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Abstract: Lignin directly derived from lignocellulosic biomass has been named a promising source
of platform chemicals for the production of bio-based polymers. This review discusses potentially
relevant routes to produce renewable aromatic aldehydes (e.g., syringaldehyde and vanillin) from
lignin feedstocks (pre-isolated lignin or lignocellulose) that are used to synthesize a range of bio-
based polymers. To do this, the processes to make aromatic aldehydes from lignin with their highest
available yields are first presented. After that, the routes from such aldehydes to different polymers
are explored. Challenges and perspectives of the production the lignin-derived renewable chemicals
and polymers are also highlighted.

Keywords: aldehydes; biopolymer; biorefinery; lignin; lignocellulosic biomass; phenolics

1. Introduction

Lignocellulosic biomass has been regarded as the renewable alternative carbon that
potentially replaces fossil fuel resources [1–5]. It consists mainly of cellulose, hemicellulose,
and lignin [6]. Lignin is a heterogeneous aromatic biopolymer, which comprises 15–30%
of the weight of lignocellulosic biomass and an integral part of cell walls of terrestrial
plants [7,8]. Lignin has aromatic structure; hence, it is considered a considerable renewable
carbon source [9–12]. Nevertheless, the utilization of lignin has been limited to energy
recovery. For example, most biorefinery processes degrade lignin, involving breakage of
unstable ether bonds (e.g., β-O-4 linkage) and C–C bond formation of reactive intermediates
via their condensation [13–16]. The resultant degraded lignin is usually incinerated for
heat and power production because it is hard to be depolymerized [17,18]. In order to
enhance sustainability and economics of biorefinery of using lignocellulosic biomass as a
raw material, the effective utilization of lignin is crucial [19].

There have recently been efforts to search suitable renewable raw materials for polymer
production. In particular, the development of bio-based polymers from lignin-derived
monomers has gained great interest [20,21]. Within these contexts, this review provides up-
to-date summary and knowledge of bio-based polymers synthesized from lignin-derived
aromatic aldehyde compounds. To this end, we first discuss a variety of methods to convert
lignin into aromatic aldehydes (i.e., syringaldehyde and vanillin). Various routes from
these substances to bio-based polymers are then outlined. At last, present challenges and
prospects of the processes are discussed.

2. Production of Aromatic Aldehydes from Lignin

Aerobic oxidation of lignin under alkaline conditions selectively produces aromatic
aldehydes such as syringaldehyde and vanillin [22]. Vanillin is commercially produced
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via alkaline aerobic oxidation of sulfonated lignin [23,24]. Alkaline oxidation of lignin
has been extensively investigated mostly using condensed lignin feedstocks such as Kraft
lignin [25–29] and sulfonated lignin [29–33]. For example, different research groups con-
ducted studies into the effect of reaction parameters (e.g., temperature, O2 pressure, and
NaOH concentration) on aerobic oxidation of Kraft lignin and sulfonated lignin [34–36].
Table 1 lists the results of alkaline aerobic oxidation of different lignins. Figure 1 illustrates
reactions involved in aerobic oxidation of lignin to aromatic aldehydes (e.g., vanillin).
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Earlier studies on alkaline aerobic lignin oxidation used lignins with highly modified
structures (e.g., alkali-treated lignin, Kraft lignin, and lignosulfonates) [38–40] as the
substrate. Such technical lignins have different structures and characteristics from native
lignin because they change during delignification process, associated with delignification
and biomass treatment and delignification methods. For example, Kraft lignin contains
1–3% sulfur, used to prepare resins, carbon fibers, and low-molecular-weight compounds.
Organosolv lignin is sulfur-free and has many reactive sites, employed as additives to inks,
paints, and coatings. Detailed comparison of characteristics of various technical lignin can
be found in a recent review by Ekielski and Mishra [41].

In a recent study, a more native-like lignin (poplar sawdust containing 29.4 wt.% lignin)
was used for the alkaline aerobic oxidation, as a surrogate substrate for an unmodified,
highly reactive, and non-degraded lignin [42]. For this reaction, other than syringaldehyde
and vanillin, syringic, p-hydroxybenzoic, and vanillic acids and acetosyringone were
identified. During the oxidation of poplar lignin, the resultant syringaldehyde and vanillin
were further oxidized to non-aromatic carboxylic acids. Vanillin was much less reactive
for the formation of non-aromatic acids than syringaldehyde. High temperatures, high
NaOH concentrations in the reactant, and short reaction times favored the production of
syringaldehyde and vanillin. The reason why long reaction deteriorates the yield was the
aromatic aldehydes degraded rapidly in the presence of oxygen. About 20 wt.% yield of
syringaldehyde and vanillin was achieved with the poplar lignin at 175 ◦C and 0.5 MPa O2
under 2 M NaOH.

The work done by Schutyser et al. also investigated the effect of Cu-based catalysts
(CuSO4 or LaMn0.8Cu0.2O3) on alkaline aerobic oxidation of the poplar lignin [42]. These
catalysts did not enhance the maximum aromatic aldehyde yield; however, they made the
high yield could be obtained at a wider range of reaction conditions. The findings were
somewhat contradictory to those of other studies that used modified lignins. This may be
because the native-like lignin is reactive enough without catalyst compared to modified
ones. The roles and mechanisms of the catalyst in the oxidation of the lignin contained in
native biomass could not be explained, remaining as future studies.

Impurities contained in lignin feedstocks (e.g., inorganics and carbohydrates) may
hinder the isolation of vanillin and syringaldehyde. Therefore, such impurities need to
be removed from lignin (even technical lignin) prior to its oxidation in order to make
uniformly fractionated lignin. The use of uniformly fractionated lignin would be beneficial
to enhance the yield of vanillin and syringaldehyde. Various approaches to effectively
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isolate and recover vanillin and syringaldehyde from the reaction stream are found in the
studies done by several groups [24,43,44].

Although many studies on the aromatic monomer production from lignin have carried
out, there has been no study into economic feasibility of the aldehyde production from
lignin yet. A recent paper, however, has reported technoeconomic feasibility of a lignin-
derived aromatic compound (e.g., catechol) [45]. The total cost investment of a plant which
capacity is 2544 kg of feedstock per day was estimated to be approximately 4.9 million
USD. The price of catechol production from lignin was calculated as 1100 USD per ton
of catechol (a valorization ratio of 3.02). The estimation indicated that the lignin-derived
catechol can be competitive in the market, while it was highly associated with assumptions
on price of raw materials and sell price of products. A similar situation should be applied
to a large-scale production of lignin-derived aromatic aldehydes.
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Table 1. Alkaline aerobic oxidation of different lignin feedstocks.

Entry Lignin Type Product Reaction Catalyst Reaction Conditions Yield Ref.

1 Swollen residual
enzyme lignin

Vanillin,
Syringaldehyde

Alkaline
nitrobenzene

oxidation
- 170 ◦C; 3 h Vanillin: 13.39%

Syringaldehyde: 14.19% Wang et al. [46]

2 Double enzymatic
lignin

Vanillin,
Syringaldehyde

Alkaline
nitrobenzene

oxidation
- 170 ◦C; 3 h Vanillin: 9.17%

Syringaldehyde: 15.99% Wang et al. [46]

3 Kraft lignin Vanillin,
Syringaldehyde

Alkaline
nitrobenzene

oxidation
- 170 ◦C; 3 h Vanillin: 2.51%

Syringaldehyde: 2.92% Wang et al. [46]

4 Alkali lignin Vanillin,
Syringaldehyde

Alkaline
nitrobenzene

oxidation
- 170 ◦C; 3 h Vanillin: 6.52%

Syringaldehyde: 4.16% Wang et al. [46]

5 Kraft lignin Vanillin Oxidation - 120–125 ◦C; 10 bar; 130 min 3.5–7.6% Araújo et al. [27]

6 Oil palm empty fruit
bunches lignin Vanillin Nitrobenzene

oxidation - 165 ◦C; 3 h 1.6% Mohamad Ibrahim et al. [47]

7 Lignosulfonates Vanillin Oxidation 185 ◦C; 11 atm; 85 min 7.2% Bjørsvik and Minisci [31]
8 Kraft lignin Vanillin Chemical oxidation - 133 ◦C; 2.8 bar O2; 35 min 10.8% Fargues et al. [25]
9 Pine kraft lignin Vanillin Oxidation - 120 ◦C; 5.5 bar N2, 9.3 bar O2; 60 min 10% Mathias and Rodrigues [34]

10 Pine wood lignin Vanillin Oxidation - 160 ◦C; 0.9 MPa O2; 20 min 23.1% Taraban’ko et al. [48]

11 Poplar lignin Vanillin,
Syringaldehyde

Alkaline aerobic
lignin oxidation 175 ◦C; 5 bar O2, 15 bar He; 10 min Vanillin: 7%

Syringaldehyde: 13% Schutyser et al. [42]

12 Eucalyptus globulus
dioxane lignin

Vanillin,
Syringaldehyde

Nitrobenzene
oxidation - 170 ◦C; 4 h Vanillin: 5.66%

Syringaldehyde: 33.2% Rodrigues Pinto et al. [28]

13 Lignosulfonates Vanillin,
Syringaldehyde Oxidation CuSO4

150 ◦C; 10 bar O2; 20 min; CuSO4
loading of 20%

Vanillin: 4.5%
Syringaldehyde: 16.1% Santos et al. [32]

14 Pine lignin Vanillin,
Syringaldehyde

Oxygen
delignification - 100 ◦C; 0.7 MPa O2; 60 min Vanillin: 8.8%

Syringaldehyde: 0.72% Wong et al. [49]

15 Eucalyptus pulp
lignin

Vanillin,
Syringaldehyde

Oxygen
delignification - 100 ◦C; 0.7 MPa O2; 60 min Vanillin: 4.62%

Syringaldehyde: 7.85% Wong et al. [49]

16 Cornstalk lignin Syringaldehyde Catalytic oxidation LaFe0.8Cu0.2O3
120 ◦C; 5 bar O2; 30 min;

LaFe0.8Cu0.2O3 loading of 5% 11.5% Zhang et al. [50]

17 Softwood lignin Vanillin Alkaline wet
oxidation - 140 ◦C; 10 bar O2; 280 min 3% Gomes and Rodrigues [51]

18 Dealkali lignin Syringaldehyde Catalytic oxidation LaFe0.2Cu0.8O3
160 ◦C; 0.8 MPa O2; 2.5 h;

LaFe0.8Cu0.2O3 loading of 5% 10% Li et al. [52]
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Table 1. Cont.

Entry Lignin Type Product Reaction Catalyst Reaction Conditions Yield Ref.

19 Kraft lignin Vanillin Alkaline wet
oxidation CuMn (1:3) 150 ◦C; atmospheric pressure; 60 min;

CuMn loading of 0.2% 6.7% Jeon et al. [53]

20 Native softwood
lignin Vanillin Aerobic oxidation - 120 ◦C; 72 h 21% Maeda et al. [54]

21 Kraft lignin Vanillin Alkaline wet
oxidation - 140 ◦C; 10 bar O2; 2 h 4.3% Gomes and Rodrigues [55]

22 Lignin from
Kraft cooking liquor Vanillin

Alkaline
nitrobenzene

oxidation
- 170 ◦C; 3 h, 3.9% Gitaari et al. [56]

23 Kraft lignin Vanillin Oxidation - 160 ◦C; 1 MPa O2; 1 h 21.1% Zhu et al. [57]
24 Kraft lignin Vanillin Catalytic oxidation CuSO4 140 ◦C; 1 h; CuSO4 loading of 10% 10.9% Zhang et al. [58]

25 Organosolv lignin Vanillin,
Syringaldehyde Electro-oxidation - Room temperature; 1 h 17.5% Yan et al. [59]

26 Kraft lignin Vanillin Oxidative
depolymerization - 180–220 ◦C; 1–2 atm O2; 1–2 h 1.8–5.2% Liu et al. [60]

27 Eucalyptus lignin Vanillin,
Syringaldehyde

Alkaline
nitrobenzene

oxidation
- 170 ◦C; 4 h Vanillin: 7.3%

Syringaldehyde: 29.3% Ninomiya et al. [61]
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3. Production of Polymers from the Lignin-Derived Aromatic Aldehydes
3.1. Production of Vanillin- and Syringaldehyde-Derived Polymers

Lignin can be directly employed to produce various polymers such as polyesters,
polyurethanes, and resins [62,63]. The polymers are synthesized directly from lignin via
functionalization of hydroxyl groups in lignin structure, or lignin is utilized as blends,
copolymers, and composites [64,65]. However, the direct use of lignin for the polymer
production has several limitations. For instance, properties of the resultant polymers
are highly dependent upon the composition and structure of lignin [66]; therefore, it
is challenging to control the properties. In addition, lignin often comprises composites
or blends as in minor amounts, and their major portions still originate from petroleum.
Compared to lignin itself, lignin-derived monomers such as syringaldehyde and vanillin
(discussed in Section 2) have relatively well-defined aromatic structure [65]. This aromatic
structure gives important polymer properties like hydrophobicity, rigidity, and resistance
to fire. In this section, it will be given an overview of methods employed to make different
polymers from the lignin-derived syringaldehyde and vanillin. Figure 2 depicts various
polymers that can originate from vanillin or syringaldehyde.
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Among a wide range of aromatic monomers can be derived from lignin [67], only
vanillin production is currently industrialized, which makes vanillin a particularly attrac-
tive monomer for polymer synthesis [63,68]. In earlier applications, vanillin is commonly
functionalized to make epoxy resins [69–71] by adding a second alcohol [72] and used to
make polymeric composite materials [73,74] and resins [75–77]. More recently, divanillin is
used as a polymer precursor. Divanillin is readily made via enzymatic oxidative dimeriza-
tion of vanillin on horseradish peroxidase (Armoracia rusticana) [78]. Alternatively, it can be
produced oxidative coupling by using laccase [79–81], iron(III) chloride [82], and persulfate
salts [83–85]. For instance, Fang et al. has very recently showed that sodium persulfate
(Na2S2O8) is an effective persulfate salt for the synthesis of divanillin due to its high water
solubility and inexpensiveness [85]. It could also be electrochemically synthesized [86]. No
structural space and short segments in divanillin lead to minimizing rotational motion of
its backbone, resulting in dynamic performance of polymeric networks [81,87].

Divanillin has been applied to the synthesis of various polymers including poly-
vanillin [83,86], Schiff base polymers [88], epoxy thermosets [81,89,90], and lignin oligomers [91].
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For example, reaction between divanillin and alkyl diamines in the presence of ethanol
followed by reflux resulted in Schiff base polymers having the degree of polymerization
ranging from 25 to 32 [88]. Divanillin could also be transformed to α,ω-dienes that were fur-
ther converted into a conjugated polymer through acyclic diene metathesis [92]. Divanillin
was employed as a chain extender to synthesize polyurethanes with a modification with
ethanolamine [93]. Divanillin was able to electrochemically polymerized to polyvanillin
considered a functionalized renewable polymer [86].

Bisphenols are precursors of a wide variety of polymers including polyesters [79],
polycyanurates [72], polycarbonates [72], and epoxy resins [85,94] that are made through
simple modifications of the structure of bisphenols. Two strategies have been available to
make bisphenols from vanillin. First one involves coupling reactions between aromatic
rings of two phenolic compounds through electrophilic condensation [95] or enzymatic
dimerization [79]. Second one is to functionalize side chain of the phenolic species, involv-
ing coupling of two phenolics via a cross-linker [94] and the generation of stilbenes [72].
Song and co-workers enzymatically co-polymerized syringaldehyde with petro-derived
bisphenol A using a peroxidase (Coprinus cinereus) [96].

Polymers synthesized by modifying side chain of vanillin or syringaldehyde have
also been reported. Rostagno et al. prepared different polyvinyl aromatic acetals by
the condensation of poly(vinyl alcohol) and lignin-derived aromatic aldehydes such as
syringaldehyde and vanillin [97]. Polymeric vanillin prodrug-based nanoparticles were
synthesized by Kwon et al. [98], which are potentially applied to drug delivery systems
and antioxidant therapeutics. Liu et al. derived acrylamides from vanillin via a three-step
process which could be polymerized through free radical polymerization [99]. The free rad-
ical polymerization could also be used to prepare acrylate polymers from syringaldehyde
and vanillin [100].

There have been efforts to expand the application of renewable polymers derived from
vanillin and syringaldehyde. For instance, Kakuchi and co-workers have recently exploited
the Kabachnik–Fields reaction as a method to post-modify vanillin or syringaldehyde-
derived polymer, considering that aldehydes are important reactants in multi-component
reactions [101]. The Kabachnik–Fields multi-component reaction between phosphites,
amines, and polymers derived from vanillin or syringaldehyde completely changed alde-
hyde functionalities of the polymers to α-amino phosphonate functionalities.

An interesting use of renewable lignin-derived monomer was reported by Zhang et al.
They synthesized polymeric porous microspheres from vanillin [102]. Vanillin first reacted
with methacryloyl chloride, which made vanillin methacrylate. Suspension polymerization
of the vanillin-derived monomer under aqueous phase resulted in microspheres with
a >90 wt.% yield. The microspheres had surface porosity by N2-bubbling and optimiz-
ing the co-solvent ratio. When the aldehyde functionalities of the microspheres reacted
with glycine, the microspheres were chelated by Schiff base. The chelating microspheres
showed a high performance of Cu2+ (as a heavy metal surrogate) adsorption (135 mg g−1).
Later on, the same researcher synthesized similar magnetic microspheres composed of
polymethacrylate/Fe3O4 nanoparticles [103]. The magnetic moiety allowed an easy sepa-
ration of the material from liquid media after its use. The microspheres were effective at
adsorbing p-anisidine, proving its suitability for enzyme immobilization.

3.2. Properties of Vanillin- and Syringaldehyde-Derived Polymers

Thermoset polymers are used in many applications including coatings, packaging,
adhesives, composites, and electronics because of their high strength, high, modulus, and
good resistance to heat and chemicals [104]. The properties of thermosets can readily
be varied, dependent upon molecular weight, nature of the polymers, and adjustable
cross-linking density [105]. Of various classes of thermosets, epoxy resins represent ap-
proximately 70% of thermoset market owing to their superior mechanical and adhesive
properties and high thermal chemical resistance [106].
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The lignin-derived vanillin and syringaldehyde (as discussed in Section 2) can be used
to make epoxy thermosets. For example, Zhao and Abu-Omar made triphenylmethane-
type polyphenols from syringaldehyde and vanillin [107]. The polyphenols were then
reacted with or without linoleic acid (as a plasticizer), followed by epoxidation and curing
to obtain a final form of the resin. The use of linoleic acid decreased glass transition
temperature from 167 to 82 ◦C and storage modulus from 12.3 to 3.6 GPa (entry 1 in
Table 2).

Zhu and co-workers synthesized vanillin-based epoxy resins having flame retardant
properties attributed to phosphorus functionalized by using p-phenylenediamine or 4,4-
diaminodiphenylmethane as coupling agent [94]. The procedure led to epoxy resins with
thermal and mechanical properties that are comparable to commercial diglycidyl ether of
bisphenol A (DGEBA) (entry 2 in Table 2).

Thermoplastic polymers are applied to manufacturing packaging, fibers, furniture,
insulators, containers, medical equipment, automotive parts, et cetera. In addition to epoxy
thermosets, thermoplastic polymers can be derived from vanillin and syringaldehyde. For
instance, different methacrylate polymers with high glass-transition temperatures were
derived from vanillin and syringaldehyde. Acrylate- and methacrylate-type monomers
were first made, including vanillin acrylate, vanillin methacrylate, syringaldehyde acrylate,
and syringaldehyde methacrylate [100]. Free radical polymerization of such monomers
yielded their corresponding polymers. The polymers (95–180 ◦C) had a lot higher glass
transition temperature than poly (methyl methacrylate) (PMMA), polystyrene (PS), and
polylactic acid (PLA) (48–110 ◦C) (entry 4 in Table 2). They also had higher initial degrada-
tion temperature ranging from 300 to 320 ◦C than PMMA (280 ◦C) and PLA (296 ◦C). Kim
group used a dimerized vanillin to partially replace traditionally used chain extender (e.g.,
1,4-butanediol) to make polyurethanes [93]. The resultant polymeric materials that contain-
ing divanillin-ethanol amine conjugate had enhanced Young’s modulus (8.0–9.7 MPa) and
strain (644.8–770.9%) than those of typical polyurethane (7.5 MPa and 522.6%, respectively)
(entry 9 in Table 2).

Kayser et al. reported a cross-conjugated pyrrole-based fluorescent polymer compris-
ing biomass-derived monomers such as vanillin and furan-based acid chlorides for the
first time [108]. Multi-component polymerization substituted by catechyls and mediated
by phosphonites was used to make the cross-conjugated polymer using light alkenes (or
alkynes) and diacid chlorides. Investigation into the polymer’s optical properties (e.g.,
fluorescence and UV-vis absorbance) proved that the polymer is blue-emitting, and the
emission can be modulated by modifying its structure. The authors of this study stated
that the polymer is potentially applied to produce polymer-based light emitting diode.
Properties of more vanillin- and syringaldehyde-derived polymers are also available in
Table 2.
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Table 2. Thermomechanical properties of vanillin- and syringaldehyde-derived polymers.

Entry Monomers Polymerization
Method Final Polymer Glass Transition

Temperature (◦C) Degradation Temperature (◦C) Other Properties Ref.

1 Vanillin,
syringaldehyde

Epoxidation; curing at
80 ◦C for 8 h Epoxy resin 82–167 a T5% = 220–269 b - Zhao et al. [107]

2 Vanillin Epoxidation; curing at
160 ◦C for 2 h Epoxy resin 166–214 c T5% = 286–356 d - Wang et al. [94]

3 Vanillin
methacrylate

Suspension
polymerization; curing

at 65 ◦C for 6 h

Polyvanillin
methacrylate 102 c Degradation T range = 250–480 b - Zhang et al. [102]

4 Vanillin,
syringaldehyde

Free radical
polymerization

(Meth)acrylate-
type

polymers
95–180 c Tmax = 340–360 b Mn = 7600–14,600 g mol−1;

Ð = 1.89–4.07
Zhou et al. [100]

5 Vanillin
Electrochemical

reductive
polymerization

Polyvanillin - T50% = 440 d Mn = 9850–11,784 g mol−1;
Ð = 1.42–1.58

Amarasekara et al. [86]

6 Vanillin

Reversible addition-
fragmentation

chain-transfer (RAFT)
polymerization

Methacrylate-type
polymers 111–139 Tmax = 281–327 Mn = 15,000–41,000 g mol−1;

Ð = 1.12–1.39
Holmberg et al. [109]

7 Syringyl
methacrylate RAFT polymerization Poly(syringyl

methacrylate) 114–205 e Initial degradation T = 256–303 d Mn = 11000–38,000 g mol−1;
Ð = 1.32–1.74

Holmberg et al. [110]

8
Vanillin-derived
bis-benzoxazine

monomer

Ring opening
polymerization Poly(bisbenzoxazine) 202–255 e Degradation T range = 220–450 b - Sini et al. [111]

9 Vanillin -

Divanillin-ethanol
amine

conjugate-based
polyurethane

−68.1 to −67.2 c T5% = 329.6–341.5 b - Gang et al. [93]

10
Vanillin,

syringaldehyde,
etc.

- Polyvinyl acetals 114–157 T95% = 185–308 b Mn = 22,300–46,000 g mol−1 Rostagno et al. [97]

11 Vanillin - Poly (ether
benzoxazole) - >400 b - Sun et al. [112]

12 Vanillin-based
monomers

Phosphonite-mediated
multicomponent
polymerization

Fluorescent
polymers - - Mn = 3000–12,700 g mol−1;

Ð = 1.8–2.3
Kayser et al. [108]
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Table 2. Cont.

Entry Monomers Polymerization
Method Final Polymer Glass Transition

Temperature (◦C) Degradation Temperature (◦C) Other Properties Ref.

13 Vanillyl alcohol - Polyurethane 59 T5% = 178 b Mw = 32,000 g mol−1 Tachibana and Abe [113]

14 Vanillin - Polyurethane
(PU-3) 80.4 c T5% = 229 b Mn = 4000 g mol−1 Zhao et al. [114]

15 Vanillin - Cured epoxy resins - T5% = 394 b - Shibata and Ohkita [115]

16 Vanillin Phthalonitrile
functionalization

Phthalonitrile
resins >500 c T5% = 477–482 b - Han et al. [116]

17 Hydrovanilloin Electrochemical
dimerization

Hydrovanilloin—
Diglycidyl Ether
Phenoxy Resin

135 T = 255 d - Amarasekara et al. [117]

18 Vanillin
methacrylate

Free radical solution
homo-polymerization

Vanillin-derived
polymer (PVMA) - - Mn = 17,900 g mol−1 Zhao et al. [118]

a By dynamic mechanical analysis; b By thermogravimetric analysis (TGA) in N2; c By differential scanning calorimetry (DSC) in N2; d By TGA in air; e By DSC in air.
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4. Summary and Outlook

Lignin is an intriguing aromatic biopolymer. The release of more chemicals derived
from lignin can expand available biorefinery feedstocks, thereby making economics of
biorefineries and pulp and paper industries profitable. In this regard, this review gives an
overview of processes that enable to deliver bio-based polymers from pre-isolated lignin or
lignocellulose in good selectivities. As shown in this review, the applications of lignin to the
manufacture of bio-based polymers demonstrate why lignin is regarded as a key renewable
source in biorefineries. However, there are still challenges that need to be solved to be
capable of the full implementation of lignin as renewable feedstock for bio-based polymers.

There are a large number of strategies to transform lignin into aromatic aldehydes
such as syringaldehyde and vanillin. Many studies have recognized that re-condensation
reactions occurring during processing lignocellulosic biomass and lignin conversion pro-
cesses have pronounced effects on the product yields. Efforts to suppress the undesired
reactions have been made. For instance, the introduction of formaldehyde to isolating
lignin from lignocellulosic biomass achieved the yields at a near theoretical maximum [119].
Stabilization of reactive intermediate species during acidolysis of organosolv lignin was
also reported [120–122]. Reductive catalytic fractionation led to high selectivities toward
defined target products rather than obtaining a complex mixture of products [123].

The aerobic oxidation of lignin reported so far needs for high amounts of oxygen and
alkali medium. However, most studies have still focused on increasing yields of target
products, although reducing the oxygen and alkali consumption is clearly attention-worthy
issue [124]. More efforts should be made to figure out how to lower the consumption of
oxygen and alkali during the aromatic aldehyde production.

Most studies into the production of aromatic aldehydes from lignin that are currently
available have laid emphasis on solving fundamental challenges of selective β-O-4 bond
cleavage in lignin. However, cleavage of other linkages in lignin needs to be more actively
investigated to fully valorize all lignin components. Stable and reusable catalysts that
are tolerant to impurities contained in lignin should be developed [125]. Upscaling of
experiments on converting lignin into the monomers is also required as an effort to make
the lignin valorization process more economically viable.

For the conversion of lignin into aromatic aldehyde monomers, it is difficult to make a
direct comparison of the conversion processes because characteristics and properties of
lignin substances (e.g., purity, solubility, molecular weight, and β-O-4 content) are different,
dependent upon the methods of lignin isolation and processing developed by different
research groups. Thus, standardization of reporting performance of the lignin conversion
methods is required. Regarding the standardization, the lack of standard lignin samples
that have reproducible quality is a serious challenge. It is also necessary to standardize
existing techniques for analysis both of the structure of lignin and lignocellulose and of
lignin-derived complicated product mixtures.

Considerable advancements have come with polymers made from lignin-derived
aromatic aldehydes. Many research groups have used pure and well-defined lignin sub-
strates available from commercial sources to synthesize bio-based polymers, particularly
thermoplastics and thermosets with comparable properties to conventional materials. How-
ever, there is still a discrepancy between chemical compounds frequently obtained from
depolymerization of lignin and monomers most frequently used for the production of
bio-based polymers. Novel methods to make the actual monomers with high yields are
needed, which can open up possibilities of synthesizing emerging bio-based polymers
having desired properties.

Catalytic conversions of lignin typically result in mixtures of different aromatic com-
pounds that are directly employed to synthesize bio-based polymers. This can allow to
avoid additional purification or separation steps, if reproducibility associated with the
kind of lignin feedstocks and the composition of the aromatic mixtures is clarified. More-
over, the lignin-derived bio-based polymers are not degradable in nature; hence, their
biodegradability and toxicity in the environment need to be further investigated.
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In the past, the use of lignin as a starting material for the production of other chemicals
was skeptical because the breakage of recalcitrant structure of lignin was a daunting
task. Today, considerable advancements in research into biorefinery and catalysis make it
possible the production of lignin-derived platform chemicals in acceptable yields. However,
the full implementation of lignin as renewable feedstock for bio-based polymers still
requires active collaborations across multiple disciplines and a constructive dialogue
between people working in academia and industry. Constant efforts to develop lignin
valorization processes will be essential for further innovation in biorefinery technologies.
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