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Abstract: This paper reports a multi-valve module with high chemical inertness and embedded flow
heating for microscale gas chromatography (µGC) systems. The multi-valve module incorporates
a monolithically microfabricated die stack, polyimide valve membranes, and solenoid actuators.
The design incorporates three valves within a single module of volume 30.2 cm3, which is suitable
for the small form factor of µGC systems. The die stack uses fused silica wafers and polyimide
valve membranes that enhance chemical inertness. The monolithic die stack requires only three
lithographic masks to pattern fluidic microchannels, valve seats, and thin-film metal heaters and
thermistors. The performance of fabricated multi-valve modules is compared to a commercial valve
in tests using multiple volatile organic compounds, including alkanes, alcohols, ketones, aromatic
hydrocarbons, and phosphonates. The valves show almost no distortion of chromatographic peaks.
The experimentally measured ratio of flow conductance is 3.46 × 103, with 4.15 sccm/kPa in the
open state and 0.0012 sccm/kPa in the closed state. The response time is <120 ms.

Keywords: solenoid; phosphonates; organophosphorus compounds; chemical warfare agents;
volatile organic compounds

1. Introduction
1.1. Motivation and Need

Microvalves are of great interest for many microsystem applications, such as mi-
croscale gas chromatography (µGC), cooling and refrigeration, fuel cells, lab-on-a-chip, and
drug delivery [1–8]. The general requirements of microvalves include high flow modulation
capability, low leakage, low power consumption, and manufacturability. The microsystem
applications that are related to µGC, which is relevant to industrial pollution monitoring,
breath analysis, and homeland security, impose additional requirements. These include:
(1) low dead volume to reduce chromatographic peak distortion, (2) superior chemical
resistance to prevent analyte loss, (3) embedded flow heating in order to reduce surface
adsorption of the analytes, and (4) monolithic integration of multiple valves to reduce the
overall device volume.

Chemical inertness and embedded flow heating are particularly important for µGC
valves that are used in order to analyze organophosphorus compounds. These compounds
pose technical challenges to µGC systems, because they are extremely surface-adsorptive
and easily retained by the chemically active sites or cold spots on the device inner sur-
faces [9]. Certain organophosphorus compounds have high toxicity that can disrupt the
nerve system, cause respiratory paralysis, and inflict death [10]; these are used in chemical
warfare agents (CWAs). Among the different classes of CWAs, nerve agents, such as sarin,
soman, and tabun, are one of the most lethal. For general research, simulants, such as
dimethyl methyl phosphonate (DMMP) and diethyl methyl phosphonate (DEMP), are

Sensors 2021, 21, 632. https://doi.org/10.3390/s21020632 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6145-6771
https://orcid.org/0000-0003-4589-4485
https://orcid.org/0000-0003-2281-3937
https://doi.org/10.3390/s21020632
https://doi.org/10.3390/s21020632
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21020632
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/2/632?type=check_update&version=2


Sensors 2021, 21, 632 2 of 14

commonly used [11]. These possess similar molecular structures, volatilities, and chemical
properties but are less hazardous.

Despite an evident need, previously reported µGC systems have not incorporated
microfabricated valves [12–19]. Whereas some µGC systems avoided the use of valves
entirely [20–24], many others used commercial off-the-shelf (COTS) valves that were not
microfabricated. In the latter case, most of the µGC systems avoided using the valves
in the fluidic path of sample injection, separation, and detection. These µGC systems
typically required multiple valves for controlling the gas flow. In some µGC systems, where
upstream flow modulation was inevitable, it was not directly provided by valves, but by a
Deans switch [16,17]. The flow routing in these µGC systems would have benefited from
the availability of valve with high chemical inertness, low dead volume, and embedded
flow heating capability, preferably in a small form factor combining multiple valves in a
single package.

1.2. Current State-of-Art

Microvalves can generally be categorized based on the actuation method [25]. Elec-
trostatic actuation provides fast responses, low power consumption, and the potential
for large-scale integration [26–31]. Nonetheless, the displacement that is generated by
electrostatic actuators is on the order of a few microns, which creates a large flow resistance
in the open state. Piezoelectric actuation provides fast response with low power con-
sumption [32–36]. Two types of piezoelectric actuators are commonly used: lead zirconate
titanium (PZT) stacks and piezoelectric bimorph disk actuators. PZT stacks typically pro-
vide large blocking force (>100 N), but small displacement (<10 µm), whereas piezoelectric
bimorph disk actuators generate large displacement (50–500 µm) and moderate blocking
force (<1 N). Thermopneumatic actuation provides large displacement and high blocking
force, but it requires high power consumption and provides slow response times [37]. A hy-
brid actuation scheme combining thermopneumatic actuation with electrostatic actuation
has been reported to reduce the power consumption in valves that are intended for µGC
systems [38]. Solenoid actuation is the most common kind in commercial miniature valves;
it offers both high blocking force and large displacement [39–41]. The blocking force and
displacement of solenoid actuators are easily customizable. Although solenoid actuation
requires relatively high peak power (8–20 W), latching solenoid actuators consume power
only while switching.

Other than the actuator, the general structure of microvalves includes fluidic channels,
thin suspended valve membranes, and valve seats, which are typically microfabricated
on silicon, glass, or silicon-on-insulator substrates [1–4,8,26–28,32–36,38–40]. The wetted
materials include glass, silicon, and inorganic dielectric materials, which are chemically
inert to many volatile organic compounds (VOCs). However, integrated membranes
made of these materials can present challenges with complex fabrication, fragility, and
low tolerance to dust particles. In other microvalves, the valve membranes are made of
polytetrafluoroethylene [42] or polyimide [36], which reduce the fabrication complexity.
However, the coupling to external actuators and the alignment during assembly remain
challenging.

The internal structure of some COTS valves is similar to microfabricated valves; it
includes a solenoid actuator, fluidic paths, and a valve membrane (e.g., NIV series from
Clippard, Cincinnati, OH, USA, 075T series from Bio-Chem Fluidics, Inc., Boonton, NJ,
USA, and LFN series from The Lee. Co., Westbrook, CT, USA). Some other COTS valves
do not use a valve membrane, but instead use an elastomer plunger head that is directly
attached to the actuator (e.g., LHL series from The Lee. Co., Westbrook, CT, USA); this
approach can present chemical compatibility challenges and also increase dead volume.
Microfabricated and COTS valves have both historically lacked embedded flow heaters,
presenting challenges for the analysis of heavy and surface-adsorptive chemicals in µGC
systems, such as organophosphorus compounds. In order to compare the valves within the
context of µGC, the performance can be summarized in five metrics: open-close ratio of flow
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conductance, ease of fabrication, compactness (which is inversely related to size), chemical
resistance, and embedded flow heating. For most µGC systems and other systems where
frequent switching of valve is not required, the power consumption and response time are
less critical, and, therefore, not compared. In Figure 1, two metrics—open-close ratio of
flow conductance, and compactness—that can both be quantitatively evaluated are scaled
to a range of 0–5; three other metrics—embedded flow heating, chemical resistance, and
ease of fabrication—which can only be qualitatively evaluated, are rated high, medium, or
low. The open-close ratio of flow conductance is evaluated based on the actual performance;
the compactness is evaluated based on the device volume; ease-of-fabrication is estimated
from the lithographic mask count, except for the COTS valve; and, chemical resistance is
estimated from the wetted materials. For µGC systems, the microvalve should preferably
merit at least a moderate score in each of the five metrics.

Figure 1. A multi-dimensional benchmarking of microvalves in the context of microscale gas chro-
matography (µGC). The minimum desired level for µGC is indicated by the red line. The microvalve
module in this work uniquely provides both embedded flow heating capability and superior chemical
resistance, while only modestly compromising other metrics.

This paper reports compact microvalves that incorporate the necessary features of
high chemical inertness, embedded flow heating capability, high open-close ratio, and ease
of fabrication. Multiple microvalves are incorporated within a module that is comprised
of a chemically inert microfabricated fluidic die stack with an embedded thin-film heater,
polyimide valve membranes, and solenoid actuators that are placed within a 3D printed
housing. The module is intended for a new type of µGC system [43] that requires up-stream
flow routing between a sampling path and multiple separation paths and heavily depends
on a high performance microvalve module. The module structure and operation are
described in Section 2, the computational modeling results in Section 3, the experimental
results in Section 4, and the conclusion in Section 5.

2. Device Structure and Operation
2.1. Device Structure and Fabrication

The microvalve module integrates three valves, which incorporate a monolithically
microfabricated fluidic die stack, prefabricated valve membranes, solenoid actuators, and
a customized three-dimensional (3D) printed housing (Figure 2). The fluidic die stack
is made of fused silica, which contains lower metal content and, hence, provides higher
chemical inertness than glass; the stack includes three microfabricated dies. The top die
comprises valve seats and through-holes; each valve seat separates two through-holes
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(Figure 2 inset) and it is designed in a ring shape in order to avoid corners that may create
dead volume. The through-holes connect the fluidic paths of the top die to the middle
die, which routes the flow to ports that are located on its perimeter. The ports are 600 µm
wide and 450 µm deep for accommodating capillary tubing. All of the microchannels
are 400 µm wide and 425 µm deep, with a sidewall taper of 22◦ off vertical. The total
microchannel length of the three valves in each module ranges from 1.1 cm to 3.7 cm. The
valve seats and fluidic microchannels on the top die and the middle die are created by
two-sided sandblasting of a 700 µm thick fused silica wafer. The bottom die, which is
comprised of a 500 µm fused silica substrate, incorporates a thin-film thermistor and a joule
heater that follows the fluidic microchannels on the middle die; both the thermistor and
heater are made of Ti/Pt. The three dies are bonded together by epoxy (Epotek 377, Epoxy
Technology, Inc., Billerica, MA, USA) (Figure 3) into a die stack that is 3.9 × 1.4 × 0.2 cm3

(Figure 4a).
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An ideal valve membrane must provide a chemically inert surface, leak-free mating
with the valve seat, flexibility for low force actuation, and infrangibility for assembly and
repeated operations. A membrane that is sufficiently flexible can also accommodate the
presence of dust particles. In this work, a two-layer polyimide membrane is used as the
valve membrane. Each layer is a self-adhesive polyimide film with adhesive on one side.
The lower layer has a circular shape and it is positioned above the valve seat with the
adhesive side facing up, whereas the upper layer has a larger size and rectangular shape
with the adhesive side facing down. Thus, the upper layer holds the lower layer on the
valve seat and seals the perimeter of each valve seat. The three valves share one upper layer
to simplify assembly. A disk spring at each of the three perimeters secures the membrane.
With this structure, the membrane adhesive is not exposed to the flow path; the wetted
materials are polyimide and fused silica, which are chemically inert to VOCs of interest in
this work.
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Each microvalve is actuated by a solenoid actuator (151082-234, Johnson Electric,
Shatin, NT, Hong Kong), which consists of a magnet, an electromagnetic coil, and a spring.
Each actuator is mechanically coupled to the valve membrane through a plunger that ends
in a post of adhesive coated soft silicone or adhesive foam (VHB 5962, 3M, Saint Paul, MN,
USA). The plunger may be aluminum or 3D printed Ultem1010 polymer. This approach
provides a conformable seal against the valve seat.

A two-part housing is used in order to accommodate the components with precise
alignment. It is 3D printed from Ultem1010® (CIdeas Inc., Crystal Lake, IL, USA) because
of the high printing resolution and thermal stability. The upper housing incorporates
multiple chambers for the solenoid actuators and disk springs and jigs for alignment to the
lower housing, which incorporates a cavity for the fluidic die stack and alignment holes.
Nylon spacers are used to adjust the vertical position of the actuators and, consequently,
the actuator displacement. The fluidic die stack is seated within the cavity on a 500 µm-
thick silicone cushion to absorb shock. In addition, a 1.5 mm-thick aluminum sheet is
attached beneath the lower housing for mechanical rigidity and robustness. Screws and
nuts are used to fasten the upper and lower housing. The size of the assembled device is
5.3 × 1.7 × 4.5 cm3 (Figure 4b).

2.2. Operation

The operation of the microvalve can be explained by the separation between the
plunger and the latching magnet, and by the compression of the spring (Figure 5). When
the microvalve is in its closed state, the spring is moderately compressed, and it maintains
a spring force against the fluidic die stack. When the solenoid actuates the plunger, pulling
it toward the magnet, the compression of the spring increases, but the attractive force
from the latching magnet increases more rapidly. At the force transition position, the
spring force and magnetic force are balanced. When the microvalve is in its open state, the
magnetic force dominates over the spring force, and it latches the microvalve, even when
the solenoid is turned off. To open the microvalve from the closed state, a positive 12 V,
0.9 A pulse is applied to the solenoid for 25 ms. A negative 12 V, 0.9 A pulse is applied for
25 ms in order to close the microvalve from the open state. The spring (CCF-0600-0013-M,
The D.R. Templeman Co., Plainville, CT, USA) provides a displacement of 560 µm and a
blocking force of 2.8 N.
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Figure 5. The relationship between the distance and the force of the solenoid actuator. The closed
state position has a net force exerting downward, whereas the open state position has a net force
exerting upward.

3. Modeling Results

The flow resistance of the microvalve in the open state was estimated by finite element
analysis (FEA) while using COMSOL Multiphysics software. The simulated structure repre-
sented the gas flow path of the middle valve in Figure 1, i.e., it included two microchannels,
the valve seat, and the valve membrane region. The height of the microchannels was
assumed to be 425 µm, and the sidewall taper was represented. The height of the valve
membrane region, which is determined by the actuator displacement, was assumed to be
560 µm.

The simulation assumed laminar flow. A flow rate of 10 sccm was supplied to the
inlet, while the outlet was assumed to be at ambient pressure. The simulated pressure
drop across the microvalve was 0.52 kPa (Figure 6), with a pressure drop of ≈0.21 kPa
in the fluidic microchannel upstream of the valve membrane region, ≈0.02 kPa in the
valve membrane region, and ≈0.29 kPa in the fluidic microchannel downstream of the
valve membrane region. The overall flow resistance of the microvalve in the open state
was 0.052 kPa/sccm. As evident from the pressure distribution, the flow resistance of the
membrane region was negligible because of the large membrane displacement.
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Figure 6. The pressure distribution along the fluidic path of the middle valve of the microvalve
module.

The thin-film heater and thermistor allow the microvalve to be compatible with
surface-adsorptive chemical species. The thermal characteristics of the valve were sim-
ulated by FEA while using COMSOL Multiphysics software. The simulated structure
(Figure 7a) included the entire lower housing and its contents, as well as the upper housing;
for simplicity, the simulated structure excluded the actuators, plunger connectors, and soft
posts, all of which contributed to negligible heat conduction from the heated fluidic die
stack because of the low thermal conductance and small contact area of the soft posts. The
empty space in the microvalve module was modeled as air. Additionally, the microvalve
module was assumed to be located on a suspended printed circuit board (PCB), thus
allowing natural air convection on all of the exterior surfaces. The convective heat transfer
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coefficients were computed within COMSOL based on the configuration and characteristic
lengths of the exterior surfaces.
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The three valves were heated up simultaneously, as they shared one embedded heater.
With heater power of 1.1 W, the temperature around the thermistor area (Ttherm) rose from
room temperature (Trm: 23 ◦C) to 75 ◦C, whereas the lowest temperature in the fluidic paths
rose from Trm to ≈65 ◦C (Figure 7b). Each valve was assumed to have 10 sccm air flow rate
at its inlet to mimic a µGC system in sampling mode. The temperature of the incoming
flow rose from Trm to 90% of steady-state temperature within a travel distance of 1.9 mm
past the inlet. The resulting temperature distributions for the middle and right valves
are shown in the insets of Figure 7b. This simulation confirmed that the thin-film heater
can provide adequate heating for analyzing heavy chemical species without consuming
excessive power. It also showed that, even with high air flow supplied to the microvalve
inlet, the incoming sample stream can be rapidly heated.

4. Experimental Results
4.1. Flow Conductance Tests

The flow conductance of the assemble device was evaluated while using a setup that
consisted of a pump (mp6, Bartels Mikrotechnik GmbH, Germany), a differential pressure
sensor (MPXV5010DP, NXP, Austin, TX, USA), and flow meters (FMA 1603A & 1601A,
Omega Engineering, Inc., Norwalk, CT, USA) (Figure 8 insets). The flow rates through the
microvalve and the corresponding pressure drop across the microvalve were measured
while varying the blocking pressure of the COTS pump module.

The tests were conducted at room temperature while using ambient air as the flow
medium. Air was supplied by the pump in one of two regimes of microvalve operation:
positive pressure or negative pressure. In the positive pressure regime, the pressure within
the valve membrane region was higher than the ambient pressure. This generated a force
pushing against the valve membrane and counteracting the latching force in the closed
state. In the negative pressure regime, the pressure within the valve membrane region
was lower than the ambient pressure. Thus, this generated a force pulling down the valve
membrane and counteracting the latching force in the open state.
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In the open state, the measured flow rates increased proportionally with the measured
pressure drops across the microvalve over a range of −0.66 kPa to 1.07 kPa (Figure 8a). The
slope of relationship between the flow rate and pressure drop indicated that the microvalve
flow conductance was 4.15 sccm/kPa when open. When the microvalve was closed, the
measured flow rate showed a linear relationship with the measured pressure drop over a
range of −4.21 kPa to 9.72 kPa (Figure 8b), with a leakage conductance of 0.0012 sccm/kPa.
Based on these results, the typical open-close ratio of flow conductance of the microvalve
was 3.46 × 103. The microvalve showed normal operation in both the positive pressure and
negative pressure regimes. The microvalve could withstand positive pressure of 9.72 kPa
in the closed state and negative pressure of 0.66 kPa in the open state, respectively. Higher
magnitudes of negative pressure were not tested, because the resulting flow rates would
exceed the need of typical µGC systems.

The flow conductance was measured with two capillary tubes that were attached to
the two gas flow ports of the microvalve. The two capillary tubes had an inner diameter
of 250 µm and a total length of 6 cm. Estimated by the Poiseuille’s law [44], the two
capillary tubes presented a total flow resistance of 0.187 kPa/sccm. After subtracting the
flow resistance of capillary tubes from the experimental flow resistance, the flow resistance
of the microvalve was determined as 0.053 kPa/sccm, being only 1.9% different from the
simulated flow resistance (i.e., 0.052 kPa/sccm).

4.2. Dynamic Response Test

To study the dynamic response of the actuator, the actuator operation was recorded
by a video camera. A light emitting diode (LED) was connected with the solenoid actuator
as an indicator of the applied current. At time 0, the current started to illuminate the LED;
at time 90 ms, the plunger started to move; at time 120 ms, the plunger reached the end
position (Figure 9). These measurements indicated that there was 90 ms delay between
the application of the actuation current and the start of actuation, and 30 ms duration for
the actuation. Therefore, the overall time that was required for a complete actuation was
≈120 ms.

4.3. Power and Energy Consumption

During the switching transients, the actuator consumed ≈0.27 J per switch. In the
latched states (i.e., fully open and fully closed states), power was only consumed for the flow
path heater, if any. The embedded flow heating was controlled by a close-loop algorithm in
LabVIEW, in which the input current and voltage were monitored. The microvalve required
≈144.5 J to be heated to 75 ◦C; this temperature could be maintained with an input power
of ≈1.0 W (Figure 10). The measured result matched the simplified thermal modeling result
with only 10% difference. The maximum power that was provided in this test was limited
to ≈2.4 W, although higher power could be used to accelerate the heating.
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Figure 10. The energy and power consumption of the microvalve module during heating. The
microvalve was heated to and maintained at 75 ◦C under servo control.

4.4. Lifetime Test

Extended lifetime was tested by cyclical operation. During each testing cycle, the
microvalve was tested with bidirectional flow in open and closed states. The testing
conditions included four stages: (i) microvalve open in the negative pressure regime,
(ii) microvalve closed in the positive pressure regime, (iii) microvalve closed in the negative
pressure regime, and (iv) microvalve open in the positive pressure regime. In the last 30 s
of the open state, i.e., stage (ii) and (iv), the microvalve was heated to 75 ◦C (Figure 11).
The tests revealed a lifetime >500 cycles over a duration of 330 h without any degradation
in performance. These results were obtained for the microvalve version that used an
aluminum plunger that was attached to the valve membrane with adhesive foam. The
microvalve version that used a silicone post provided lower lifetime when heated, because
of the failure of the adhesive that was used to bond silicone post to the valve membrane
under applied stresses.
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4.5. Chemical Injection Tests

The impact of the valve on chromatographic peaks was evaluated while using a
benchtop gas chromatograph (7890A, Agilent Technologies, Inc., Santa Clara, CA, USA).
This instrument was equipped with an oven, within which were located a flame ionization
detector (FID), and a separation column with 1 m length, 320 µm inner diameter, and 5 µm
thick OV-1 stationary phase coating (115-3206, Ohio Valley Specialty Company, Marietta,
OH, USA) (Figure 12). The valve under test was located outside the oven and connected
along the flow path, downstream of the inlet and upstream of the separation column and
the FID. The column was maintained at 80 ◦C inside the oven. With 0.6 sccm N2 carrier
gas flow, the analytes injected at the inlet flowed through the valve in its open state, the
separation column, and into the FID.
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Figure 12. The test setup of the chemical injection tests. The valve under test was connected to the
flow path of a benchtop gas chromatograph (7890A, Agilent Technologies Inc., Santa Clara, CA, USA).

The experiments included four test cases. In Case 1, a benchmark for the chromato-
graphic peaks was established without any valve; a chemically deactivated capillary load
that had equivalent flow resistance to the microvalve was used in place of the valve. In
Case 2, the microvalve was operated at 22 ◦C ambient temperature. In Case 3, the mi-
crovalve was operated at 80 ◦C while using the embedded flow heating. In Case 4, the
microvalve was replaced by a COTS valve (LHLA1231211H, The Lee Co., Westbrook, CT,
USA) that has been used previously in multiple µGC systems [13–16,18]. The COTS valve
was only operated at 22 ◦C ambient temperature, as it does not have embedded flow
heating capability.

Two chemicals were selected in order to compare these four cases: 1-butanol, repre-
senting light polar species, and DEMP, representing heavy polar species. The former is a
polar alcohol with a Kovats retention index of 660, whereas the latter is an organophos-
phorus compound with a Kovats retention index of 975. The responses of the four cases
are compared in the normalized peaks that are presented in Figure 13. The FID signal
intensity of each case normalized to its peak is plotted against a time axis. The time axis is
centered at the peak and ratioed to peak width at half height (PWHH) for Case 1 in order
to compensate for run-to-run variation in the test setup [45]. Thus, a Case that provides a
PWHH of 2 on this plot represents a peak that is double the width of the reference Case 1,
and the overlay of these normalized peaks readily reveals the chromatogram distortion
that is attributable to the valve under test (Figure 14).
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For the 1-butanol peak, the unheated microvalve (Case 2) did not cause any noticeable
distortion relative to Case 1, but it showed ≈20% broadening for the DEMP peak. The
heated microvalve (Case 3) showed no distortion for both the 1-butanol peak and DEMP
peak. In contrast, the unheated COTS valve (Case 4) increased PWHH of the 1-butanol peak
by ≈240% (Figure 13a). The DEMP peak was virtually eliminated in Case 4, which indicated
that DEMP was severely retained by the COTS valve. Thus, the light polar species were
slightly affected by the microvalve operating at room temperature, but severely affected
by the COTS valve. Further, the heating of the microvalve virtually eliminated distortion.
These results were verified with multiple runs of each test case.

Additional chemicals that were tested in Case 3 included a non-polar mixture (con-
taining pentane, benzene, toluene, ethylbenzene, o-xylene, and decane), and a polar
mixture (containing acetone, 1-butanol, chlorobenzene, DMMP, and DEMP). In both chro-
matograms, which are shown in Figure 14, all of the chemical species eluted in the sequence
of their expected retention time [45] and did not show significant peak distortion. Overall,
the results showed that the heated microvalve does not retain analytes and, consequently,
that the sensitivity of µGC systems that incorporate it will not be affected.

5. Conclusions

In conclusion, this paper has reported a monolithic multi-valve module that combines
microfabricated valve seats, fluidic microchannels, heaters, and thermistors with prefabri-
cated valve membranes and actuators. In addition to the three-valve module, a two-valve
module with the same footprint and structure has also been fabricated and tested; it has
provided similar results. The integration of microfabricated components and commer-
cially available components has eliminated the need to fabricate thin suspended valve
membranes, which simplifies the fabrication and improves the robustness. These features
enable the incorporation of the multi-valve modules into µGC systems. The microvalve
module has been tested with polar and non-polar species of VOCs and it has demonstrated
chromatograms with almost no peak distortion when embedded flow heating is used.
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The superior chemical resistance and embedded flow heating capability of the microvalve
module have also been confirmed as being extremely necessary and critical for µGC; the
chemical resistance of the unheated COTS valve has been shown to cause significant peak
distortion.

The microvalve has provided a high open-close ratio of flow conductance of 3.46 × 103

and a large flow conductance of 4.15 sccm/kPa (i.e., a flow resistance of 0.24 kPa/sccm) in
the open state. It unlike many microfabricated valves, where the low flow conductance
was primarily constrained by the membrane displacement that can be generated by the
actuators (e.g., [26,28,33,34]), the solenoid actuators that have been used in this work
provide a large displacement of 560 µm, and do not limit the flow conductance. This
suggests that the flow conductance can be further increased by increasing the hydraulic
diameters of the fluidic channels and external capillary tubing. However, the microvalves
suffered from minor leakage (0.0012 sccm/kPa) in the closed state. One possible reason is a
misalignment between the soft post and actuator, which could cause non-uniform force
distribution and, consequently, leave a gap between the valve membrane and valve seat.
The use of appropriate alignment jigs and tools in the assembly process may alleviate this
issue.

The main power consumption of microvalves resulted from the embedded flow
heating. For maintaining the microvalve at 75 ◦C, as necessary for accommodating certain
chemical species, the required embedded flow heating power was ≈1.0 W. The operating
temperature can be further increased by providing thermal isolation to the die stack and
housing. Additionally, the packaging materials with higher temperature tolerance should
be used. These changes will enhance both heating efficiency and heating capability without
compromising device lifetime, thereby enabling the device to be used at even higher
temperatures in chromatography and sensing systems, such as in certain industrial settings,
or in other applications, such as gas fuel delivery.
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