at the transcriptional level by performing in vitro hypoxia
studies using several human-derived cell lines, which allowed us to identify a robust common hypoxia
signature (Figure S1d), despite the heterogeneity. Importantly, we used 5% O2 as a physiological
oxygen control, rather than 21% O2, more accurately representing the in vivo oxygenation levels,
which can influence viable cell number, metabolism, and mitochondrial function [13]. By analyzing
differential gene expression at three different oxygen concentrations (Figure 1b), it is clear that the vast
majority of transcriptional changes had already occurred under physioxia, with a very modest number
of genes differentially regulated between 5% O2 and 1% O2. Surprisingly, such comparisons are rarely
made in hypoxia studies, although we observed effects of a similar magnitude when studying CD8+ T
cells [15]. It is probable that changes in gene expression could also occur under other physiologically
attainable oxygen fractions, which could be modeled by culture between 5% and 21% O2, and which
could be controlled by different isoforms of HIF that differ in their stability under oxygen in a time-
and concentration-dependent manner [51]. Thus, a hypoxia response can be considered as a spectrum
of adaptations, which we have sampled at certain points in our study. Nevertheless, we identified a
hypoxia gene signature after ANOVA analysis considering multiple GBM cell lines, and selecting the
differentially expressed genes between 5% and 1% O2.

The hypoxia gene signature was obtained from an experimental approach, directly evaluating the
effect of hypoxia on glioma cells. Five different cell lines were used in this study and the signature
was the result of differential expression analysis between 5% and 1% oxygen. It takes in account the
intrinsic heterogeneity of glioblastoma, as multiple cell lines were used. This is why, in our study, we
were not looking for a single (or few) biomarkers; rather, we focused on a robust signature, which has
enough power (despite the variability in gene expression between different glioma samples/patients,
due to the contribution of every gene in the signature) to identify patients that could potentially express
this hypoxia adaptation. Our gene signature, built using an ANOVA analysis, was valid not only in
our GBM lines in vitro, but also in the in silico analyses from GBM transcriptomic data in vivo.



Biology 2020, 9, 264 11 of 17

We demonstrated that our hypoxia gene signature correlated with in vivo-generated data
(Figure 2a), supporting the use of physioxia at 5% O2 as a biologically relevant oxygen condition.
Moreover, the signature was also expressed in predicted hypoxic regions from human biopsies
documented in GlioVis and Ivy-GAP databases [40,42]. High expression of the signature was correlated
with certain immune- and glycolysis-associated genes (Figure 2b,c), and was enriched for gene
clusters of hypoxia, glycolysis, and angiogenesis (Figure 1c), consistent with previous studies showing
angiogenic and immunologic consequences in response to hypoxia in GBM patients [52]. Furthermore,
expression of the signature was highly correlated with poor survival in GBM patients, confirming it to
be relevant and robust. Moreover, the low expression of our signature in IDH-mutant GBM reinforces
earlier observations of IDH mutation being associated with HIF-1α inhibition [53,54], although this
was not the case with a smaller patient cohort [55].

In our study, we directly modulated oxygen availability in cell cultures, rather than directly
modulating the transcription factor HIF-1α, allowing us to study all potential adaptations of GBM
cells to oxygen deprivation, without limiting our findings to one transcription factor. Indeed, half of
the genes in our signature (Figure S1d,e) are not reported to be direct targets of HIF [47,48]. Several
HIF-independent mechanisms have been described, such as mTOR inactivation [19], or the activation
of NF-κB through reactive oxygen species (ROS) production [56].

Metformin is a well-characterized inhibitor of gluconeogenesis, but in the past decade there has
been accumulating evidence of its anti-cancer effects [57], mainly through the reduction of cancer cell
growth. This is consistent with our in vitro results showing a reduced number of viable GBM cells
after treatment. Metformin is currently in clinical trials for many cancer types (over 300 registered in
clinicaltrials.gov), including GBM. Retrospective studies of high-grade glioma patients taking metformin
medication (mainly because of a previous diabetes diagnosis) indicated improved outcomes in relation
to anaplastic astrocytomas (grade III gliomas), but not in relation to GBM [58,59], although a statistically
nonsignificant association of metformin monotherapy with glioblastoma survival at baseline was
reported [59]. Studies in xenografted mice demonstrated that when metformin was used at doses higher
than those used for diabetes, there was a survival benefit, together with sensitization to concomitant
radio-chemotherapy [26]. Moreover, other studies have confirmed the benefits of combining metformin
with temozolomide chemotherapy in vitro and in vivo in mouse models [26,60,61]. This has encouraged
clinical development, and several trials are ongoing (ClinicalTrials.gov Identifiers: NCT03243851,
NCT02780024, NCT01430351, and NCT02149459). A further potential benefit of metformin treatment
is a reduction in GBM cell invasion [62,63], one of the consequences of tumor hypoxia.

Metformin reduces OCR, as we have validated under hyperoxic conditions, and reported for the
first time under physiologically-relevant oxygenation. This most likely occurs by inhibiting complex I
of the electron transport chain in the mitochondria, causing energetic stress in cells [64]. Metformin
is reported to reduce glucose output through the decrease in cAMP, protein kinase A activity, and
phosphorylation of protein kinase A substrates [64]. Although the stimulatory effect of metformin on
glycolysis is linked to inhibition of complex I, this effect could be weakened by increased glutamine
metabolism, consistent with the lack of upregulation of glycolysis-associated genes in our hypoxia
signature following metformin treatment (Figure 5). The consequence of these processes push cells to
react by rewiring the metabolic flux, reducing oxidative phosphorylation, coupled with the inhibition
of oxygen consumption, the latter being directly observed in our in vitro experiments (Figure 4c,d and
Figure S3a,b). These metabolic changes can include upregulation of pathways to support increased
glycolysis and/or increased utilization of glutamine (or other metabolites) to provide alternative
substrates for ATP production [65]. Additionally, metformin effects could also reduce HIF-1α mRNA
and protein levels, which impact HIF-dependent pathways under hypoxic conditions [66,67]. Moreover,
a direct decrease of hypoxia-induced HIF-1α protein content can occur through HIF degradation [68].
This indicates that metformin could use multiple mechanism to attenuate the hypoxia gene signature
(Figure 5), within which there are genes that are HIF-dependent (HRE-containing; Figure S1e) as well
as HIF-independent.
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Overall, as metformin reduces oxygen consumption, more oxygen could be available for tumor
cells, consistent with the observed attenuation of the hypoxia gene signature (Figure 5). The effect on
OCR was seen at 5% O2 but not at 1% O2, probably because under hypoxia the OCR is already very
low. A downside of metformin treatment is the consequent increase in lactate production, increasing
the risk of acidosis. In our in vitro settings, metformin maintained the same ECAR, except at high
concentrations, in accordance with other studies reporting modest acidification [69]. However, another
study reported high lactate production following low doses of metformin treatment in GBM cell lines,
but this could be circumvented by combining metformin with drugs inhibiting lactate production [70].

One disadvantage of using metformin is that it affects many cellular pathways, for example,
through restriction of important substrates required for TCA cycle-dependent biosynthesis [71], as well
as less characterized mechanisms [72]. Indeed, our in vitro experimentation with metformin was
designed to determine whether it could have an effect on our hypoxia gene signature, rather than
to fully define the metabolic pathways. However, despite incomplete mechanistic understanding
of this drug, decades of clinical usage confirm its low toxicity, which, based on our tests (Figure 4a,
Figure S2b), we can now extend to T cells, suggesting compatibility with future immunotherapies.
In contrast, cultures of non-malignant astrocytes did show some sensitivity to metformin, particularly
at high doses. Nevertheless, after decades of studies in animal models, and observations in human
patients, metformin is considered to have a favorable impact on the central nervous system, with
diminished incidence and progression of neurodegenerative diseases [73].

We had anticipated that TP53 mutational status might affect glioma cell viability after metformin
treatment because of TP53’s reported effects on the glycolytic pathway [74]. Since metformin forces
cancer cells to shift towards glycolysis or other pathways for ATP production, cells with mutated
or loss of TP53 would not be able to adapt to such metabolic switches and would be selectively
inhibited or killed by metformin. Although we did observe apoptosis and necrosis induction after
metformin treatment, this was not restricted to those lines with mutated TP53. GBM cell metabolism
is clearly influenced by multiple genes, which may be differentially mutated in the different lines
tested, and which may explain how the particular metabolic weakness due to mutated TP53 in LN229
may be overridden by other characteristics, and conversely, how other genes contribute to metformin
sensitivity in TP53 WT cell lines. The in vitro effects of metformin on GBM cell viability are arguably
not the most important role of this compound, in view of the modest effects and the dose used, which
would not easily be achieved in vivo, as has been previously discussed [70].

Using a gene signature, instead of analyzing individual genes, allowed us to identify a robust
adaptation of GBM cells to hypoxia. This hypoxia gene signature, which strongly correlated with poor
survival, could potentially identify patients most likely to benefit from treatment with metformin
or other metabolic drugs, assuming that the compounds achieved similar reversal of the signature
in vivo as we observed in vitro. Indeed, metformin can be considered a prototypical metabolic drug.
Ultimately, however, newer therapeutic compounds with more favorable pharmacokinetics may
become available for clinical metabolic targeting [75,76]. Some of the changes we noted for expression
of individual genes after metformin treatment did not follow the general trend of downregulation,
for example, DDIT4 and VEGFA (Figure 5 and Table S2). Concerning DDIT4, this is involved in the
cellular stress response and has been reported to be upregulated in the presence of metformin [77],
in accordance with our results. We performed extensive testing of DDIT4, including assessment of
the corresponding protein expression after metformin exposure under different oxygen conditions.
Here both upregulation and downregulation of the protein were observed in different cell lines, making
definitive conclusions difficult to reach (data not shown). We also modulated DDIT4 expression by both
small interfering (si) RNA and CRISPR/Cas9 in the SB28 mouse GBM cells. The effect on the metformin
response was modest (data not shown). Whether this functional consequence was because of the
efficiency of the knockdown, or because multiple other genes are important, could not be resolved
from these experiments. Concerning VEGFA, this was upregulated, but not uniformly for the three
GBM lines tested, nor for all oxygen conditions. Indeed, metformin is proposed to globally inhibit
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angiogenesis, despite a transient stimulation of pro-angiogenic factors [78], suggesting the possible
effect of the duration of metformin treatment on the expression of downstream targets. Overall, given
the broad effects of metformin on many pathways, experimental modulation of individual genes
identified within our hypoxia signature is unlikely to be a productive way forward in understanding
the consequences of using this compound. Ultimately, only assessing the impact of metformin alone or
in combination with other compounds in vivo will resolve these issues.

5. Conclusions

Taken together, our direct manipulation of oxygenation in vitro, including the use of physioxia,
has revealed a hypoxia gene signature that recapitulates human GBM observations in vivo (hypoxic
localization and inflammatory and glycolytic responses). Moreover, this hypoxia signature is correlated
with shorter survival of GBM patients. Using metformin, we reduced GBM cell growth and oxygen
consumption, as well as the expression of key genes of the hypoxia gene signature, supporting further
investigation of this drug, or new generation compounds, in the context of GBM therapy.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-7737/9/9/264/s1,
Figure S1: Whole transcriptome analysis from human GBM cell lines exposed to different oxygen conditions.
Figure S2: Functional assays of human GBM cell lines and astrocytes exposed to metformin. Figure S3: Effect of
differential oxygen availability and metformin on oxygen consumption rate (OCR) and extracellular acidification
rate (ECAR) on human and mouse GBM cell lines. Figure S4: Western blot image and densitometry data for
HIF-1α expression by GBM line Ge835 under different oxygen fractions. Table S1: Relative gene expression values
used for heat map data in Figure S1c. Table S2: Fold change values of metformin modulation of the hypoxia gene
signature used for heat map in Figure 5. Table S3: Univariate and multivariate analysis of the hypoxia signature.
Table S4: Survival analysis for all datasets, GBM only. Supplementary File 1: ANOVA analysis used to build
hypoxia gene signature. Supplementary File 2: Genes in the hypoxia signature that are differentially expressed in
each cell line. Additional file 1: All legends for supplementary data.
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