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Leptin, a key regulator of reproductive physiology, influences various processes in vertebrates, including oocyte prolif-
eration, embryogenesis, the onset of puberty, ovarian function, and follicle development. In mammals, leptin affects steroido-
genesis, folliculogenesis, and hormonal regulation through the hypothalamic-pituitary-gonadal axis. Instead, in avian species, 
leptin-controlled mechanisms are poorly understood, because birds do not produce leptin in adipocytes. In birds, leptin is 
expressed in the brain, pituitary glands, and gonads, where it enhances ovarian function and egg-laying performance, particu-
larly during feed deprivation. In this review, we discuss and summarize the recently discovered role of leptin in regulating 
ovarian function during different life stages in birds and compare it with its function in mammals.
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Introduction

Reproductive physiology is a complex and tightly regulated 
process in vertebrates, which involves interactions between inter-
nal and external factors. Hypothalamic-pituitary-gonadal (HPG) 
axis hormones and nutritional intake or available energy are the 
most important determinants of reproductive function. In fe-
males, gametogenesis, sexual maturation, mating, gestation, par-
turition, milking, and parental care rely heavily on the availability 
of energy and adequate nutrition to support successful reproduc-
tion[1,2]. Both insufficient and excessive nutritional intake nega-
tively influence reproductive processes in vertebrates[3–5]. Feed 
intake is controlled by available nutrients, the gastrointestinal 
tract, and the central nervous system, which regulates orexigenic 
(appetite–suppressing) and anorexigenic (hunger-inducing) pep-
tides[6–8]. Leptin, an anorexigenic peptide hormone, regulates 
not only food intake but also ovarian development and reproduc-
tion in mammals[9,10]. Discovered initially in humans in 1994, 

this hormone is synthesized predominantly in adipocytes and cir-
culates in the blood, giving an estimate of total fat mass[11–13]. 
Studies in rodents and humans have revealed that leptin is also 
expressed in the hypothalamus, pituitary gland, endometrium, 
stomach, testes, placenta, mammary glands, and ovary[14–20]. 
In contrast to mammals, the physiological roles and mechanisms 
of action of leptin in avian species remain poorly understood. 
The discovery of an avian leptin gene occurred two decades 
after its mammalian homologue had been identified; the delay 
was due primarily to the gene’s elevated guanine-cytosine con-
tent (~70%). In 2014, it was characterized in zebra finches[21], 
ducks[22], and rock doves[23], followed by Japanese quails[24] 
and chickens[25]. Interestingly, leptin is not produced in bird adi-
pocytes and is not detected in circulating blood[26,27]. Instead, 
leptin and its receptors are co-expressed in the brain (cerebel-
lum and hypothalamus), pituitary gland, adrenal glands, and go-
nads[21,23,25,27–29], suggesting an autocrine/paracrine action 
mechanism. In birds, the leptin receptor is expressed in excep-
tional amounts in the pituitary gland compared to other tissues, 
which may enhance the response to pituitary leptin[25,27]. In 
mammals and birds, leptin binds to its receptor, the product of the 
Lepr gene, to activate the Janus kinase (JAK) and signal trans-
ducer and activator of transcription (STAT)3 and STAT5[30–32]. 
Mitogen-activated protein kinases (MAPKs), phosphatidylinosi-
tol 3 kinase/serine-threonine kinase and protein kinase C are also 
activated by leptin[30,33,34]. The leptin feedback mechanism, 
which decreases leptin sensitivity by activating the suppressor 
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of cytokine signaling 3, is conserved between mammals and 
birds[35].

Besides regulating body weight in response to fat accumu-
lation, leptin conveys also metabolic signals to the brain and 
activates the HPG axis genes, thus influencing reproductive 
functions in adult mammals[9,36]. In contrast, its roles in avian 
reproduction and early folliculogenesis in mammals remain un-
clear. This review summarizes current knowledge on the role of 
leptin in female reproduction in birds, focusing on its effects on 
early folliculogenesis and corresponding ovarian development. 
Understanding the function of leptin in poultry, especially in 
layer and broiler parent stock chickens, is critical for optimizing 
global meat and sustainable egg production.

Ovarian follicle development in birds

Ovarian development involves the transformation and growth 
of primordial germ cells (PGCs) into primordial, primary, sec-
ondary, antral, and preovulatory follicles, as well as subsequent 
ovulation. This process has been well studied in mammalian 
species and is reviewed extensively elsewhere[10,37,38]. Bird 
ovarian development will be briefly explained to understand the 
role of leptin in the specific timing of folliculogenesis. Except 
for birds of prey, most bird species exhibit asymmetric gonadal 

development, in which only the left female gonad develops into 
a functional ovary; whereas the right gonad regresses owing to 
apoptosis (Fig. 1)[39,40]. Gonadal development is initiated at an 
early stage of embryogenesis. In chicken gonads, PGCs are locat-
ed mainly in the central region of the embryo during intrauterine 
embryonic development and move passively toward the anterior 
region during morphogenesis. PGCs then enter blood vessels and 
circulate in the blood from embryonic day (E)2. During E3–E3.5, 
circulating PGCs enter the genital ridge and ultimately form and 
colonize the cortical and medullar cords[41,42]. In chicken go-
nads, PGCs proliferate and differentiate into oogonia (at about 
E8.0), followed by sex determination and oogonia growth un-
til the first meiotic arrest[43,44]. Cells are arrested in meiotic 
prophase I as primary oocytes starting at E15.5. The number of 
germ cells derived to the ovary via blood circulation gradually in-
creases and peaks at approximately 680,000 by E17. At this time, 
chicken ovaries exhibit a mixture of oocytes at various stages of 
meiotic prophase I, with the highest number of pachytene-stage 
oocytes observed around hatching. Although not fully under-
stood, oocytes arrested in meiosis and accumulated in germ cell 
cysts have been reported at least one day and up to four weeks 
post-hatch. The number of oocysts gradually decreases until 
hatching because of apoptosis[45–48]. Within the first week of 
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Fig. 1.  Schematic representation of ovarian development and folliculogenesis in birds (chickens) and mammals (mice). After 
specification, primordial germ cells (PGCs) migrate to the gonads on embryonic days (E) 1–3 in chickens and E7.5 in mice. The gonads 
then differentiate into testes or ovaries on E4–8 in chickens and E10.5 in mice, followed by the differentiation of PGCs into oocytes. 
The oocytes are then arrested in cysts until hatching or birth. Up to this age, the role of leptin has not been well-defined in either mam-
mals or birds. In chickens and mice, the initial wave of primordial follicles appears around day (D) 7, followed by a similar process that 
produces primary and secondary follicles with different time frame intervals. At this point, leptin alters several genes essential for fol-
licle activation in chickens. Late folliculogenesis differs significantly between birds and mammals. In chickens, the secondary follicles 
develop into small white follicles (SWF), large white follicles (LWF), small yellow follicles (SYF), large yellow follicles (LYF), hierar-
chical follicles (F5–F1), and finally, ovulate. In mice, late folliculogenesis progresses through antral follicles, preovulatory follicles, and 
ultimately mature follicles ready for ovulation. During puberty in mammals and birds, leptin acts via the luteinizing hormone (LH) and 
follicle-stimulating hormone (FSH), affecting folliculogenesis. GCs, granulosa cells; IGF-1, insulin-like growth factor 1; CYP19A1, 
aromatase; AMH, anti-Müllerian hormone; FSH, follicle-stimulating hormone; FSHR, follicle-stimulating hormone receptor. Created 
with BioRender.com, accessed on 18 October 2024.
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hatching, a sharp increase in follicle-stimulating hormone recep-
tors (FSHR) triggers the development of primordial follicles. By 
one week of age, the chick ovary exhibits a well-defined ger-
minal epithelium, cortex, and medulla[49]. Folliculogenesis is 
initiated by the breakdown of germ cell cysts and the enclosure 
of oocytes by a single layer of flattened pregranulosa cells called 
primordial follicles[50]. Primordial follicles, approximately 0.05 
mm in diameter, are located mainly in the cortex, organized in 
clusters, and most remain dormant until sexual maturation. Up to 
four weeks of age, primordial follicles transition to primary fol-
licles while flat and elongated granulosa cells (GCs) differentiate 
into cuboidal GCs and enclose the oocytes. Afterward, the sec-
ondary follicles differentiate, with oocytes surrounded by both 
granulosa and theca cells[51,52]. At this stage, follicles lack an 
antrum or follicular fluid, protrude from the ovarian surface, and 
are classified by developmental stage and size into pre-hierarchi-
cal follicles (small white: 1–4 mm, large white: 4–6 mm, small 
yellow: 6–8 mm) or preovulatory hierarchical follicles (large yel-
low: 9–40 mm)[46,53,54]. An oocyte that has matured from the 
largest yolk-filled hierarchical follicle is expelled into the infun-
dibulum of the chicken oviduct. The released egg is surrounded 
only by the perivitelline layer, which is similar to the mammalian 
zona pellucida[55]. Oocytes are constantly arrested during mei-
otic prophase I of follicular development, but resume oogenesis 
a few hours before ovulation, when oocytes become fully grown. 
Then, they are arrested again in the metaphase of meiosis II until 
ovulation, akin to mammalian oocyte maturation[55–57].

Role of leptin during embryonic ovarian develop-
ment in mammals and birds

Leptin plays a crucial role in the embryonic development. 
It also influences early oocyte maturation and supports nutrient 
transport and embryonic growth. Herein, we discuss the effects 
of leptin on these processes in mammals and birds.
Mammalian embryos and leptin

In mammals, the placenta is another significant source of 
leptin during pregnancy[58]. Leptin synthesis and circulation 
during pregnancy are influenced by genetic factors, hormones, 
and nutrition. Leptin produced by the placenta facilitates the 
transport of nutrients, particularly neutral amino acids and free 
fatty acids, from the mother to the fetus, thereby supporting 
growth and development[59,60]. In vitro studies have indicated 
that this adipokine improves oocyte maturation and overall em-
bryonic development by reducing apoptosis and degradation of 
oocytes and cumulus cells, enhancing ovarian angiogenesis, and 
promoting fatty acid oxidation[61]. Addition of leptin to the em-
bryo culture medium promotes transition from the 2-cell stage to 
hatched blastocysts in both mice and humans. The same process is 
significantly inhibited by blocking the leptin receptor. Leptin also 
increases the number of cells within blastocysts, especially in the 
trophectoderm, suggesting a paracrine effect that may influence 
ovarian development[62–64]. However, exposure to higher doses 
of leptin, such as those found in obese individuals, can negatively 
affect embryo development, reduce hatching rates, and increase 

apoptosis in a dose- and stage-dependent manner[65,66]. A study 
on obese women undergoing in vitro fertilization revealed that 
higher circulating leptin levels were associated with increased 
follicular fluid leptin, which resulted in low-quality embryos and 
a low pregnancy rate. The same study revealed that a higher leptin 
dose inhibited the proliferation of GCs, which is essential for 
oocyte maturation, and promotes apoptosis[67]. Consequently, 
higher leptin levels in obese mothers adversely affect reproduc-
tive outcomes. In pigs, Lepr polymorphisms are associated with 
lower oocyte quality, decreased ovulation rates, and early em-
bryo loss due to failed implantation[68]. In bovine studies, leptin 
treatment during oocyte maturation enhanced developmental 
potential, resulting in increased blastocyst formation and fewer 
apoptotic cells, suggesting that leptin may have long-term effects 
on genes crucial for early embryonic development[69]. Changes 
in leptin levels at any critical time point during embryonic de-
velopment may affect future reproductive outcomes[70]. Mouse 
models indicate that leptin influences the development and func-
tion of fetal hypothalamic networks and alters the regulation of 
appetite and metabolism in adulthood[71,72]. Overfeeding in 
pregnant ewes affected the plasma leptin concentration in the 
offspring at birth and was suggested to have a prolonged impact 
on growth and metabolism[73]. A maternal high-fat diet also im-
pairs leptin signaling in the offspring and negatively affects ovar-
ian development[74,75]. The direct effect of leptin on embryonic 
ovarian development and its prolonged impact on puberty are yet 
to be clarified in most mammalian species, including humans. 
Therefore, further studies are needed to elucidate the direct and 
long-term effects of maternal leptin or high-fat diet-induced hy-
perleptinemia on the ovaries of adult individuals. Overfeeding 
alters plasma leptin levels and the mRNAs of genes related to the 
growth of follicles in the fetus, including growth differentiation 
factor-9, alpha-1-antitrypsin, alpha-fetoprotein, and apoptotic 
markers[75]. Hence, leptin plays a vital role in embryonic ovar-
ian development in mammals by influencing oocyte maturation, 
blastocyst formation, and gene expression, with potential long-
term reproductive consequences.
Avian embryos and leptin

Leptin and its receptor are expressed during early embryonic 
development in bird gonads, suggesting a potential role for leptin 
signaling at that stage[25,40]. As in mammals, leptin boosts em-
bryonic growth in birds with long-term consequences. In vitro 
leptin stimulation enhances embryonic muscle cell prolifera-
tion in a dose- and age-dependent manner[76]. Administration 
of leptin to fertile eggs affects thyroid hormones and enhances 
embryonic and post-hatch growth in Japanese quail[77], possibly 
because of the improved utilization of nutrients, gas exchange, 
and angiogenesis during embryogenesis. Leptin treatment of 
chicken embryo chorioallantoic membranes enhanced endothe-
lial cell proliferation and capillary network formation in a dose-
dependent manner by increasing the expression of angiogenic 
markers, including vascular endothelial growth factor 165 and 
matrix metalloproteinase 2[78]. Furthermore, in ovo leptin injec-
tion enhances total and free triiodothyronine serum levels, which 
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boost post-hatching body weight in a sex-specific manner in 
broiler chicks[79]. A recent study from our group demonstrated 
that the administration of leptin on the third day of incubation in 
broiler eggs increased pituitary luteinizing hormone (LH) and fol-
licle-stimulating hormone (FSH) mRNA expression in 7-day-old 
chicks. This increase in LH and FSH may trigger primary follicle 
activation, as observed in post-hatching birds fed a low-protein 
diet until day 28. However, the same study revealed no changes 
in follicle numbers in birds injected with leptin in ovo and fed a 
higher-protein diet[80], suggesting that nutritional intake might 
counteract the stimulatory effects of leptin and ovarian growth 
in birds. Our unpublished observations showed that in ovo leptin 
injection induced aromatase mRNA expression in female go-
nads of 7-day-old chick embryos. Further studies will determine 
whether follicular growth induced by in ovo leptin injection ad-
vances sexual maturation and egg productivity in chickens. Ad-
ditionally, egg whites contain several bioactive polypeptides that 
are highly resistant to thermal denaturation[81]. Leptin is also a 
polypeptide, but it is unknown whether it is naturally produced 
in egg whites by laying hens. The leptin receptor, for example, 
is expressed in the oviducts of laying hens[82]. Establishing a 
leptin protein detection method for birds would answer several 
questions. At present, evidence emphasizes the pivotal role of 
leptin in avian embryogenesis via its influence on nutrient utiliza-
tion, angiogenesis, and ovarian development as well as its long-
term effects on post-hatching growth and follicular development. 
Additional studies are required to better understand the role of 
embryonic leptin in sexual maturation and egg production across 
various bird species, particularly commercial chicken breeds.

Role of leptin in ovarian development of juvenile 
mammals and birds

Leptin in early mammalian ovaries
In the mammalian ovaries, follicle formation begins imme-

diately before or shortly after birth. These primordial follicles 
progress through several differentiation stages into primary fol-
licles, preantral (secondary) follicles, antral (tertiary) follicles, 
and finally maturation into preovulatory Graafian follicles (Fig. 
1). These transitions are regulated by the coordinated actions of 
hormones and intraovarian factors, including leptin[83,84]. In 
mammals, leptin is essential for reproduction because leptin-
knockout mice are sterile, and leptin injection restores repro-
ductive development[85,86]. After birth, plasma leptin levels 
increase in mice and are thought to promote the growth and 
development of several organs, including the ovaries, because 
the leptin receptor is expressed in neonatal mammalian ovaries 
and ovarian germ cells[87–89]. Leptin surges are pivotal for the 
overall growth and development of neonatal mammals. The peak 
of the postnatal leptin surge depends on maternal nutrient sta-
tus and is not associated with increased fat mass, appetite con-
trol or feed regulation[90]. This surge has lifelong effects on the 
metabolism of the offspring because leptin can restore matura-
tion and development in mice only when administered during 
the neonatal period[91–93]. The postnatal leptin peak on day 7 

was associated with increased expression of the gonadotropin-
releasing hormone receptor, FSH, and activin in mice[94–97]. 
A recent study in mice demonstrated that the female offspring 
of mothers subjected to 20% caloric restriction anticipated the 
postnatal leptin peak from day 11 to day 8 and delayed the on-
set of puberty, which was indicated by a later vaginal opening 
compared to the control group[98]. Accordingly, maternal caloric 
restriction negatively influenced embryonic and neonatal devel-
opment, caused a shift in leptin levels, and reduced body weight 
in adulthood. Nonetheless, it remains unclear whether delayed 
puberty is caused by maternal caloric restriction or a change in 
the leptin surge, and the exact factors controlling the latter re-
main unidentified. Leptin administration stimulates oogonia and 
oocyte growth, and increases the number of primary follicles in 
piglets with intrauterine growth restriction, a disorder marked by 
developmental delays and an increased risk of adverse neonatal 
outcomes[88]. Leptin receptors have also been identified within 
ovarian germ cells, indicating that leptin may directly influence 
these cells and support ovarian development. Neonatal overfeed-
ing in rats elevated plasma leptin levels and induced weight gain, 
which led to increased ovarian leptin, leptin receptor, and FSHR 
transcripts, but downregulation of anti-Müllerian hormone 
(AMH) mRNA, resulting in early sexual maturation and fewer 
primordial follicle pools in adulthood[99]. According to these 
findings, an early leptin surge may affect postnatal ovarian devel-
opment and the effect may persist throughout adulthood. Further 
studies will shed light on the regulation of leptin in normal neo-
nates and, hence, the transition of early growing follicles, as well 
as on how leptin mediates its effects and interacts with pathways 
essential for mammalian folliculogenesis[100].
Leptin in avian hatchling ovaries

Figure 1 illustrates the growth of bird follicles after hatching. A 
few studies on juvenile chickens have demonstrated the effects of 
leptin on primordial growth and ovarian development. Leptin and 
its receptor are expressed in the ovaries of post-hatching chicks 
and are altered by exogenous leptin treatment. This supports the 
idea that leptin is a local mediator in bird ovaries[25,28,101]. 
Our studies on 7-day-old layer chicks demonstrated that 24-h in-
traperitoneal mouse leptin injection significantly augmented the 
mRNA levels of ovarian growth markers, including leptin recep-
tor, FSHR, aromatase, and insulin-like growth factor 1 (IGF-1), 
which led to elevated serum estradiol levels[28,101]. In addition, 
leptin treatment downregulated the apoptotic marker caspase-3 
while increasing the number of primordial follicles. We hypoth-
esize that leptin may exert its effects on the ovary directly and/
or by regulating local IGF genes, as it influences the expression 
of IGF-1 and that of its receptors insulin-like growth factor-
binding protein (IGFBP) 2 and IGFBP5. Stimulation of IGF-1 
by leptin is particularly significant in birds, where hepatic IGF-1 
may not contribute as much to ovarian development as the locally 
expressed IGF-1. This is supported by our findings that leptin 
administration does not influence hepatic IGF-1 in chickens in 
vivo or in vitro[28], and that local IGF-1 regulates GC prolif-
eration and ovarian development in an autocrine-paracrine man-
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ner[102]. This hypothesis is further reinforced by the observation 
that sex-linked dwarf chickens remain fertile despite lacking the 
growth hormone receptor, because their ovaries produce more 
IGF-1 than their normal counterparts[103,104]. In layer chicks, 
follicular activation by leptin may also result from the direct sup-
pression of AMH by leptin or via synergistic stimulation with 
IGF-1, both in vivo and in vitro[28]. Given that AMH is highly 
expressed in the ovary during early folliculogenesis, it inhibits 
GCs proliferation, aromatase activity, and follicle growth by de-
creasing FSHR sensitivity to FSH[105,106]. Direct stimulation 
with IGF-1 also inhibits AMH expression, which leads to GC 
proliferation and primordial follicle formation[107]. Although 
early follicular growth (preantral) in mammals is gonadotro-
pin-independent, intraovarian growth factors, such as apoptotic 
markers AMH and IGF-1, play a role in its development[108]. 
In chickens, a sharp rise in serum gonadotropin levels and its 
receptor, FSHR, which is enhanced by leptin, is associated with 
ovarian development post-hatching[109]. We reported that leptin 
administration induced gonadotrophin expression, leading to ele-
vated serum estradiol levels and subsequent formation of primor-
dial follicles[28,80,101]. In conclusion, these studies highlight 
the known positive role of leptin in early follicle development 
in post-hatch layer chicks, either directly or synergistically with 
intraovarian growth factors (Fig. 2).

Role of leptin in the ovary during sexual matura-
tion and adulthood

Leptin in ovarian maturation in mammals
Most studies on leptin have focused on its role during sexual 

maturation and adulthood[110], rather than during embryon-
ic or neonatal stages. This bias is rooted mainly in the patho-
physiological impact of leptin on human health and reproduc-
tion[10,111,112]. Ovaries from adult mammals express high 
levels of Lepr mRNA, suggesting a direct role of leptin in ovarian 
function[113–115]. Leptin levels rise at night during pubertal de-
velopment in young female mice; during this stage, leptin injec-
tions also advance sexual maturation[116,117]. Leptin levels are 
increased also during the menstrual cycle, with a mid-cycle peak 
associated with higher LH and estradiol amounts, suggesting that 
leptin is involved in ovulation[118]. Leptin is produced by adi-
pose tissue, targets the HPG axis, and stimulates the reproductive 
system through neurons in the ventral premammillary nucleus. 
These neurons, in turn, activate kisspeptin neurons, leading to 
gonadotropin-releasing hormone stimulation and subsequent 
regulation of LH and estradiol levels. This function of leptin is 
crucial for the onset of puberty, maintenance of estrous cycles, 
and fertility in females[119,120]. In vivo and in vitro studies have 
shown that leptin influences pituitary gonadotrophs, modulates 
LH and FSH secretion, and affects the reproductive hormone bal-
ance and ovarian function[121–124]. Given that increased leptin 
levels due to higher fat mass result in HPG axis activation and 
precocious puberty, leptin acts as a gatekeeper hormone for the 
onset of puberty[125,126]. Conversely, reduced leptin signaling 
during low-energy states or energy deprivation triggers suppres-

sion of the HPG axis and delays sexual maturation[126,127].
Furthermore, leptin plays a dual role in ovarian function, act-

ing as a stimulator and an inhibitor depending on its concentra-
tion. Previous studies using high leptin levels (>30 ng/mL) in 
obese patients with polycystic ovarian syndrome (PCOS) led 
researchers to propose that leptin had an inhibitory effect on the 
ovaries[128,129]. Indeed, leptin concentrations associated with 
obesity suppress mammal steroidogenesis, follicular growth, and 
oocyte maturation in vitro[128,130]. Recent studies have chal-
lenged this view by demonstrating that the role of leptin in the 
ovary is dose-dependent[33,131,132]. Leptin enhances ovar-
ian function at physiological levels (10–20 ng/mL), stimulates 
granulosa and theca cell proliferation, and acts synergistically 
with LH and FSH to promote follicular development, ovulation, 
and oocyte maturation[69,131]. A lower leptin concentration in-
creases steroid hormone production, improves oocyte maturation 
rates, and stimulates germinal vesicle breakdown in mammalian 
ovaries[133,134]. Leptin affects cumulus cell mRNA expres-
sion and improves in vitro maturation of goat oocytes through 
the MAPK and JAK2/STAT3 pathways[135]. A recent study 
revealed that mice fed high-carbohydrate and high-protein diets 

Fig. 2.  Direct effect of leptin on chicken primordial follicle 
activation. In early ovarian development (7-day-old chicks), 
leptin regulates ovarian function in birds through its recep-
tor (LEPR), impacting key pathways involved in follicular 
development. Leptin upregulates follicle-stimulating hormone 
receptor (FSHR) and aromatase (CYP19A1) mRNA, resulting 
in increased serum estradiol (E2) and primordial follicle activa-
tion. Leptin upregulates also ovarian insulin-like growth factor 1 
(IGF-1), which is necessary for granulosa cell growth and follicle 
development. Both leptin and IGF-1 downregulate anti-Müllerian 
hormone (AMH) and apoptosis, reducing atresia and promoting 
follicular survival. As a negative feedback mechanism (based on 
mammalian studies), E2 directly inhibits FSHR expression and in-
creases mRNA levels of IGF-1 binding protein (IGFBP) 2, which 
inhibits IGF-1 binding to its receptor (IGF-1R). Increased AMH 
inhibits primordial follicle activation by decreasing FSHR sensi-
tivity to FSH, further preventing follicle activation and ovarian 
development in birds. Created with BioRender.com, accessed on 
18 October 2024.
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had elevated leptin, as well as increased FSH, LH, estradiol, and 
progesterone, serum levels. The intensified folliculogenesis may 
be attributed to upregulation of ovarian growth markers, includ-
ing bone morphogenetic protein 15 and growth differentiation 
factor-9, along with an increase in the above hormones[136]. 
These findings emphasize the essential role of leptin in regulat-
ing folliculogenesis, oocyte maturation, and female reproductive 
hormones in both premature and adult animals. These effects are 
dose-dependent: physiological levels stimulate ovarian growth; 
whereas higher levels, which are common in obese individuals, 
hinder these processes.
Leptin during ovarian maturation in birds

In birds, leptin has emerged as a significant regulator of 
ovarian function, influencing reproductive hormone levels, fol-
licular growth, and sexual maturation, particularly in response 
to nutritional status and energy balance. Chronic leptin injection 
into prepubertal fasted pullets for 11 weeks decreased ovarian 
apoptosis and enhanced plasma LH, FSH, and steroid levels, 
thereby improving follicle growth and advancing sexual matura-
tion[137]. The same study also detected leptin receptors in both 
granulosa and theca cells, indicating that leptin is an essential 
regulator of ovarian development. In newly hatched, prepuber-
tal, and adult bird ovaries, the leptin receptor mRNA expression 
changes with nutritional status, thereby affecting follicle devel-
opment[80,137–139]. In adult birds, leptin enhances ovarian de-
velopment and egg laying. Leptin injections have been shown 
to restore ovarian function in ducks that experience regression 
due to fasting, by upregulating ovarian FSHR and LH receptor 
mRNA, increasing plasma estradiol levels, and improving fol-
licle growth[140]. Similarly, leptin mitigates the adverse effects 
of fasting on ovarian function in laying hens by abolishing the 
effects of malnutrition on the ovaries, increasing estradiol lev-
els, and improving ovulation[141]. These findings suggest that 
leptin plays a key role in regulating reproduction in response to 
nutritional status, helping maintain ovarian function during peri-
ods of energy deprivation in layer-type chickens[142]. In leptin 
receptor-immunized hens, the mRNA expression of ovarian LH 
receptor, FSHR, steroidogenic acute regulatory protein, IGF-1, 
and aromatase decreased; whereas leptin receptor and apoptotic 
markers, such as caspase-3 and Fas increased, resulting in fol-
licle atresia and reduced egg production[143]. In addition, direct 
evidence of the role of leptin in the regulation of chicken ovarian 
function has been reported. In adult chicken GC cultures, leptin 
stimulation enhanced progesterone; whereas estradiol inhibited 
testosterone secretion into the medium, promoting the cells’ pro-
liferation[144]. This study also demonstrated that human leptin 
caused changes in MAPK/ERK1/2 accumulation in GCs. In an-
other study using recombinant chicken leptin and goose GCs, 
leptin stimulation produced outcomes similar to those observed 
in chicken GCs, including increased progesterone, estradiol, and 
testosterone secretion, and enhanced proliferation[145]. This 
author further explored whether the effect of leptin in GCs was 
mediated by phosphoinositide 3-kinase, serine/threonine-kinase, 
and mammalian target of rapamycin pathways[146]. It is im-

portant to note that most studies on birds have used mammalian 
leptin, which influences leptin receptor expression and ovarian 
function across different life stages (Table 1) and shows effects 
on ovarian functions similar to those observed in mammals. Few 
studies have utilized the recombinant chicken leptin (Table 1), 
while the genuine chicken leptin gene was discovered later[25]. 
Although the effects of leptin have been comparatively well stud-
ied in layers, demonstrating regular follicular hierarchies, further 
research is required in broiler breeders that display an irregular 
follicle hierarchy and lower egg production. In conclusion, cur-
rent studies using heterologous leptin, particularly in layer birds, 
indicate a significant role of leptin in reducing ovarian apoptosis, 
enhancing reproductive hormone levels, promoting folliculogen-
esis, advancing sexual maturation, and egg production. Except 
for appetite regulation, the effects of leptin on ovarian devel-
opment in birds are consistent with those in mammals. Future 
studies should seek to develop and utilize endogenous chicken 
leptin, assessing how it affects bird reproduction across various 
life stages and species.

Conclusions and perspectives

Leptin is important for the regulation of ovarian function, fol-
licle growth, and sexual maturation in vertebrates, particularly 
in response to nutritional changes. Typically, it acts as a gate-
keeper for puberty and enhances the secretion of reproductive 
hormones, such as LH, FSH, and estradiol, while reducing fol-
licle apoptosis. In mammals, the effects of leptin are dose-de-
pendent, with physiological levels promoting ovarian function 
and higher levels potentially inhibiting it. However, studies on 
leptin levels in birds are limited. Research on layer-type birds 
has indicated that leptin enhances ovarian development, steroid 
hormone production, and egg laying, especially during periods 
of nutrient deprivation, which coincide with upregulation of 
apoptotic markers in the ovary. Therefore, leptin can be used as 
a potential biomarker for egg production. Leptin administration 
in broiler breeders may not offer the same benefits observed in 
layer birds because it accelerates early folliculogenesis, which 
may lead to follicle pool depletion before sexual maturation. Ad-
ditionally, the feeding strategies used by broiler breeders could 
further affect the effectiveness of leptin. The function of leptin 
in the early life stages of broiler breeders and other bird species 
is poorly understood. The ontogenic expression of leptin from 
the embryonic phase to adulthood is vital for understanding its 
role in avian reproduction. It is also unclear whether the effects 
of post-hatching leptin administration in birds persist and influ-
ence the primordial follicle pool into adulthood, as observed in 
neonatal mammals. Blocking leptin signaling in boiler breeding 
hens will indicate whether leptin inhibition improves irregular 
follicle hierarchy. This condition is exacerbated in women with 
PCOS and obesity, whose elevated leptin levels may thus serve 
as a potential molecular marker for PCOS[111,147]. Although 
much is known about the role of leptin in adult mammals, its 
mechanism of action in birds remains obscure, particularly with 
respect to endogenous chicken leptin. Further research is essen-
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tial to investigate the specific roles of leptin throughout life and 
among different bird categories, such as laying hens and broiler 
breeding stocks.
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