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Abstract: Designing the electronic structures of the van der Waals (vdW) heterostructures to obtain
high-efficiency solar cells showed a fascinating prospect. In this work, we screened the potential of
vdW heterostructures for solar cell application by combining the group III–VI MXA (M = Al, Ga, In
and XA = S, Se, Te) and elementary group VI XB (XB = Se, Te) monolayers based on first-principle
calculations. The results highlight that InSe/Te vdW heterostructure presents type-II electronic band
structure feature with a band gap of 0.88 eV, where tellurene and InSe monolayer are as absorber
and window layer, respectively. Interestingly, tellurene has a 1.14 eV direct band gap to produce the
photoexcited electron easily. Furthermore, InSe/Te vdW heterostructure shows remarkably light
absorption capacities and distinguished maximum power conversion efficiency (PCE) up to 13.39%.
Our present study will inspire researchers to design vdW heterostructures for solar cell application
in a purposeful way.

Keywords: van der Waals heterostructure; InSe; tellurene; first-principle calculations; solar cell

1. Introduction

Van der Waals (vdW) heterostructures are stacked by two or more two-dimensional
(2D) materials with only vdW interaction in their interlayers but no surface dangling
bonds [1], which were widely used in vertical field-effect transistors [2], wearable and
biocompatible electronics [3], photodetectors [4], photovoltaics [5–7], light-emitting devices
(LEDs) [8], and so on. Because vdW force in the interlayer is a long-range weak interaction,
the heterostructures can be formed under the existence of large lattice mismatch among the
monolayers [9]. Furthermore, vdW heterostructures can combine the excellent properties
of the monolayers [10]. Under the interlayer coupling in vdW heterostructures, they can
also exhibit novel characteristics that their components do not possess [7,11–13]. Designing
type-II vdW heterostructures for solar cells through band-structure engineering by using
calculations is an efficient way, such as graphene/GaAs [5], Ti2CO2/Zr2CO2 [14] and
GaSe/GaTe heterostructures [15]. Generally, a vdW heterostructure based high-efficiency
solar cell consists of two parts: a absorption layer with a small band gap (~1.2–1.6 eV [16])
and strong light absorption capacity, and a window layer with a large band gap and
high transparency for the incident light [17,18]. Besides, the high carrier mobility and
the direct band gap of the absorption layer that generates photo-generated electrons are
also beneficial for improving the efficiency of solar cells [14,15]. Due to thickness and
atomically sharp interfaces, light-generated carriers can be effectively separated in vdW
heterostructures. Therefore, the probability of electron-hole recombination is very low, and
the efficiency is high [17]. For instance, a 2D WSe2-MoS2 lateral p-n heterojunction with
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a power conversion efficiency (PCE) of 2.56% under AM1.5G illumination was designed,
which can help develop the next-generation photovoltaics [19]. Hence, finding vdW
heterostructures with suitable band gaps and light absorption abilities to obtain high solar
energy efficiency is of great interest and importance.

On the other hand, the group III–VI compounds represented by InSe are a kind
of layered hexagonal lattice semiconductor [20–22]. The layers of them are connected
by vdW force without dangling bonds. Excitingly, 2D InSe was successfully prepared
experimentally, which exhibits high electron mobility, quantum Hall effect, and anomalous
optical response [23]. Moreover, the 2D InSe related vdW heterostructures combined with
another layers such as graphene [24], black phosphorus [25], C3N4 [26], SiGe [7], or III–VI
monolayers [15,27] attracted remarkable attention for high-performance electronic and
optoelectronic devices. Recently, the 1T-MoS2-like phase T-Se and α-Te were successfully
obtained in the laboratory [28,29]. The III–VI monolayers and T-Se, α-Te are all P63/mmc
lattice semiconductors with great optical properties and high carrier mobility [15,30].
Theoretically, the selenene and tellurene are evaluated as indirect band gaps of 1.16 and
1.11 eV [30], respectively, which may be converted to direct band gaps after the formation of
vdW heterostructures [31]. Therefore, it is highly desirable to build group III–VI/selenene
and III–VI/tellurene vdW heterostructures, which are good candidates for the absorption
layers for solar cell application.

In this work, we established the MXA/XB vdW heterostructures by combining MXA
(M = Al, Ga, In and XA = S, Se, Te) and XB (XB = Se, Te) monolayers. Based on first-
principles calculations, we unraveled the electronic structure of each monolayer and
heterostructure. Then, according to the energy band requirement of solar cells, InSe/Te
vdW heterostructure was screened out for the further study. Our results demonstrated
that InSe/Te vdW heterostructure shows type-II electronic band structure feature whose
tellurene as absorber layer exhibits 1.14 eV direct HSE band gap, exhibiting distinguished
light absorption capacities. Moreover, the corresponding maximum PCE can reach up to
13.39%, which indicates that InSe/Te vdW heterostructure has great potential for high-
efficiency solar cells.

2. Materials and Methods

The first-principles calculations were based on density functional theory (DFT) using
the Vienna ab initio simulation package (VASP) [32–35] in conjunction with the projector
augmented wave (PAW) pseudopotentials [32,36]. The calculation models and results were
dealt with the ALKEMIE platform [37]. The generalized gradient approximation (GGA) [38]
of Perdew–Burke–Ernzerhof (PBE) [39] pseudopotentials were selected to descried the
exchange correlation interactions between electrons. Our work conducted by using van der
Waals (vdW) interaction to form a heterostructure with two monolayers. Since the weak
interaction is difficult to be evaluated by traditional exchange and correlation potentials [40],
the optB86b-vdW functional [41] was used to include the weak interaction in all the
calculations. For the lattice optimization, the cutoff energy and the convergence criteria for
energy were set to 500 eV and 10−5 eV·atom−1, respectively. We maintained a sufficiently
large vacuum space (~20 Å vacuum for each layer) in the z-direction, and a proper distance
(~3 Å) between the two layers in order to ensure that there was only vdW interaction
between the different layers and no significant interaction among the repeating units in
the vertical direction. In geometric optimizations and static self-consistent calculations,
k-sampling was performed using 9 × 9 × 1 points by the Monkhorst–Pack [42] mesh.
The Heyd–Scuseria–Ernzerhof (HSE06) [41] hybrid functional was used to evaluate the
electronic band gaps.

3. Results and Discussion
3.1. Geometry and Stability

The MXA (M = Al, Ga, In and XA = S, Se, Te) and XB (XB = Se, Te) monolayers, where
the positions of the elements in the periodic table are shown in Figure 1a, are crystallized
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in the space group of P63/mmc with a honeycomb hexagonal structure [30,43]. Table S1
lists the optimized lattice constant, bond length and band gaps for the monolayers, where
the results are in good agreement with the previous reports [44,45]. The lattice constants
of most of the MXA and XB monolayers are close to each other; for instance, the lattice
differences between AlSe monolayer and selenene, InSe monolayer and tellurene, are 0.062
and 0.144 Å, respectively. The corresponding mismatches are 1.6% and 3.4%, respectively.
The well matched crystalline nature is beneficial for the assembly of van der Waals (vdW)
heterostructures, as illustrated in Figure 1b,c.
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tures. (b) top- and (c) side-views of optimized structure of MXA/XB heterostructures.

We established the MXA/XB vdW heterostructures by placing the XB monolayers
on the top of MXA monolayers. There are six possible stacking configurations of the
heterostructures [46], named configurations (a) to (f) in Figure 2. In configuration (a), XA
atom of the MXA monolayer is placed below the bottom XB atom. While in configurations
(b) or (c), XA atom is located in the bottom of the middle or upper XB atom. At the same
time, we can also regard configurations (b) and (c) as the shifting of the XB monolayer
in configuration (a) along the [110] direction of 1/3 and 2/3 a, respectively. Besides, the
configurations (d), (e), and (f) can be obtained by flip the XB monolayer of (a), (b), and (c)
types around the horizontal plane with an angle of 180◦. After structural optimizations for
a total of 288 structures of all the MXA/XB heterostructures, the energy differences between
different configurations, the interlayer distances, lattice constants, and bond lengths are
listed in Tables S2–S4. The energy difference ∆Ei refers to the difference between the
corresponding configuration and the most stable configuration, which can be defined as
follows [47]:

∆Ei = Ei − E0 (1)

where Ei is the total energy of each configuration, and E0 is the total energy of the most
stable configuration. The most stable configuration, which has zero ∆Ei, is presented in
configurations (b) and (d). Moreover, the calculated total energy of various configurations
relies on the interlayer distances and lattice constants [48]. Therefore, configurations (b) and
(d) show a lower interlayer distance. Moreover, Figure 2 shows that the atom in the bottom
of XB monolayer is not aligned with any atom in MXA monolayer.

To evaluate the thermodynamic stability and interlayer interaction, we calculated
the formation energy Ef and binding energy Eb for the heterostructures according to the
following equations:

Ef = Etotal − EMXA − EXB (2)

Eb = −
Etotal − EMXA+XB

A
(3)

where Etotal is the total energy of the MXA/XB heterostructures. EMXA and EXB represent the
total energy of pristine MXA and XB monolayers, respectively. In addition, EMXA+XB is the
sum of the total energy of the mutually independent MXA and XB monolayers fixed in the
corresponding heterostructure lattices, and A is the interface area. Table 1 lists the formation
and binding energies and other related parameters of the most stable configuration of the
MXA/XB heterostructures. In addition, most of heterostructures have the negative value of
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formation energy, which indicates that the reaction of combining monolayers to form these
heterostructures is energetically favorable [49]. For example, those of AlTe/Te, GaTe/Te
and InSe/Te heterostructures are −280.3, −300.8 and −278.7 meV, respectively. On the
other hand, all the heterostructures have the binding energy around ~20 meV/Å2, which is
the sign of vdW interaction between two monolayers [50].
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Figure 2. Top (a) and side (b) views of MXA/XB heterostructures with various configurations. Red,
brown, blue balls indicate the M, XA, XB atoms, respectively.

Table 1. Most stable configurations, lattice constants a (Å), formation energies Ef (meV), binding
energies Eb (meV/Å2), PBE, and HSE band gaps EPBE

g (eV) and EHSE
g (eV), and band edge alignment

types for MXA/XB vdW heterostructures.

System Configuration a Ef Eb EPBE
g EHSE

g Type

AlS-Se d 3.627 −174.0 20.7 1.00 1.35 I
AlS-Te d 3.822 492.3 20.4 0.15 0.55 I
AlSe-Se d 3.744 −246.9 20.9 0.76 1.20 I
AlSe-Te d 3.935 58.5 20.4 0.52 0.90 I
AlTe-Se b 3.965 −67.9 24.1 0.43 0.75 V
AlTe-Te d 4.129 −280.3 20.5 0.83 1.18 I
GaS-Se d 3.660 −213.7 21.2 0.76 1.21 I
GaS-Te d 3.863 328.0 22.4 0.00 0.26 II
GaSe-Se d 3.764 −250.0 21.5 0.60 1.12 I
GaSe-Te d 3.963 −24.3 21.8 0.20 0.64 II
GaTe-Se b 3.980 −74.8 25.6 0.36 0.67 II
GaTe-Te d 4.141 −300.8 21.4 0.58 1.09 I
InS-Se b 3.829 −206.7 21.4 0.60 0.99 I
InS-Te d 4.024 −164.8 21.7 0.16 0.50 II
InSe-Se b 3.921 −107.9 22.7 0.44 0.99 I
InSe-Te d 4.112 −278.7 21.5 0.39 0.88 II
InTe-Se b 4.124 178.0 29.0 0.20 0.49 V
InTe-Te b 4.290 −309.5 21.7 0.44 0.89 V

3.2. Electronic Properties

A high-efficiency heterostructure solar cell requires the type-II band structure feature,
and the absorption layer has a lower band edge than the window layer, preferably with a
direct band gap of 1.2–1.4 eV [16,17]. Figure S1 illustrates the projected band structures and
band edge alignments of MXA and XB monolayers by using HSE06 hybrid functional, while
Table S1 lists their corresponding PBE and HSE band gaps. For instance, the conduction
band minima (CBM) and band gap for InSe monolayer are −4.46 and 2.32 eV, and CBM
and band gap for tellurene are −4.49 and 1.09 eV, respectively. In addition, the CBM of
tellurene located in Г point is only 0.07 eV higher than the energy of the point where VBM
located in valance band.
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Figure 3 illustrates the HSE band structures of all the MXA/XB heterostructures.
GaS/Te, GaSe/Te, InS/Te and InSe/Te are all type-II heterostructures with tellurene as the
absorption layer. The black short lines mark the corresponding positions of the CBM and
VBM of tellurene. In the band structures of GaSe/Te, InS/Te, and InSe/Te, there are two
lines in valence bands because their energy levels are similar. The overlap band structures
of mutually independent monolayers fixed in InSe/Te heterostructure and the projected
HSE band structure of InSe/Te vdW heterostructure are illustrated in Figure 4. Tellurene
exhibits the direct band gap of 1.14 eV. And there is 0.36 eV conduction band offset (CBO)
between InSe monolayer and tellurene to separate charges [51]. Therefore, InSe/Te vdW
heterostructure has the suitable band structure for solar cells.
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3.3. Solar Cell Applications

To further evaluate the light absorption capacity and reflectivity of InSe/Te vdW
heterostructure, we calculated the absorption coefficient and reflectivity by the following
formula [52]:

n(λ) =
1√
2

√
ε1(λ) +

√
ε1

2(λ) + ε22(λ) (4)

κ(λ) =
1√
2

√
−ε1(λ) +

√
ε1

2(λ) + ε22(λ) (5)

α(λ) =
2πε2

λ
(6)

R(λ) =
(n− 1)2 + κ2

(n + 1)2 + κ2
(7)

where λ is the photon wavelength, ε1 and ε2 are the real and imaginary parts of the dielectric
function, respectively, and n(λ), κ(λ) are the refractive index and the extinction coefficient,
respectively. α(λ) and R(λ) are the absorption coefficient and reflectivity, respectively.

The absorption coefficients and reflectivity curves of InSe/Te heterostructure, InSe
monolayer and tellurene are shown in Figure 5. Herein, tellurene as the absorption layer
exhibits the high absorption coefficient about 105 to 106 cm−1 in the visible light, which
can be comparable with that of bulk WS2 and WSe2 used in efficient single junction solar
cell [53]. The InSe monolayer as the window layer is required high transparency for the
incident light, which means low absorption coefficient and reflectivity [17,54]. The InSe
monolayer has an absorption coefficient about one order of magnitude lower than that
of tellurene, and the reflectivity of it is about 0.13 to 0.34 in the range of 0 to 4 eV photon
energy. This result can be compared with that of the Janus WSeTe monolayer used as buffer
layer [54].
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Figure 5. (a) Calculated optical absorption coefficients as well as (b) the reflectivity of InSe/Te heterostructure, InSe
monolayer, and tellurene. Curve in bottom indicates reference solar spectral irradiance, and colorful background represents
visible light area [55].

To more intuitively evaluate the solar energy conversion ability of InSe/Te vdW
heterostructure, we evaluated the power conversion efficiency (PCE) η in the limit of 100%
external quantum efficiency (EQE) by the following equation [6,51]:

η =
0.65(Eg − ∆Ec − 0.3)

∫ ∞
Eg

P(}ω)
}ω d(}ω)∫ ∞

0 P(}ω)d(}ω)
(8)

where 0.65 is the band-fill factor, P(}ω) is the AM1.5 solar energy flux at the value of }ω for
photon energy, Eg is the band gap of the donor, ∆Ec is the conduction band offset between
the donor and acceptor, and the (Eg − ∆Ec − 0.3) term is an estimation of the maximum
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open circuit voltage. For this formula, the smaller ∆Ec means the greater value of PCE.
Additionally, it requires a suitable Eg, because if the band gap of the donor is higher, the
open circuit voltage will be better. However, the higher band gap will reduce the amount
of photons that can be absorbed, which will reflect in the decrease of short circuit current.
Here, the maximum PCE of InSe/Te vdW heterostructure is calculated to 13.39%, which is
highlighted as red star in Figure 6. To show the uniqueness of InSe/Te vdW heterostructure,
the PCE calculated by the same method for other 2D heterostructure solar cells are listed in
Table 2. Therefore, we infer that the InSe/Te vdW heterostructure is a potential candidate
for the high-efficiency solar cell application.
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Table 2. Calculated maximum power conversion efficiency (PCE) (%) of some recently reported 2D
heterostructure solar cells.

System PCE References

InSe/Te 13.39 This work
GaTe/InS, GaTe/GaSe 11.52, 18.39 [15]

Ti2CO2/Zr2CO2 22.74 [14]
phosphorene/MoS2 16–18 [56]

PCBM/CBN 10–20 [6]

4. Conclusions

In summary, we established the vdW heterostructures by combining MXA (M = Al,
Ga, In and XA = S, Se, Te) and XB (XB = Se, Te) monolayers. Based on first-principles calcula-
tions, the stability and interlayer force of these heterostructures were demonstrated by the
formation and binding energy. From screening, the InSe/Te vdW heterostructure shows
type-II electronic band structure feature with a band gap of 0.88 eV, where the tellurene as
absorber layer with a direct band gap about 1.14 eV could produce the photoexcited elec-
tron easily. In addition, tellurene and InSe monolayer respectively exhibit high absorption
coefficient and low reflectivity. Furthermore, the maximum power conversion efficiency
(PCE) of InSe/Te vdW heterostructure can reach up to 13.39%. Very recently, multilayer
InSe/Te vdW heterostructure was experimentally observed and showed potential applica-
tion in electronic and optoelectronic devices [57]. We believed that monolayer InSe/Te vdW
heterostructure can be experimentally realized and show better performance. Our present
research not only finds a novel type-II heterostructure for high-efficiency solar cell, but also
further guides the design of more 2D vdW semiconductors for photovoltaic materials.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14143768/s1, Figure S1: Projected band structures of (a) AlS, (b) AlSe, (c) AlTe, (d) GaS,
(e) GaSe, (f) GaTe, (g) InS, (h) InSe, (i) InTe, (j) Se and (k) Te monolayers by HSE06 hybrid functional
method. The red, brown, blue circles represent the projected specific gravity of M, XA, XB atoms,
respectively. The first Brillouin zone with high-symmetry points are shown in the inset of (a). (l) The
band edge alignments of these monolayers, Table S1: the lattice constants a (Å), the M-M, M-XA and
XB-XB (M = Al, Ga, In, XA = S, Se, Te and XB = Se, Te) bond lengths LM-M (Å), LM-XA (Å) and LXB-XB
(Å), the PBE and HSE band gaps EPBE

g (eV), EHSE
g (eV) for the MXA and XB monolayers, Table S2: the

energy differences ∆E (meV) and interlayer distances d (Å) as well as the lattice constants a (Å) and
bond lengths L (Å) of various configurations for AlXA/XB vdW heterostructures, Table S3: the energy
differences ∆E (meV) and interlayer distances d (Å) as well as the lattice constants a (Å) and bond
lengths L (Å) of various configurations for GaXA/XB vdW heterostructures, Table S4: the energy
differences ∆E (meV) and interlayer distances d (Å) as well as the lattice constants a (Å) and bond
lengths L (Å) of various configurations for InXA/XB vdW heterostructures.
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