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Abstract

Bordetella spp. form biofilms in the mouse nasopharynx, thereby providing a potential mechanism for establishing chronic
infections in humans and animals. Filamentous hemagglutinin (FHA) is a major virulence factor of B. pertussis, the causative
agent of the highly transmissible and infectious disease, pertussis. In this study, we dissected the role of FHA in the distinct
biofilm developmental stages of B. pertussis on abiotic substrates and in the respiratory tract by employing a murine model
of respiratory biofilms. Our results show that the lack of FHA reduced attachment and decreased accumulation of biofilm
biomass on artificial surfaces. FHA contributes to biofilm development by promoting the formation of microcolonies.
Absence of FHA from B. pertussis or antibody-mediated blockade of surface-associated FHA impaired the attachment of
bacteria to the biofilm community. Exogenous addition of FHA resulted in a dose-dependent inhibitory effect on bacterial
association with the biofilms. Furthermore, we show that FHA is important for the structural integrity of biofilms formed on
the mouse nose and trachea. Together, these results strongly support the hypothesis that FHA promotes the formation and
maintenance of biofilms by mediating cell-substrate and inter-bacterial adhesions. These discoveries highlight FHA as a key
factor in establishing structured biofilm communities in the respiratory tract.
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Introduction

Bordetella pertussis is the major causative agent of whooping cough

(pertussis), a highly infectious and transmissible disease of the

human upper respiratory tract. Over the past two decades

pertussis has experienced a resurgence worldwide [1]. While

pertussis is traditionally described as a severe childhood disease, it

is also common among adolescents and adults, in whom it often

manifests as persistent cough with milder symptoms [2,3]. A large

body of evidence strongly supports that adolescents and adults as

reservoirs and sources of pertussis transmission [4,5,6,7]. In a

recent population based study conducted over a period of about

two years in the Netherlands, 53% of the household contacts had

laboratory-confirmed pertussis. Strikingly, in 60% of the house-

holds, the source of transmission to infants was clearly established

to be one of the family members [8].

We recently began to explore the capacity of B. pertussis to form

biofilms, postulating that this pathogen adopts the biofilm lifestyle

as a strategy to survive in the human respiratory tract [9,10,11,12].

A biofilm is a complex community-based mode of existence that

microbes establish over abiotic or living surfaces [13]. This lifestyle

confers upon pathogens several advantageous traits linked to

virulence, including resistance to environmental stress, host

defences and antimicrobial compounds [14,15]. Such virulence-

related traits ultimately facilitate the establishment of persistent

infections or a carrier state [16]. The existence of a biofilm mode

of life for B. pertussis and its closely related species B. bronchiseptica in

the mouse respiratory tract has been demonstrated [9,10,17]. One

of the strengths of this model is that the Bordetella cells attached to

the respiratory epithelium are surrounded by a self-produced

extracellular matrix composed of the Bps polysaccharide, thereby

satisfying the definition of in vivo biofilms. Moreover, B. pertussis has

been found adherent to ciliated cells of explant cultures and in

tissue biopsies of pertussis patients in the form of clusters and

tangles (structures reminiscent of biofilms) [18,19,20]. Taken

together, while these results suggest an important role for the B.

pertussis biofilm state in human infections, the knowledge of the

events and factors involved in this lifestyle is rudimentary.

Biofilm development depends on the ability of microorganisms

to establish cell-substrate and cell-cell interactions, since they

support sessile growth and the development of multicellular

structures [21]. To promote these interactions, most biofilm-
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forming bacteria make use of surface-associated structures such as

fimbriae, Type IV pili, outer membrane proteins or exopolymers

like polysaccharides [22,23,24,25,26,27,28]. B. pertussis produces

various factors implicated in bacterial attachment, which promote

sequential and/or redundant interactions with host epithelia in the

respiratory tract. Among such factors are adhesins like filamentous

hemagglutinin (FHA), pertactin and fimbriae [29]. FHA is a large,

b-helical, highly immunogenic protein that is both surface

associated and secreted [30]. FHA displays diverse attachment

activities derived from its multiple binding domains, which

facilitate Bordetella attachment to a variety of eukaryotic cell types

and extracellular structures in the respiratory epithelium [31].

Other documented roles include mediating B. pertussis invasion to

host cells, triggering immunomodulatory responses and promoting

autoagglutination and colonization of the respiratory tract [32,33,

34,35,36,37,38]. FHA is the prototypical member of the family of

bacterial proteins secreted by the two-partner secretion system

[39]. Two members of this family, CdrA in P. aeruginosa and

XacFhaB in Xanthomonas axonopodis pv. Citri have recently been

shown to be involved in biofilm formation [40,41].

Thus, although the existing literature justifies consideration of

FHA as a candidate for biofilm adhesin, there is little known on its

potential role in biofilm formation. It has been shown that FHA

contributes to biofilm formation by the animal pathogen B.

bronchiseptica [36,42]. In the case of the human pathogen B. pertussis,

the role of this protein factor has remained unexplored. Moreover,

the mechanism by which FHA contributes to biofilm formation in

either B. bronchiseptica or B. pertussis is unknown.

In the present study, we investigated the mechanism by which

B. pertussis FHA mediates the different steps of biofilm develop-

ment on abiotic surfaces. We show that FHA is a key factor for

bacterial attachment and subsequent cell accumulation on

substrates. Our results indicated that surface-associated FHA

promotes the formation of structured biofilms by mediating inter-

bacterial adhesion. We extended our in vitro observations by

investigating the function of FHA in biofilm formation in the

mouse respiratory tract. Absence of FHA caused a significant

reduction in the ability of B. pertussis to form and maintain biofilm-

like structures in the mouse nose and the trachea. Together our

results highlight the role of FHA as a central structural factor in B.

pertussis biofilm development. We propose that FHA-mediated

biofilm formation in the respiratory tract allows B. pertussis to evade

the host immune response thereby establishing a bacterial

reservoir in the human respiratory tract.

Results

B. pertussis FHA is required for biofilm formation on
abiotic surfaces

No information is available on the role of FHA in contributing

to the biofilm development of B. pertussis. We initiated this study by

utilizing a previously described glass column culture system packed

with polypropylene beads (the growth support) [11] to examine

biofilm formation under aeration conditions. The wild-type (WT)

strain BPSM, a Tohama I derivative, and the isogenic DfhaB

mutant, BPGR4, which carries a chromosomal deletion of the

FHA structural gene fhaB [43], were similarly cultured in this

system for 72 and 96 h. We have previously shown that within this

time frame of cultivation, B. pertussis biofilms gain structural

maturity [11,44]. The biofilm biomass for the two strains was

quantified by crystal violet staining and measuring the absorbance

of the solubilized stain at 590 nm. Compared to the WT strain, the

DfhaB mutant was defective in its ability to form biofilms after 72 h

of growth. Even after 4 days, the mutant strain displayed

significantly reduced capacity to accumulate biofilm biomass

(Fig. 1A). Similar results were obtained when borosilicate beads

were used as growth support (data not shown). We also confirmed

the crystal violet staining results by determining the number of

viable sessile cells of each strain recovered from the polypropylene

beads at the end of the experiment (96 h). The number of CFUs

obtained for the mutant strain was significantly lower than that

obtained for the WT strain (P,0.05, t test) (Fig. 1B). The observed

differences in surface-attachment between the WT and the DfhaB

strains were not due to their differential ability to grow either

planktonically or in shaking cultures. The number of DfhaB cells

present in the bulk-liquid phase at 96 h was not significantly

different from that of the WT strain (P = 0.11, t test) (Fig. 1C).

Moreover, these two strains exhibited similar specific growth rates

in shaking cultures (data not shown). These results suggest that

FHA contributes to the formation of biofilms by B. pertussis.

The biofilm-forming defect of the DfhaB mutant derives
from its impaired capacity to interact with the substrate
during attachment, and subsequent stages of
development

Biofilm development in bacteria is a multi-stage process and

results from initial surface attachment of bacterial cells followed by

accumulation into multilayered cell clusters. We therefore asked

whether the observed biofilm defect of the DfhaB mutant resulted

from defects in initial attachment. To investigate this, we first

compared the attachment of GFP-tagged derivatives of both the

WT and the DfhaB strains to glass coverslips by fluorescence

microscopy. In order to allow the bacteria present in the liquid

phase to reach the substrate, a 4-h incubation period was

established for assaying attachment. Note that this time period is

shorter than the doubling time of both the B. pertussis strains (data

not shown) and thus the attachment is considered independent

from growth. Images in Fig. 2A show that after 4 h of incubation,

a greater number of GFP-tagged cells of the WT strain remained

attached to the surface relative to that for similarly tagged DfhaB

mutant. In parallel, we also examined the attachment of the WT

and the DfhaB strains to polypropylene beads. The adhered cell

biomass was quantified by crystal violet staining. Results show that

after 4 h of incubation, the DfhaB mutant exhibited a significantly

reduced percentage of cell biomass adhering to polypropylene

beads compared to that of the WT strain (Fig. 2B, compare first

and second white bars).

While these results indicate that FHA is necessary for efficient

initial attachment of B. pertussis to the surface, they do not provide

information on the extent to which the observed attachment

defect, resulting from the absence of FHA, affects subsequent steps

of biofilm formation. Thus, we next investigated whether a low

number of adherent bacteria, similar to that found for the DfhaB

mutant strain (Fig. 2B, second white bar), was sufficient to result in

a late-stage biofilm. To this end, the number of WT bacteria in the

inoculum was reduced from 16109 to 46108 CFUs ml21.

Inoculated bacteria were allowed to attach for 4 h followed by

incubation under normal biofilm culture conditions. Under these

conditions, while the WT strain was capable of forming biofilms

(Fig. 2B, third black bar), the DfhaB mutant did not show an

increase in the biofilm biomass (Fig. 2B, second black bar). We also

confirmed the crystal violet staining results by determining the

number of viable cells of each strain recovered from the

polypropylene beads in the same experiment (Fig. 2C). Together

these results suggest that the absence of FHA renders B. pertussis

not only deficient in early attachment, but also in the

accumulation of the biofilm biomass.

Role of FHA in Biofilm Development in Bordetella
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The reduced ability of the DfhaB mutant to form biofilms
correlates with defects in the formation of structured cell
clusters

The absence of FHA strongly diminished, but did not fully

abolish biofilm accumulation. To better understand the function of

FHA in biofilm development, structural aspects of this mode of

growth were examined. GFP-tagged WT and mutant strains were

cultured in continuous-flow chamber systems. These systems offer

dynamic flow conditions, which allow the continuous replenish-

ment of nutrients, as well as analytical advantages like non-

invasive real-time monitoring of structural development of biofilms

by microscopy techniques. At indicated time points, biofilm

formation of each strain was examined in situ by fluorescence

microscopy. As has been previously shown [10,12], by 24 h, the

WT strain was adherent to the glass surface in a diffused manner

and formed small clusters of cells (Fig. 3A). Between 48 and 72 h

of cultivation, the density of surface attached WT cells increased

and at this stage biofilms appeared structurally complex. Cells

were observed to be arranged in large and irregularly shaped

microcolonies attached to the surface. In contrast, a reduced

number of DfhaB mutant cells were attached to the coverslips at

24 h with no visible cell clusters. With time, while the number of

DfhaB mutant cells attached to the borosilicate surface slightly

increased, structures resembling those of the WT biofilm were

never observed. The increase in biomass for the mutant strain

mainly correlated with the presence of single cells dispersed over

the surface or with the formation of diffuse small cell clusters.

These data suggest that the DfhaB mutant is not only delayed in

biofilm formation but is unable to form a typical structured biofilm

community.

To gain information on the differences in the structural features

of the biofilms formed by the WT and the mutant strains, 72-h-old

biofilms were examined by Confocal Laser Scanning Microscope

(CLSM). Stacks of Z-section images were collected and recon-

structed into 3D images. As observed in Fig. 3B, after 72 h of

growth, the WT strain formed robust biofilms consisting of large

tower-shaped cell aggregates. In contrast, the mutant strain

developed minute clusters across the whole substrate. These

Figure 1. Biofilm formation by WT (BPSM) and DfhaB (BPGR4) B. pertussis strains on abiotic surfaces. Biofilm cultures were performed in
glass column systems containing polypropylene beads. (A) Biofilm biomass accumulated by each strain over the polypropylene beads after 72 and
96 h of cultivation was stained with CV 0.1% (v v21). The CV stain associated with cells was solubilized in ethanol/acetone (80:20) and the resulting
solution was subjected to measurement of the absorbance at 590 nm. The data are the means 6 standard deviations of three independent
experiments. An asterisk indicates significant differences between the WT and the DfhaB mutant (P value ,0.05; Student’s t-test). (B) Viable cell
counts of the biofilm cells of each strain. The adhered cells were gently washed and detached from the polypropylene beads by slight agitation in
PBS buffer. Serial dilutions of cell suspensions were then plated on BGA plates. Results are expressed as the number of colony-forming units per unit
area (CFUs cm22). The data are the means 6 standard deviations of three independent experiments. An asterisk indicates significant differences
between the WT and the DfhaB mutant (P value ,0.05; Student’s t-test). (C) Viable cell counts of the planktonic cells in the bulk-liquid phase of
biofilm cultures of each strain. The cells were drained out of the biofilm column system at the end of the experiment (96 h). Serial dilutions of cell
suspensions were then plated on BGA plates. Results are expressed as the number of colony-forming units per unit volume (CFUs ml21). The data are
the means 6 standard deviations of three independent experiments.
doi:10.1371/journal.pone.0028811.g001

Role of FHA in Biofilm Development in Bordetella
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image stacks were further analyzed by the COMSTAT software,

which allowed us to extract quantitative information of biofilm

architecture [45]. The descriptors chosen were: mean and

maximum thickness, total biomass, and the mean size of cell

clusters (microcolonies). Biofilms developed by the WT strain

exhibited a mean thickness of 25 mm and a maximum thickness of

approximately 48 mm (Table 1). In contrast, the DfhaB strain

formed a non-uniform layer of cells on the surface with a mean

thickness of only 2.5 mm and maximum thickness of about 4 mm.

Comparison of the biomass values also showed significant

differences in the density of cells accumulated on the surface

between the two strains. Similarly, computation of the average of

the mean area of cell clusters located at the substratum showed

that the DfhaB mutant formed only small cell clusters as compared

to the WT strain (Table 1). In conclusion, COMSTAT analyses of

CLSM image stacks of the biofilms suggest that FHA is critical for

the development of the three-dimensional architecture of B.

pertussis biofilms, as evidenced by the thick and voluminous

biofilms produced by the WT strain compared to the relatively

flat, dispersed and monolayer-like mat of cells produced by the

DfhaB strain.

The presence of FHA on the surface of B. pertussis cells is
necessary to mediate the formation of biofilms

From the above results, it is clear that FHA is involved not only

in the interaction of B. pertussis with surfaces, but also in the

formation of multicellular cell clusters. We hypothesized that FHA

may facilitate inter-bacterial adhesion, thereby resulting in the

formation of microcolonies and eventual development of mature

biofilms. To examine this hypothesis, we first investigated if the

presence of this protein on the bacterial surface was needed to

integrate bacteria into the biofilm community. We compared

biofilms formed by mixtures of the WT and the DfhaB strains

carrying different antibiotic resistance genes. The CFUs of each

strain in the mixed biofilms were enumerated by plating on

selective BGA plates. When WT (B213[pGFP], Gmr) and DfhaB

(BPGR4, Nalr) strains were simultaneously co-cultured in biofilm,

the population of cells recovered after 72 h was mainly composed

Figure 2. Early attachment of B. pertussis strains to abiotic surfaces. (A) Attachment of WT and DfhaB strains to glass. Inoculated bacteria
(16109 CFUs ml21) were allowed to attach to the surface under static conditions for 4 h at 37uC. Fluorescence images of WT and DfhaB GFP-tagged
cells that remained adhered to the glass coverslips. (B) Attachment and subsequent biofilm growth by the WT and DfhaB B. pertussis strains. WT and
DfhaB biofilm cultures were initiated with high inoculum levels (16109 CFUs ml21). Bacteria were allowed to attach for 4 h followed by incubation
under normal biofilm culture conditions. The effect of low-level attachment on subsequent biofilm formation by the WT B. pertussis strain was also
examined. The number of WT bacteria in the inoculum was reduced from 16109 to 46108 CFUs ml21 so as to decrease the population of cells
initially adhered to the level displayed by the DfhaB strain with a high inoculum (16109 CFUs ml21), and then incubated under normal biofilm culture
conditions. Adhered biomass was stained with CV 0.1% (v v21). The CV stain associated with cells was solubilized in ethanol/acetone (80:20) and the
resulting solution was subjected to measurement of the absorbance at 590 nm. The data are the means 6 standard deviations of three independent
experiments. An asterisk indicates significant differences between attachment and biofilm growth (P value ,0.05; Student’s t-test). (C) Viable cell
counts of the adhered cells of each strain to polypropylene beads under the conditions described in B. The adhered cells were gently washed and
detached from the polypropylene beads by slight agitation in PBS buffer. Serial dilutions of cell suspensions were then plated on BGA plates. Results
are expressed as the number of colony-forming units per unit area (CFUs cm22). The data are the means 6 standard deviations of three independent
experiments. An asterisk indicates significant differences between attachment and biofilm growth (P value ,0.05; Student’s t-test).
doi:10.1371/journal.pone.0028811.g002

Role of FHA in Biofilm Development in Bordetella

PLoS ONE | www.plosone.org 4 December 2011 | Volume 6 | Issue 12 | e28811



Figure 3. Microscopy analysis of biofilm formation by the WT and the DfhaB strains. GFP-tagged strains were inoculated directly in the
continuous-flow chambers. Bacteria were allowed to attach for 4 h at 37uC, and then the sterile SS medium was pumped through the flow chambers
at a flow rate of 0.1 ml min21. The experiment was repeated at least three times. Biofilms were visualized in situ by fluorescence and CLSM
microscopy. (A) Representative fluorescence micrographs of biofilms taken every 24 h for 3 days at a magnification of 6400. (B) Volumetric 3D
reconstructions of representative Z-section image stacks of biofilms taken at 72 h of growth at a magnification of 6306. For each strain, images are
presented in two different perspectives.
doi:10.1371/journal.pone.0028811.g003

Table 1. Quantitative analysis of structural features of biofilms formed by B. pertussis WT and DfhaB strains after 72 h of
cultivationa

Parameterb
Strain WT (BPSM[pGFP]) DfhaB (BPGR4[pGFP]) P valuec

Maximum thickness (mm) 47.6 (0.84) 3.82 (0.18) 1.1 1027

Mean thickness (mm) 24.85 (1.65) 2.47 (0.36) 2.2 1025

Biomass d (mm3.mm22) 5.28 (0.53) 1.29 (0.20) 0.0003

Mean cell cluster areae (mm2) 426.75 (95.9) 14.54 (2.88) 0.0016

aBiofilms were grown on the base of flow chambers under continuous flow conditions.
CLSM images stacks were acquired from random points by using a plan-neofluar6100/1.3 oil immersion objective, at 1 mm z-intervals down through the biofilm. Image
stacks were analyzed by COMSTAT.
bAverage values of parameters obtained from COMSTAT analysis of six CLSM image stacks derived from three independent experiments. Standard errors are given in

parentheses.
cP values were determined using an unpaired two-tailed Student’s t-test.
dThe value is biomass volume divided by substratum area.
eThe function calculates the mean area size of cell clusters located at the substratum.
doi:10.1371/journal.pone.0028811.t001
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of WT cells (91%). In contrast, in a similar control experiment,

when the two WT strains with different antibiotic resistance

(B213[pGFP] Gmr and BPSM Nalr) were co-inoculated, the

fractions of cells of each strain recovered from the mixed biofilm

were not substantially different (Table 2). Competition growth

experiments carried out in parallel as control showed that the

growth rate of each strain was not affected by the presence of the

other strain (data not shown). Moreover, both the WT strains,

B213 and BPSM, which were derived from Tohama I, exhibited

similar growth in shaking cultures (Fig. S1) and accumulate biofilm

biomass at similar levels (Fig. S2). It has also been previously

shown that the plasmid CW504, herein called pGFP, does not

affect either growth or FHA expression of Bordetella [46,47,48].

Data presented in Fig. S3 further show that the presence of the

pGFP plasmid does not affect the biofilm forming ability of B.

pertussis.

We also examined whether the DfhaB strain could be integrated

into an established biofilm formed by the WT strain. To test this,

WT (B213[pGFP], Gmr) was cultured for 24 h on polypropylene

beads as described below. After 24 h of incubation, equal numbers

of either the DfhaB (BPGR4, Nalr) or the WT (BPSM, Nalr) cells

were inoculated into the culture system and cultured for an

additional 48 h. Results showed in Table 2 indicate that even

when co-cultured sequentially, the DfhaB mutant was severely

impaired in its capacity to be integrated into pre-existing biofilms.

On the contrary, co-inoculated WT (BPSM, Nalr) cells were found

to be incorporated into the biofilm initiated by another WT

(B213[pGFP], Gmr) strain, although to a lesser extent compared to

when they were inoculated simultaneously. Taken together, these

results suggest that the presence of FHA on the cell surface is

needed for the bacteria to become part of the biofilm community.

These results also suggest that surface-associated FHA on the WT

bacterial cell does not compensate for this protein on the surface of

a FHA-deficient bacterium.

Inhibition of the attachment of B. pertussis cells to the
biofilm by anti-FHA serum

To further substantiate the role of surface-associated FHA in

mediating bacterial association with the biofilms, we examined the

effect of anti-FHA serum on the attachment of Bordetella cells to the

biofilms. GFP-tagged planktonic bacteria of the WT strain were

pre-incubated with different dilutions of the anti-FHA serum and

allowed to attach to 24-h-old biofilm of the same strain. The

attachment level was determined by visualizing and enumerating

the GFP-expressing bacteria that colocalized with the biofilms.

Untreated WT bacteria attached uniformly to the pre-existing

biofilm microcolonies (Fig. 4A). On an average, 8.661.2 GFP-

tagged WT cells were found to adhere per 100 mm2 of pre-formed

WT biofilm microcolony. Pre-incubation of GFP-tagged WT

bacteria with anti-FHA serum resulted in a decrease of bacterial

attachment to the pre-formed biofilms in a dose-dependent fashion

(Fig. 4B). Maximum decrease in adherence was obtained at the

1:250 dilution of the serum, which resulted in an average of

0.5960.3 attached cells/100 mm2 of WT biofilm microcolony.

Next, we determined if FHA present on the surface of the

biofilm bacteria contributed to the attachment of planktonic

bacteria to the biofilms. To test this, 24-h-old WT biofilms were

pre-incubated with the anti-FHA serum, and then subjected to a 4-

h incubation period with planktonic GFP-tagged WT bacteria

(Fig. 4C). At the 1:250 dilution of the anti-FHA serum, only

1.2160.5 GFP-tagged WT cells/100 mm2 of WT biofilm micro-

colony were found to be attached. Control experiments where

either the planktonic or the biofilm bacteria were pre-incubated

with normal sheep serum did not interfere with the adherence of

planktonic WT bacteria to the biofilms (Fig. S4). Moreover, pre-

incubation of DfhaB planktonic cells with the anti-FHA serum did

not further reduce the observed low level of attachment of the

DfhaB mutant (data not shown). In combination, these results

argue that the presence of FHA on the surface of both the

planktonic and the biofilm bacteria is required for promoting the

association of the bacterial cells with the Bordetella biofilms.

Addition of exogenous FHA prevents association with
the biofilms

Based on the above results, we hypothesized that externally

added FHA will bind to surface-associated FHA and block inter-

bacterial adhesion. To test this, we evaluated the extent to which

GFP-tagged planktonic bacteria of the WT strain, pre-incubated

with different concentrations of purified FHA, attach to 24-h-old

biofilms of the same strain. As indicated above, the attachment

level was determined by visualizing and enumerating the GFP-

expressing bacteria that colocalize with the biofilms. We found

that the attachment of planktonic WT bacteria to the biofilms

decreased in response to increasing concentration of FHA (Fig. 5).

Under the assay conditions, maximum effect of FHA in reducing

the attachment of WT bacteria was observed at a concentration of

20 mg ml21. In parallel, control experiments were conducted with

either the DfhaB strain or with BSA. Compared to the WT strain,

the DfhaB mutant exhibited a low level of attachment, which could

not be further reduced by pre-incubation with 20 mg ml21 FHA

(Fig. 5). Likewise, pre-incubation of planktonic bacteria of the WT

strain or the DfhaB strain with 20 mg ml21 BSA resulted in

Table 2. Quantification of bacteria recovered during simultaneous and sequential co-inoculation biofilm assaysa.

Co-inoculated strains
Mode and time of inoculating strain B
(Time; h)

Fraction of bacteria recovered at 72 h
A/B

A B

WT (B213[pGFP], Gmr) DfhaB (BPGR4; Nalr) Simultaneous (0) 0.91/0.09

WT (B213[pGFP], Gmr) WT (BPSM; Nalr) Simultaneous (0) 0.56/0.44

WT (B213[pGFP], Gmr) DfhaB (BPGR4; Nalr) Sequential (24) 0.95/0.05

WT (B213[pGFP], Gmr) WT (BPSM; Nalr) Sequential (24) 0.63/0.37

aSimultaneous and sequential co-inoculation biofilm assays were performed in glass column systems packed with polypropylene beads, which constituted the growth
support.

After 72 h of cultivation, the biofilm cells were detached from the beads and resuspended in PBS. Appropriate dilutions were plated on selective BGA plates containing
Gm or Nal and enumerated. Population of cells of each strain (A or B) is expressed as a percentage of the total population of cells recovered.
doi:10.1371/journal.pone.0028811.t002
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attachment levels that did not differ significantly from those

exhibited by each strain without pre-exposure to proteins.

In total, by utilizing a combination of multiple experimental

approaches, we have obtained strong evidence that FHA is

necessary for biofilm formation of B. pertussis on abiotic surfaces.

FHA promotes formation of biofilms in the respiratory
tract

The intranasal mouse model of Bordetella infection is widely

utilized for pathogenic studies and has recently been demonstrated

by us to be a valid and powerful prototype for examining bacterial

biofilm development in vivo [9,10]. Utilizing this model, we have

shown that both B. pertussis and B. bronchiseptica exist as

multicellular communities adherent to the nasal epithelium and

display distinct three dimensional architecture. Moreover, these

biofilms are surrounded by a self-produced extracellular matrix

composed of the Bps polysaccharide thereby satisfying the

definition of in vivo biofilms [9,10]. While the nose has been

clearly established by us to be a site where Bordetella form biofilms,

it is not known whether these bacteria exist in this form in the

trachea. Since FHA promotes efficient attachment of Bordetella to

the ciliated respiratory epithelia and contributes to the coloniza-

tion of the lower respiratory tract [31,49,50], we investigated its

role in the development of multi-cellular biofilm like structure in

the nose and trachea. Based on our in vitro results, which

demonstrate a role for FHA during both attachment and mature

biofilm development, we hypothesized that a similar result would

be obtained in vivo. We therefore examined two time points post-

inoculation, an early time point (1 day) to determine the role of

FHA in direct attachment to the epithelial surface and a late time

point of 7 days. Inoculation with 56105 CFUs of wild-type strain

of B. pertussis results in maximal infection of the entire respiratory

tract by seven days and we hypothesize this time point to represent

a mature biofilm phenotype. At 1 and 7 days post-inoculation, the

nasal septum and trachea of mice inoculated with either the WT

or the DfhaB strains were excised and dissected into two equivalent

sections. One section was subjected to analysis of colonization

profiles by enumerating the CFUs, whereas the other section was

examined for the presence of biofilms by probing for B. pertussis

cells adherent to the respiratory epithelium.

Figure 4. Inhibition of association of B. pertussis planktonic cells with the biofilms by anti-FHA serum. GFP-tagged planktonic bacteria of
the WT (BPSM) strain, pre-incubated with SS medium (A) or with (B) dilutions of anti-FHA serum, followed by incubation for 4 h with 24-h-old WT
biofilms. (C) Twenty four-h-old WT biofilms pre-incubated with dilutions of anti-FHA serum, and then subjected to a 4-h incubation period with
planktonic GFP-tagged WT bacteria. GFP-expressing bacteria attached to the biofilms were visualized by acquiring multi-channel (transmitted light
and fluorescence) CLSM images. At least six microscopic fields per coverslips and four coverslips per condition were analysed. A representative
merged image for each condition is shown. The data indicated in the top right of each image are the means 6 standard deviations of the numbers of
GFP-tagged bacteria per 100 mm2 of pre-formed biofilm microcolony derived from the analysis of twenty four microscopic fields on four coverslips
per condition. The numbers of attached bacteria was determined by examining multi-channel images using ImageJ in conjunction with the ITCN
plug-in.
doi:10.1371/journal.pone.0028811.g004
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At one day post-inoculation, no statistical differences were

observed in the numbers of recovered CFUs of either the WT or

the DfhaB strain from the nose or the trachea (Fig. 6). However,

compared to the nose, both the strains colonized the trachea in

lower numbers. These results are similar to a previous study in

which the maximal number of CFUs harvested from the trachea

one day post-inoculation with the WT strain of B. pertussis was less

than 100 [51]. At seven days post-inoculation and consistent with

previous results, the mutant strain displayed a significantly reduced

ability to colonize the trachea (P = 0.00018, Student’s t-test)

[32,52]. However, although there was an overall reduction in

the colonization of the nose by the mutant strain, this difference

was not statistically significant (Fig. 6). We also examined the

colonization of the lungs by these two strains. Both the WT and

the mutant strain colonized the lungs in large numbers and no

statistically significant differences in colonization were observed

either at 1 or 7 days after inoculation.

For examination of biofilms, we chose tissues from infected

animals that showed similar levels of colonization by the WT and

the mutant strains. In addition to visually examine the samples by

CSLM, we also utilized the COMSTAT software to quantitate the

differences in biomass and mean thickness between the WT and

DfhaB strains (Table 3). Examination of nasal septum and trachea

at 1 day post-inoculation, revealed that the WT cells mainly

formed small interspersed clusters on the tracheal and nasal

epithelium (Figs. 7A and 7E). The discrepancy between similar

numbers of CFUs harvested and the observed biofilm phenotype

may be explained by hypothesizing that the WT exists as localized

cell clusters which occupy a small portion of the surface, while the

DfhaB strain is primarily single cells covering a larger surface area

of the epithelia, thereby resulting in equivalent number of cells

being harvested from the two sites. Consistent with this hypothesis,

quantitative analyses using COMSTAT did not reveal any

statistical differences in the biofilm biomass formed over the two

epithelia whereas the mean thickness of the biofilms formed by the

WT strain was greater than that of the biofilms formed by the

mutant strain (Table 3). Control samples, which consisted of nasal

and tracheal tissues from mice infected with PBS, only displayed

reactivity to actin, the epithelia marker (data not shown).

After 7 days of inoculation, the differences in the spatial

arrangement between the DfhaB and WT cells were found to be

markedly more pronounced than those observed one day post-

inoculation for both the organs. Consistent with in vitro data, the

WT strain formed thick, irregularly shaped colonies on focal areas

of the apical surfaces of both the nose and the trachea, resembling

structures that are characteristics of biofilms (Figs. 7C and 7G). In

contrast, the DfhaB strain formed only minute clusters or thin

spikes that did not reach the thickness or the biomass of the

biofilms observed in the WT infected animals (Figs. 7D, 7H and

Table 3).

We also considered the possibility that the observed biofilm

defect of the DfhaB strain could be the result of poor recognition of

this strain by the rat anti-Bordetella serum. To address this caveat,

we carried out immunofluorescence analyses with in vitro grown

cultures grown under Bvg+ phase conditions. Our results showed

that both the WT and the mutant strains were equally fluorescent,

leading us to conclude that both strains are recognized with similar

efficiency by the rat anti-Bordetella serum (data not shown).

These results not only confirm our previous results documenting

nasal biofilms of B. pertussis [10], but also demonstrate for the first

time that this bacterium can form biofilms in the trachea.

Moreover, these also provide strong evidence highlighting the

critical role of FHA in the formation and maintenance of biofilms

in the mouse respiratory tract.

Discussion

Biofilm formation by the human pathogen B. pertussis is a largely

unexplored field of research and necessitates detailed studies of

factors that regulate this complex developmental program. In the

present study, we sought to gain insights into the structural role of

surface-associated FHA in biofilm formation. Specifically, we

dissected its role in the distinct biofilm developmental stages of B.

pertussis both in vitro, using abiotic substrates, and in the respiratory

tract by employing a murine model of respiratory biofilms.

Figure 5. Association to biofilms of B. pertussis planktonic cells pre-treated with exogenous FHA. GFP-tagged planktonic bacteria of the
WT (BPSM) and DfhaB (BPGR4) strain pre-incubated with SS medium, various concentrations of purified FHA or BSA (20 mg ml21) followed by
incubation for 4 h with 24-h-old WT biofilms. GFP-expressing bacteria attached to biofilms were visualized by acquiring multi-channel (transmitted
light and fluorescence) CLSM images. The numbers attached bacteria was determined by examining multi-channel images using ImageJ in
conjunction with the ITCN plug-in. The data are the means 6 standard deviations of the numbers of GFP-tagged bacteria per 100 mm2 of preformed
biofilm microcolony derived from the analysis of twenty four microscopic fields on four coverslips per condition. An asterisk indicates significant
differences between the conditions compared (P value ,0.05; Student’s t-test).
doi:10.1371/journal.pone.0028811.g005
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The absence of FHA was found to strongly impair the ability of

B. pertussis to accumulate biofilm biomass in vitro. This was

independent of the nature of the surfaces used since this phenotype

was observed on both polypropylene and borosilicate surfaces. In

various bacterial biofilm developmental processes, the functions of

many of the surface proteins such as LapA of P. fluorescens, Type 1

fimbriae of E. coli, and MshA pili of V. cholerae [24,53,54] are

generally restricted to early biofilm stages, essentially to the steps in

which bacteria establish reversible, followed by irreversible,

surface attachment. Our studies in which bacterial attachment

was separated from post-attachment steps revealed that the

impaired biofilm-forming capacity of the DfhaB mutant was not

limited only to the early surface attachment. The lack of FHA

altered the formation of cellular aggregates or biofilms. Micros-

copy studies revealed that in contrast to the robust biofilm

architecture of the WT strain that consisted essentially of thick and

large microcolonies surrounded by open channels, the biofilms

formed by the mutant strain were represented mostly by single

cells dispersed over the surface or by very small cell clusters at late

time points. In addition, our results showed that DfhaB cells were

unable to be integrated with WT cells into the community,

demonstrating that FHA on the surface of the WT bacterium was

unable to compensate efficiently for surface deficiency of FHA on

the DfhaB bacterium. Similar results were obtained for Salmonella

enterica serovar Enteritidis, for which the presence of the BapA

adhesin on the cell surface is required to mediate the incorporation

of bacteria into the biofilm microcolonies [55]. In line with a

major role for surface-associated FHA in formation of Bordetella

biofilms, antibody-mediated blocking of FHA present on either the

planktonic or the biofilm bacteria abrogated the integration of

bacterial cells into the biofilms. We conclude that FHA plays a

crucial role in initial attachment and subsequent development of

highly organized mature biofilms by governing both cell-substrate

and cell-cell interactions.

Surprisingly, we found that free FHA reduced the attachment of

WT bacteria to the biofilms, but did not further reduce the low

residual attachment of the DfhaB bacteria. In addition to being

surface-associated, FHA is also secreted in the extracellular milieu

[30,39]. Naturally secreted FHA might, through inhibition of

bacterial attachment to the biofilms via interaction with FHA or

Figure 6. Colonization of the murine respiratory tract by the WT and DfhaB strains. Groups of five, 6 to 8 week old C57BL/6 mice were
intranasally inoculated with containing 56105 CFUs of either the WT or the DfhaB strain in 50 ml. After 1 (A) or 7 (B) days, mice were sacrificed and
colonization was assessed for the nasal septum, trachea, and lungs. Horizontal bars represent the mean for each group. The dashed lines indicate the
limit of detection. The experiment was performed in duplicate with all mice from both experiments being represented. An asterisk indicates
significant differences between the WT and the DfhaB mutant (P value ,0.05; unpaired two-tailed Student’s t-test).
doi:10.1371/journal.pone.0028811.g006
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other bacterial factors, play a regulatory role in Bordetella biofilm

formation.

Recently, Lasa proposed a group of surface proteins, which

share several structural and functional features, as an important

element of biofilm formation by a number bacterial species [56].

The first member of this group was identified in a S. aureus mastitis

isolate and was named Bap (Biofilm associated protein) [57]. The

authors described common features for all Bap-related proteins: i)

they are present on the bacterial surface; ii) they are of high

molecular weight; iii) they contain a core domain of tandem

repeats; iv) they play a relevant role during bacterial infectious

processes and v) they confer on bacteria the capacity to form a

biofilm. Whereas evidence from a vast number of previous studies

indicates FHA fulfils the first four features [31,42,58,59], the

results of this study show that it also satisfies the last one. Thus, the

demonstrated involvement of FHA at different developmental

events of B. pertussis biofilm formation emerges as an important

aspect of this virulence factor. Remarkably, FHA of Bordetella does

not appear to be an isolated case. The recent finding that other

proteins sharing common features with FHA (i.e., CdrA in P.

aeruginosa, and XacFhaB in Xanthomonas axonopodis pv. Citri) are

involved in biofilm formation [40,41], suggests that an increasing

number of proteins in other bacteria which are non-homologous in

primary amino acid sequence may satisfy many of the structural

and functional attributes of Bap-like proteins.

Despite a large body of information available on the

contribution of surface proteins to biofilm growth on different

artificial surfaces in vitro, little is known about their function in

formation of biofilms in host organs. The product of the pilA gene

of Haemophilus influenzae was shown to function in forming stable

biofilms in the chinchilla middle ear [60]. Because the pilA mutant

led to unstable biomass in the chinchilla ear, it was not possible to

Figure 7. Immunofluorescence microscopy analysis of B. pertussis biofilm formation within the murine respiratory tract. Groups of 6-
week-old C57BL/6 mice were intranasally inoculated with 50 ml containing 56105 CFUs of either the WT or DfhaB strain grown under Bvg+ phase
conditions. Sections of trachea and nasal septum were harvested at 1 or 7 days post-infection from infected animals, immediately fixed, and probed
with rat anti-Bordetella serum followed by a donkey anti-rat secondary antibody conjugated to Alexa Flour 488 (which stains bacteria green). To
determine the localization of the host epithelium, specimens were stained for F-actin using phalloidin conjugated to Alexa Fluor 633 (which stains the
epithelium red). For visualization with CLSM, those tissues corresponding to infected animals that showed similar levels for colonization by the WT
and the DfhaB mutant were chosen. For each specimen, image stacks were obtained from at least ten areas of the trachea and nasal septum. (A–H)
Each micrograph is a Z reconstruction produced from a representative stack of Z-section images.
doi:10.1371/journal.pone.0028811.g007

Table 3. COMSTAT analysis of CSLM images generated from trachea and nasal septum tissues isolated from mice infected with
either the WT or DfhaB strain.

Parametera Biomass (mm3. mm22) P valuec Mean thickness (mm) P valuec

Tissue
dpi

b
Strain WT DfhaB WT DfhaB

Trachea 1 0.594 (0.189) 0.246 (0.138) 0.0615 2.675 (0.689) 0.910 (0.361) 0.017

7 3.15 (0.851) 0.721 (0.243) 0.0089 4.460 (1.221) 1.864 (0.5509 0.0283

Nasal Septum 1 1.187 (0.346) 0.837 (0.293) 0.252 3.042 (0.881) 1.531 (0.286) 0.0475

7 4.861 (1.142) 0.802 (0.195) 0.0037 7.233 (1.509) 1.820 (0.364) 0.0079

aAverage values of parameters obtained from COMSTAT analysis of at least six CLSM image stacks derived from duplicated experiments. Standard errors are given in
parentheses.

bdpi; days post-infection.
cP values were determined using an unpaired two-tailed Student’s t-test.
doi:10.1371/journal.pone.0028811.t003
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determine the precise mechanistic role of PilA in organ biofilms. In

B. bronchiseptica, FHA was found to promote colonization and

microcolony formation on the nonciliated olfactory epithelium

[36]. Adherence of Bordetella to cilia is a critical step in the

initiation of a non-invasive mucosal infection. In in vitro organ

cultures, experimental infections of animals and in human

patients, both B. bronchiseptica and B. pertussis preferentially and

sometimes exclusively attach to the ciliated respiratory epithelium

[19,61,62]. In this study, we show that B. pertussis FHA plays an

important role in biofilm growth on ciliated nasal epithelium and

trachea. Previously, we have shown that the observed biofilm-like

structures of B. pertussis are characterized by the production and

co-localization of the Bps polysaccharide, a component of the

biofilm matrix [10]. The present results combined with our

previously published data thus strongly suggest that in addition to

the previously demonstrated role of FHA in promoting adherence

to respiratory tissues [31,63,64], it also plays a role in ensuring the

long-term tissue adherence by formation of surface adherent

biofilm communities in the respiratory tract. This may allow

Bordetella to escape immune defenses operative in the nose and the

trachea.

Although initially described as an adhesin, FHA has now

emerged as a multipurpose virulence factor capable of mediating

B. pertussis invasion of host cells and as an immunomodulatory

molecule [33,34,35]. The current results documenting the

contribution of FHA in the initiation and maturation of B. pertussis

biofilms represent a unique example of the intricate and versatile

role played by a single bacterial virulence factor in the emergence

of a highly successful respiratory pathogen.

Materials and Methods

Bacterial strains and growth conditions
B. pertussis B213, a streptomycin-resistant (Smr) derivative strain

of Tohama I (WT) [65]; BPSM, a streptomycin- and nalidixic

acid-resistant (Smr; Nalr) strain derived from Tohama I (WT) [66],

and BPGR4, a BPSM derivative mutant strain lacking expression

of FHA (DfhaB) [43], were used in this study. The DfhaB strain

used for mouse infection studies was also derived from Tohama I

and has been described previously [67]. The strains were cultured

and maintained on Bordet-Gengou agar (BGA) (Difco Laborato-

ries, Detroit, MI) supplemented with 15% (v v21) defibrinated

sheep blood. For both planktonic and biofilm growth conditions,

bacteria were grown in Stainer-Scholte (SS) broth and under Bvg+

phase conditions. When appropriate, antibiotics were added to the

media at the followings concentrations: streptomycin (Sm),

100 mg ml21; nalidixic acid (Nal), 40 mg ml21; gentamycin (Gm),

10 mg ml21.

Planktonic cultures were performed by inoculating bacteria into

Erlenmeyer flasks containing SS broth, adjusting the optical

density at 650 nm (OD650) to 0.15 and incubating the flaks at

37uC overnight under shaking conditions (160 rpm).

Green fluorescent protein (GFP) labelling of bacteria
B. pertussis B213, BPSM and BPGR4 strains were transformed

with plasmid pCW504, herein referred to as pGFP, which directs

expression of GFP from a constitutive B. pertussis promoter [46].

Plasmid pGFP was mobilized into various B. pertussis strains by

triparental mating using pRK2013 as a helper plasmid. Ex-

conjugates were selected on BGA plates containing Gm and Sm or

Nal. Randomly selected colonies containing pGFP were grown in

SS broth with Gm and were analyzed for GFP expression using

fluorescence. One of the GFP-expressing clones corresponding to

each of the strains was chosen for experimental analysis. A plasmid

stability test revealed that pGFP was stable over 60 generations of

growth under nonselective pressure.

Attachment and biofilm growth conditions
For quantitative analysis of attachment and biofilm growth of B.

pertussis strains, we utilized glass column systems (w= 3 cm,

W = 18 cm) packed with polypropylene beads (6 g; w= 4.2 mm;

H = 2 mm; Petroken, Argentina), which constituted the growth

support. The culture procedure was performed as indicated

previously [11]. Briefly, for each strain or culture condition, four

column systems were inoculated with a 10-mL planktonic cell

suspension at an OD650 of 1.0 (16109 CFUs ml21). Alternatively,

when the number of attached cells for the WT strain was required

to equal the population of initial adherent DfhaB mutant strain, the

size of the WT inoculum was reduced from 16109 to

46108 CFUs ml21. This inoculum size was determined to result

in a population of initial adherent WT strain similar to that

exhibited by DfhaB strain with a high inoculum (16109

CFUs ml21). Bacterial cells were allowed to attach (static

incubation) to the beads for 4 h at 37uC. After this, beads from

two columns per strain or culture condition were collected and

analysed for bacterial attachment quantifying the adhered biomass

by crystal violet (CV) staining. Cell suspensions of the other two

remaining columns per strain or culture condition were drained to

remove non-adhered cells and replaced by 10 ml of fresh SS

broth. Columns were then incubated aerobically by supplying air

at an appropriate flow rate during 72 h or 96 h (when indicated) at

37uC. The growth media were replaced by fresh ones every 24 h.

After 72 or 96 h (when indicated) of cultivation, the two columns

per strain or culture condition were analysed for biofilm formation

by collecting the beads and quantifying the adhered biomass by

CV staining or viable cell counting.

For viable cell count determination, the adhered cells were

gently washed and detached from beads by slight agitation in PBS

buffer. Serial dilutions of cell suspensions were then plated on

BGA plates. The number of colony forming units per unit area

(CFU cm22) was calculated considering dilutions, surface area of

the bead and number of beads.

Attachment of WT and DfhaB strains to glass surface was

assayed in petri dishes containing glass coverslips. For each B.

pertussis strain, a 15-ml suspension of GFP-expressing cells [pGFP]

at an OD650 of 1.0 (16109 CFUs ml21) was inoculated into a petri

dish containing 3 coverslips. Bacteria were allowed to attach to the

surface under static conditions for 4 h at 37uC. Then, each

coverslip was carefully washed to removed non-adhered cells, fixed

with 2% (v v21) glutaraldehyde, and visualized by fluorescence

microscopy.

Biofilm development by WT and DfhaB strains was also assayed

by using a continuous-flow culture system, which consisted of a

chamber (L = 75 mm; W = 25 mm; H = 3 mm) having two glass

surfaces, one being a microscope slide and the other being a glass

coverslip serving as the substratum. Each system was sterilized in

autoclave and dried under a flow of sterilized air. The culture

procedure was performed as indicated previously [12]. Briefly, for

each strain, at least two continuous-flow chambers were inoculated

with 5-ml suspensions of GFP-expressing cells [pGFP] at an

OD650 of 1.0 (16109 CFUs ml21). Bacteria were allowed to attach

for 4 h at 37uC prior to initiating the flow. The sterile SS medium,

which was kept stirred and aerated at 37uC, was pumped through

the flow chambers with a peristaltic pump at a flow rate of

0.1 ml min21. Biofilms were visualized in situ by fluorescence

microscopy every 24 h for 3 days. Alternatively, to investigate

architectural aspects, biofilms were also examined by Confocal

Laser Scanning Microscopy (CLSM).
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Co-inoculation experiments
For simultaneous co-inoculation experiments, 5-ml planktonic

cell suspensions at an OD650 of 1.0 (16109 CFUs ml21)

corresponding to the B213[pGFP] (WT, Gmr) strain were mixed

with similar suspensions of the BPGR4 (DfhaB, Nalr) or the BPSM

(WT, Nalr) strains, and then introduced into independent glass

column systems packed with polypropylene beads. The biofilm

experiments were conducted as described above. After 72 h of

cultivation, the number of cells corresponding to each strain was

determined by plating aliquots of appropriate dilutions of the

whole cell population recovered from the polypropylene beads on

selective BGA plates containing Gm for B213[pGFP] (WT) and

Nal for BPGR4 (DfhaB) or BPSM (WT).

In sequential co-inoculation experiments, 10-ml planktonic cell

suspensions at an OD650 of 1.0 corresponding to the B213[pGFP]

(WT) strain were inoculated into two glass column systems and

allowed to establish biofilms on the polypropylene surface for 24 h.

After this, 10-ml planktonic suspensions (OD650 = 1.0) of the

BPGR4 (DfhaB) or BPSM (WT) strains were independently

inoculated into each system, allowed to attach for 4 h, and then

drained to remove non-adhered cells and replaced by fresh SS

broth. After that, the biofilm experiments were conducted as

described above determining at the 72-h time point the number of

sessile cells corresponding to each strain. Data are presented as

fractions of the total bacteria recovered.

Attachment to pre-formed biofilms
Round glass coverslips (diameter: 12 mm; thickness: 0.13 mm)

were introduced in a 20-ml continuous-flow chamber system. The

system was sterilized in autoclave and dried under a flow of

sterilized air. The biofilm culture chamber was inoculated with a

suspension of BPSM (WT) cells at an OD650 of 1.0

(16109 CFUs ml21). Bacteria were allowed to attach for 4 h

prior to initiating the flow (it removed planktonic bacteria leaving

those attached to the surface). Sessile cells were allowed to form

biofilm for 24 h. Coverslips containing the attached biofilms were

removed from the chamber, rinsed with SS medium, and placed

into individual wells of 24-well microtiter plates. Where indicated,

coverslips were blocked with 1% bovine serum albumin (BSA)

(Sigma, St. Louis, Mo.), washed with SS, and then incubated with

dilutions of an anti-FHA serum (1:1000; 1:500, 1:250) (product

code: 97/564; National Institute for Biological Standards and

Control, UK) for 1 h at 37uC. Next, 500-ml planktonic cell

suspensions (16107 CFUs ml21) of BPSM[pGFP] (WT) or

BPGR4[pGFP] (DfhaB) strains, with or without pre-incubation

for 1 h at 37uC with either dilutions of the anti-FHA serum

(1:1000; 1:500, 1:250) or purified FHA (product code: 90/520,

purity: .98%; NIBSC, UK) (final concentration of 5, 10 and

20 mg ml21), were added into individual wells of the plate

containing the coverslips. After each pre-incubation step, with

the respective sera or purified FHA, the bacteria or the biofilms

were washed with SS. GFP-tagged bacteria in the planktonic

suspension were allowed to attach to microcolonies on the

coverslips for 4 h at 37uC. Then, non-attached bacteria were

removed by rinsing the coverslips with SS. The samples on the

coverslips were fixed with 2% (v v21) glutaraldehyde. To visualize

the GFP-expressing planktonic bacteria that remained attached to

the biofilms, multi-channel (transmitted light and fluorescence)

CLSM images were acquired. The attachment level was

determined by enumerating those GFP-tagged bacteria that

colocalize with the biofilms through the analysis of the

multichannel images using ImageJ (U.S. National Institutes of

Health, Bethesda, MD, USA) in conjunction with the ITCN plug-

in and COMSTAT (Heydorn et al., 2000). At least six randomly

selected microscopic fields per coverslips and four coverslips from

four independent experiments were analysed.

Quantification of bacterial attachment and biofilm
formation

B. pertussis cell biomass adhered to polypropylene bead surface

was quantified by crystal violet (CV) staining. The protocol was

adapted from that described by O’Toole and Kolter [68]. When

early attachment and biofilm growth were investigated, sessile

biomass was quantified at 4, 72 or 96 h (when indicated) of

incubation respectively. Briefly, beads with adhered biomass were

gently rinsed twice with PBS to remove non-attached cells, air

dried, and then carefully transferred to glass tubes. Cells were

stained by addition of 4.5 ml of CV 0.1% (w v21) for 15 min. The

stain was removed by exhaustive washing with distilled water.

Then, 9 ml of decolouring solution of ethanol/acetone (80:20) was

added to each tube. The absorbance of the eluted stain was

measured at 590 nm (A590).

Fluorescence microscopy
Biofilms developed on the base of the flow chambers were

visualized in situ by fluorescence microscopy. Visualization was

conducted at a magnification of 4006or 10006by using a Leica

DMLB microscopy (Leica Microsystems, Wetzlar, Germany)

equipped with a standard Blue/Green/Red filters set (excitation:

400/20, 495/15, 570/50 nm) and with a charge coupled device

(CCD) digital camera. For capturing and displaying of images, the

Leica IM50 software was utilized.

Confocal laser scanning microscopy (CLSM) and image
analysis

To study architectural features of biofilms developed in vitro on

the base of the flow chambers, on coverslips, or formed in vivo on

murine nasal and tracheal tissues, a Zeiss LSM510-Axiovert

100 M confocal laser scanning microscope (Carl Zeiss, Germany)

was used. Stacks of Z-section images were viewed and processed

using the Carl Zeiss LSM5 Image Browser version 3.2.0 and/or

the Imaris Software. Images of in vitro biofilms were acquired from

B. pertussis cells expressing GFP [pGFP]. The detection of the

emitted light was performed by sequentially scanning with settings

optimal for GFP (488-nm excitation with argon laser line and 505-

nm long-pass emission). In each experiment, images were acquired

from random points by using a plan-neofluar 6100/1.3 oil

immersion objective, at 1 mm z-intervals down through the

biofilm. In order to acquire quantitative information of the

mature biofilm structure, CLSM images were analyzed by the

computer program COMSTAT [45]. To obtain statistically

representative results, triplicate experiments of 72 h-old biofilms

were performed.

To visualize in vivo B. pertussis biofilms, bacteria were probed

with rat anti-Bordetella serum followed by a secondary anti-rat

antibody conjugated to Alexa Fluor 488, whereas tracheal and

nasal septum tissues were stained for F-actin using phalloidin

conjugated to Alexa Fluor 633 [9]. The tissues were then mounted

in ProLong 9 Gold anti-fade reagent (Invitrogen, Carlsbad, CA,

USA) in four-chambered cover glass. The detection of the emitted

light was performed by sequentially scanning with settings optimal

for both fluorophores. Images were acquired from at least 10 areas

of each tissue section by using a C-Apochromat 636/1.2W

objective, at 1 mm z-intervals down through the section of the

tissue. Stacks of Z-section images were viewed and processed to

create Z reconstructions using the Carl Zeiss LSM5 Image

Browser version 3.2.0. In order to acquire quantitative informa-
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tion of in vivo B. pertussis biofilms, CLSM images were also analyzed

by the computer program COMSTAT [45].

Animal experiments
Groups of five 6-week-old female C57BL/6 mice (Jackson

Laboratory) were lightly sedated with isoflurane (Butler) and were

intranasally inoculated with either 50 ml of sterile PBS alone or

with 5605 CFUs of Tohama I or the isogenic DfhaB strain. As

stated above, for animal experiments, the strains were grown

under Bvg+ phase conditions. Immediately after inoculation of the

animals, an aliquot was plated to ensure that the strains were in

the Bvg+ phase. At designated times post-inoculation, mice were

euthanized, and the nasal septum, trachea and the lungs were

excised. The nasal septum and the trachea were transversally cut

into two equivalent sections. One of the sections of these two

tissues was fixed in 10% normal buffered formalin, and processed

for microscopy as described below. The remaining section of the

nasal septum and the trachea as well as the lungs were

homogenized in PBS and plated onto BGA plates containing

Sm (50 mg ml21). Colonies were enumerated after 4 days of

growth at 37uC. All animal experiments were carried out in

accordance with institutional guidelines and were repeated in

duplicate. Statistical analysis was carried using an unpaired two-

tailed Student t test.

Immunofluorescent labelling of B. pertussis biofilms
formed in vivo

Immunofluorescent experiments were carried out as previously

described [9,10]. Briefly, after fixation, one section of nasal septum

and the trachea were washed with PBS. At this step the tracheal

section was carefully split open longitudinally. After this, the

sections of both tissues were blocked with 5% normal donkey

serum for 30 min. The tissues were then incubated with rat anti-

Bordetella serum (1:1,000) for 2 h at room temperature. This serum

was collected from a rat 30 days after inoculation with a Bvg+

phase-locked derivative of RB50. After this, the tissues were

washed five times with PBS, and subsequently incubated for 2 h at

room temperature with a donkey anti-rat secondary antibody

conjugated to Alexa Fluor 488 (1:200). Samples were again

washed five times and fixed for 30 min in 10% normal buffered

formalin to prevent antibody-antigen dissociation during micros-

copy. Tissues were washed with PBS, permeabilized with 0.1%

Triton X-100, and stained for eukaryotic F-actin with a 1:40

dilution of phalloidin conjugated to Alexa Fluor 633 for 30 min.

Samples were visualized by CLSM as described above. For

visualization, those tissue sections corresponding to infected

animals that showed similar levels for colonization by the WT

and the DfhaB mutant were chosen.

Ethics statement
Animal husbandry and experimental procedures were per-

formed in accordance with Public Health Service policy and the

recommendations of the Association for Assessment and Accred-

itation of Laboratory Animal Care and approved by the Wake

Forest University Health Sciences Institutional Animal Care and

Use Committee.

Supporting Information

Figure S1 Time course of the growth of the B. pertussis
Tohama I derivatives BPSM and B213 in shaking

cultures. Shaking cultures were initiated by inoculating bacteria

into 2 L-Erlenmeyers flasks containing 300 ml of SS broth,

adjusting the optical density at 650 nm (OD650) to 0.1. The flasks

were incubated at 37uC under shaking conditions (160 rpm). One-

milliliter aliquots of cell suspensions were taken every 2 h for OD

measurements.

(TIF)

Figure S2 Biofilm formation by B. pertussis Tohama I
derivatives BPSM and B213 on polypropylene. Biofilm

cultures were performed in glass column systems containing

polypropylene beads. (A) Image of CV-stained cells of BPSM and

B213 strains adhered to polypropylene beads after 72 h of

cultivation in glass column systems. (B) Biofilm biomass accumu-

lated by each strain over the polypropylene beads after 72 h of

cultivation was stained with CV 0.1% (v v21). The CV stain

associated with cells was solubilized in ethanol/acetone (80:20)

and the resulting solution was subjected to measurement of the

absorbance at 590 nm. The data are the means 6 standard

deviations of three independent experiments.

(TIF)

Figure S3 Biofilm formation by B213[pGFP] and B213
B. pertussis strains on polypropylene. Biofilm cultures were

performed in glass column systems containing polypropylene

beads. (A) Images of polypropylene beads containing adhered cells

of B213[pGFP] and B213 strains which were stained with crystal

violet (Upper panel) or exposed to UV light (Lower panel). (B)

Biofilm biomass accumulated by each strain over the polypropyl-

ene beads after 72 h of cultivation was stained with CV 0.1% (v

v21). The CV stain associated with cells was solubilized in

ethanol/acetone (80:20) and the resulting solution was subjected to

measurement of the absorbance at 590 nm. The data are the

means 6 standard deviations of three independent experiments.

(TIF)

Figure S4 Association of B. pertussis planktonic cells
with the biofilms after pre-incubated with normal sheep
serum. (A) GFP-tagged planktonic bacteria of the WT (BPSM)

strain, pre-incubated with a 1:250 dilution of normal sheep serum,

followed by incubation for 4 h with 24-h-old WT biofilms. (B) 24-

h-old WT biofilms were pre-incubated with a 1:250 dilution of

normal sheep serum, and then subjected to a 4-h incubation

period with planktonic GFP-tagged WT bacteria. GFP-expressing

bacteria attached to the biofilms were visualized by acquiring

multi-channel (transmitted light and fluorescence) CLSM images.

At least six microscopic fields per coverslips and four coverslips per

condition were analysed. A representative merged image for each

condition is shown.

(TIF)
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