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Background: Dynamic functional network connectivity (dFNC) estimated

from resting-state functional magnetic imaging (rs-fMRI) studies the

temporally varying functional integration between brain networks. In a

conventional dFNC pipeline, a clustering stage to summarize the connectivity

patterns that are transiently but reliably realized over the course of a scanning

session. However, identifying the right number of clusters (or states) through

a conventional clustering criterion computed by running the algorithm

repeatedly over a large range of cluster numbers is time-consuming and

requires substantial computational power even for typical dFNC datasets, and

the computational demands become prohibitive as datasets become larger

and scans longer. Here we developed a new dFNC pipeline based on a two-

step clustering approach to analyze large dFNC data without having access to

huge computational power.

Methods: In the proposed dFNC pipeline, we implement two-step clustering.

In the first step, we randomly use a sub-sample dFNC data and identify

several sets of states at different model orders. In the second step, we

aggregate all dFNC states estimated from all iterations in the first step and

use this to identify the optimum number of clusters using the elbow criteria.

Additionally, we use this new reduced dataset and estimate a final set of

states by performing a second kmeans clustering on the aggregated dFNC

states from the first k-means clustering. To validate the reproducibility of

results in the new pipeline, we analyzed four dFNC datasets from the human

connectome project (HCP).

Results: We found that both conventional and proposed dFNC pipelines

generate similar brain dFNC states across all four sessions with more than

99% similarity. We found that the conventional dFNC pipeline evaluates the

clustering order and finds the final dFNC state in 275 min, while this process

takes only 11 min for the proposed dFNC pipeline. In other words, the new
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pipeline is 25 times faster than the traditional method in finding the optimum

number of clusters and finding the final dFNC states. We also found that

the new method results in better clustering quality than the conventional

approach (p < 0.001). We show that the results are replicated across four

different datasets from HCP.

Conclusion: We developed a new analytic pipeline that facilitates the analysis

of large dFNC datasets without having access to a huge computational power

source. We validated the reproducibility of the result across multiple datasets.

KEYWORDS

dynamic functional network connectivity, kmeans clustering, human connectome
project, big data, reproducibility

Introduction

In recent decades, blood-oxygenation-level-dependent
(BOLD) functional magnetic resonance imaging (fMRI) has
provided unique information about brain changes associated
with various brain disorders (Heeger and Ress, 2002; Poldrack,
2008; Carbó-Carreté et al., 2020). Functional MRI is a
non-invasive imaging technique that identifies localized, time-
varying alterations in brain metabolism, such as blood flow
and deoxygenated hemoglobin levels (Herberholz et al., 2011).
These metabolic changes can be induced by a cognitive task (i.e.,
task-based fMRI) (Cook et al., 2020) or via unregulated brain
fluctuations during rest (i.e., resting-state fMRI). Functional
connectivity (FC) or its network analog functional network
connectivity (FNC) studies the temporal dependence (typically
assessed with correlation) between the BOLD fMRI signal from
different brain regions (van den Heuvel and Hulshoff Pol, 2010).
The FNC approach uses temporal dependence to infer how
various brain networks communicate and may play a significant
role in understanding how large-scale neuronal communication
in the human brain relates to human behavior (Kalinosky et al.,
2019; Cook et al., 2020) and how neurodegenerative diseases
alter this relationship (Wang et al., 2019; Yan et al., 2019;
Hummer et al., 2020; Quevenco et al., 2020; Vega et al., 2020).

Most previous studies assume FNC is static over time and
ignore (average out) brain dynamics (Ioannides, 2007). Indeed,
FC is highly dynamic, even during the resting state (Sendi et al.,
2021c). In recent years, a new line of research called dynamic
functional network connectivity (dFNC) has moved beyond
studying the strength of connectivity among brain regions
and studied the temporal properties of the FNC (Allen et al.,
2014). Dynamic FNC has shown promise as a biomarker for
schizophrenia (Sendi et al., 2021a,b), Alzheimer’s disease (Sendi
et al., 2021c), major depressive disorder (Sendi et al., 2021d),
and autism spectrum disorder (Harlalka et al., 2019). It has
been shown that dFNC improves the classification of disordered

and healthy conditions (Rashid et al., 2016; Saha et al.,
2021) and provides more information about neurological and
neuropsychiatric disorders pathology than its static counterpart
(Menon and Krishnamurthy, 2019).

Figure 1 shows the conventional analytic pipeline that is
used for analyzing dFNC information (Rashid et al., 2016; Sendi
et al., 2021a,b,c,d). This pipeline contains four main steps. In
the first step, we estimate the intrinsic components for the
desired brain regions. Second, we calculate the dFNC using a
sliding window. In the third step, we concatenate all dFNCs
of all subjects and go through an optimization process to find
the clustering order based on the elbow criterion. In the fourth
step, we estimate the final dFNC for the whole group and state
vector for each individual and calculate the dFNC (or temporal)
features for statistical analysis.

In the conventional dFNC pipeline, we mainly use a kmeans
clustering approach, even though any clustering approach
can be used for clustering dFNC information. This is due
to kmeans clustering simplicity in implementation and the
ability to scale to a large dataset (Fränti and Sieranoja, 2019).
Additionally, it has been shown that kmeans clustering is faster
than the other methods such as spectral clustering, density-
based spatial clustering of applications with noise or DBSCAN,
and mean-shift clustering (McInnes and Healy, 2017). But
it is still slow and needs substantial computational power
when we work on a sizeable dFNC dataset. On the other
hand, recently, the availability of extremely large neuroimaging
datasets has made the computational burden of clustering dFNC
measurements a significant practical challenge. For example,
the UK Biobank dataset released neuroimaging data from more
than 40,000 participants (Alfaro-Almagro et al., 2021) and
has targeted acquiring data from 100,000 individuals (Alfaro-
Almagro et al., 2018). Also, it has been discussed that many
neuroimaging analytic pipelines are not scalable for massive data
sets, including possibly tens, if not hundreds of thousands of
participants (van Horn and Toga, 2014).
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FIGURE 1

The conventional dFNC pipeline. In Step 1, we estimate the independent components using group independent component analysis. In Step 2,
we estimate the dFNC using sliding window. In Step 3, we concatenate all dFNCs across all participants. Then, based on elbow criteria, we
estimate the cluster order. In Step 4, we use a standard kmeans clustering approach and calculate the dFNC state for group and state vector for
everyone.

There are a few disadvantages of using kmeans clustering in
the conventional dFNC pipeline. First, we need to load and feed
the entire dFNC information to the kmeans clustering to find the
final state. Therefore, we need substantial computational power
to analyze the sizeable dFNC information. Second, finding the
clustering order or the optimum number of dFNC states takes
much time in the conventional dFNC pipeline for the large
dFNC information. Therefore, developing a framework that can
analyze a large dFNC dataset within a reasonable timeframe in a
typical cluster computing environment is needed.

This study introduces a new dFNC pipeline that will mitigate
the aforementioned issue of the conventional dFNC pipeline
in analyzing large dFNC information. The main principle
behind the method is to minimize the need to access a
huge computational power while we work with large dFNC
information. Therefore instead of loading the entire dFNC data
to find the optimum state numbers and final dFNC state, we
partially load the data through multiple iterations. In more
detail, we locally find the states in each iteration and later
aggregate all estimated local dFNC states and estimate the
final dFNC state for the entire dataset. Therefore, this new
approach does not need a large memory to analyze large
dFNC data. We evaluated the reproducibility of the results
with both standard and proposed dFNC pipelines across four
rs-fMRI sessions of human connectome project (HCP) young
adults. Additionally, we compared the time needed to find

the optimal cluster number with the proposed pipeline vs. the
standard one and showed that our approach is faster than the
standard method in finding the cluster order. At the same time,
both pipelines generate similar dFNC features after finding the
final dFNC states.

Material and methods

Our analytic pipeline includes rs-fMRI preprocessing,
extracting independent components, calculating dFNC, and
estimating the cluster order and dFNC states using the
proposed dFNC pipeline. The following subsection describes
each step in more detail.

Preprocessing and independent
components extraction

We used the statistical parametric mapping (SPM121)
running in MATLAB2019 to preprocess the fMRI data. The first
five dummy scans were removed before preprocessing. Rigid
body motion correction was used to account for the participant’s

1 https://www.fil.ion.ucl.ac.uk/spm/
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head movement. Then, we used spatial normalization by
echo-planar imaging (EPI) template in the standard Montreal
Neurological Institute (MNI) space. Finally, a Gaussian kernel
was used to smooth the fMRI images using a full width at
half maximum (FWHM) of 6 mm. Next, we adapted the
Neuromark pipeline to extract intrinsic connectivity networks
(ICNs) for each subject (Du et al., 2020). Using this pipeline, we
estimated 53 ICNs for each subject and categorized them into
seven network domains, including subcortical network (SCN),
auditory network (ADN), sensorimotor network (SMN), visual
network (VSN), cognitive control network (CCN), the default-
mode network (DMN), and cerebellar network (CBN) as shown
in Figure 2. The details of the extracted ICNs are provided in
(Sendi et al., 2021c).

Dynamic functional network
connectivity estimation

We used a tapered sliding window and estimated the FC
within each window using the Pearson correlation, as shown in
Eq. 1.

R =
∑N

n = 1 (x1 − x1)(x2 − x2)√∑N
n = 1 (x1 − x1)

2
√∑N

n = 1 (x2 − x2)
2

(1)

where x1 and x2 are time-course signals and x1 and x2 are the
mean of x1 and x2, respectively. It takes values in the interval

[−1, 1] and measures the strength of the linear relationship
between x1 and x 2.

With 53 ICN, the size of each dFNC is 53× 53, which equals
1,378 distinct connectivity features. Next, we concatenated
dFNC estimates of each window for each subject to form a
matrix, called dFNC tensor hereafter, with the size of T × F,
where T denotes the number of windows and F donates the
number of connectivity features (Figure 3).

Proposed dynamic functional network
connectivity pipeline

Figure 3 shows the proposed dFNC pipeline for estimating
dFNC states of the large dataset. This method includes a few
steps. Step1: We sub-sample subjects dFNC tensors (m subjects
from n subjects per iteration). Then, we run a standard kmeans
clustering on the subsampled data with different values of
k = 2, 3, .., L. The k-means algorithm divides m × T samples
X of each iteration into k disjoint clusters C1, C2, . . . , Ck. The
cluster centroids µi of Ci minimize the within-cluster sum-of-
squares criterion as shown in Eq. 2.

min
µ1,..,µk

(

k∑
j = 1

mT∑
i = 1

(||xi − µj||
2) (2)

We exhaust all subjects by repeating this process r times over
disjoint sets of m subjects, where r is equal to n

m . In each
iteration, we save all cluster centroids for all values of k ∈ [2, L].

FIGURE 2

Extracted independent components. Fifty three independent components estimated by NeuroMark pipeline. We put them in seven domains
including subcortical network (SCN), auditory network (ADN), sensorimotor network (SMN), visual sensory network (VSN), cognitive control
network (CCN), default mode network (DMN), and cerebellar network (CBN).
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FIGURE 3

The overview of the proposed dFNC pipeline for dFNC state estimation. In Step 1, we select a subsample of dFNC tensor and then used kmeans
clustering with k-values from 2 to L and put them into ( L(L+1)

2 − 1). With r iteration, we would have r( L(L+1)
2 − 1) clusters centroids in total. In

Step 2, concatenated all cluster centroids and we use elbow criteria to find the best k-values, called Kopt hereafter. In Step 3, using another
kmeans clustering approach, we estimated the final dFNC states. In Step 4, we used this final states and found the state vector for each subject.

Therefore, we would have L(L+1)
2 − 1 representative cluster

centroids in each iteration. By repeating this process r times, we
would have r( L(L+1)

2 − 1) cluster centroids, reducing the data
from the whole dFNC. Step 2: We concatenate all centroids
estimated from all r iterations. Next, we use the elbow criteria
to find the optimum number of clusters using all r( L(L+1)

2 − 1)

observations. Step 3: After finding the optimum number of
clusters, called Kopt hereafter, we use another standard k-means
clustering to put all r( L(L+1)

2 − 1) states into Kopt cluster, called
final states. Step 4: Using the final Kopt states, we assign the
dFNC of each subject to one of the estimated states and extract
the state vector of each participant.

Dynamic functional network
connectivity temporal features
estimation

We estimated the occupancy rate (OCR) and the number
of transitions between states as the representative dFNC
temporal features from the state vector. The OCR represents

the proportional amount of time each individual spends in a
given state for all HCP datasets through both standard and
proposed dFNC pipeline.

Clustering quality assessment

To assess the clustering quality for each dFNC data, we
calculated the distance between the dFNC data and its associated
cluster centroid. Then we calculated the distance between each
dFNC sample with the other cluster centroids and then summed
them up. Then, we calculated the ratio of the latter to the former
one for each dFNC instance, called the distance ratio here.
Finally, we averaged all distance ratios out for each participant.

Rp =
1
T

T∑
i = 1

di_sc

di_c
(3)

dic is the distance between each sample to the cluster centroid of
the state the sample belongs. Also, di_sc is the distance between
each sample to other cluster centroids, Rp is the averaged
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distance ratio for each participant. It is worth mentioning that
a higher ratio means better quality in clustering.

Dataset

To test the proposed method, we used the rs-fMRI and
demographic information collected from the 833 young healthy
adults (average age: 28.65; range: 22–37 years; female/male:
443/390) from the HCP (Glasser et al., 2016). This dataset
is available on the HCP website.2 The institutional review
board from both Washington University and the University of
Minnesota approved the study. The rs-fMRI data were collected
on a Siemens Skyra 3T with a 32-channel RF receiver head
coil. High resolution T2∗-weighted functional images were
acquired using a gradient-echo EPI sequence with TE = 33.1 ms,
TR = 0.72 s, flip angle = 52◦, slice thickness = 2 mm,
72 s slices, and 2 mm isotropic voxel, the field of view:
208 × 180 mm (RO × PE), and duration: 14:33 (min: s). For
each participant, four separated rs-fMRI sessions (two sessions
per day) were acquired that are called HCP1 (session1, day1),
HCP2 (session2, day1), HCP3 (session 1, day2), and HCP4
(session2, day12), hereafter. We used all four sessions to evaluate
the reproducibility of the result using the proposed dFNC states
estimation method. The dFNC size of HCP1, HCP2, HCP3, and
HCP4 is 848,827 × 1,378 (8,542 MB), 732,207 × 1,378 (7403
MB), 747,201 × 1,378 (7,555 MB), and 769,692 × 1,378 (7,742
MB), respectively.

Results

Standard and proposed dynamic
functional network connectivity
pipelines produce similar brain states

The first question we were interested in answering is
whether both standard and proposed dFNC pipelines would
generate similar dFNC states or not. To test this, we clustered the
dFNC data with different L-values in the proposed pipeline (as
shown in Figure 3). In the new pipeline, we used 3% of the entire
dataset in each iteration. Using elbow criteria, we found that the
optimal number of clusters is 2 through both conventional and
proposed dFNC pipelines. Then, to evaluate the similarity of
dFNC states estimated by the proposed pipeline (with different
L) with the states estimated by conventional kmeans, we used
the correlation across the matched states as a similarity metric.
The similarity between matched states with varying values of
L is shown in Figure 4A for all four HCP datasets. We found
that the similarity between the matched states generated by both

2 https://www.humanconnectome.org

approaches is more than 99%, with any value L of more than
five, and the results were reproduced across four HCP datasets.
The estimated states with conventional and proposed dFNC
pipelines (L = 6) are shown in Figure 4B for all HCP datasets.

The proposed dynamic functional
network connectivity pipeline finds the
optimum cluster number faster than
the conventional one

After finding the minimum reliable value of L, we
assessed the speed of our method in finding the optimum
number of clusters and compared it with the conventional
method when it uses the whole dataset. We evaluated
the speed of our process with different percentages of
data. The result is shown in Figure 5 for HCP1. We
found that the new dFNC pipeline is faster when we
use a lower percentage of data in each iteration, while
the similarity between the matched states estimated with
both standard and the proposed pipeline is still more
than 98%. Additionally, our proposed method is 25 times
faster in funding the cluster order than the traditional
method when we use only 0.12% of data (one subject)
in each iteration.

Proposed and conventional dynamic
functional network connectivity
pipelines generate similar dynamic
functional network connectivity
features

The next question is whether both approaches generate
similar dFNC features or not. To assess this, we estimated
occupancy rate (OCR), the proportional amount of time each
participant spends in a specific state, and the number of
between-state transition numbers for each participant in both
standard and proposed dFNC pipelines. Both features are
estimated from the state vector, which shows the state of the
brain at a given time (Figure 3, Step 4). Then, to assess
the similarity between the two methods in estimated dFNC
features, we calculated the correlation between the result of
the two methods. The results are shown in Figures 6A,B
for OCR and the number of transitions, respectively, for
all four HCP datasets. As Figure 6A shows, the correlation
between the estimated OCR by conventional and new
dFNC pipelines is more than 0.98 (p < e−10). The result
was replicated for all four HCP datasets. Additionally, the
number of between-state transitions is significantly similar
for both methods, and the result was repeated in all HCP
datasets. This piece of evidence shows that our new dFNC
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FIGURE 4

The estimated dFNC states with the proposed and conventional pipeline for all HCP datasets. (A) We swept the L-value in the first kmeans
clustering and calculated the similarity between the estimated states with new and conventional method. For any L > 5, we did not find a
significant improvement in the similarity between two clustering methods. (B) Both new and conventional pipeline generated similar dFNC
states in all four HCP datasets.

pipeline produced similar dFNC features as well as the
standard kmeans while our method is faster in finding the
clustering order and does not require prohibitive levels of
computational power.

The proposed dynamic functional
network connectivity pipeline has
better cluster quality than the standard
one

Figure 7 shows the distance ratio of both standard and
new dFNC pipelines for the optimum k = 2 values in all four
HCP sessions. We used a two-sample t-test to compare the
distance ratio of the standard vs. the proposed one. We found
proposed dFNC pipeline would have better cluster quality than
the standard one by having a higher distance ratio (p < 0.001,
N = 833).

Discussion

In this study, we developed an analytic pipeline to
analyze large data dFNC information even without having a
sophisticated computational resource. There are a few benefits
of using this novel framework. (1) In the conventional dFNC
pipeline, we need to load the entire dataset regardless of
the clustering approach. Loading the entire dFNC data is
computationally demanding and slow when using a large dFNC
dataset. Our proposed dFNC pipeline does not require loading
the entire dataset. This dramatically reduces the required
computational resources and the proposed method can be
implemented in a computer with small memory size, (2) we
showed our method is 25 times faster than the standard
method in finding the cluster order and final dFNC states,
(3) we validated the reproducibility of the result across four
sessions of rs-fMRI data within a population group; and (4) we
demonstrated that our approach generates improved clustering
quality compared to the standard approach.
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FIGURE 5

The clustering evaluation time with conventional and proposed method. Reducing the percentage of the data used in each iteration of the first
step, reduces the evaluation time. The proposed method is 25 times faster the conventional method. The estimated states and their similarity
with states estimated from whole data are shown for each percentage of data.

FIGURE 6

Both standard and the proposed dFNC pipeline generated similar dFNC features replicated across four datasets. (A) Estimated number of
transitions from both standard and proposed pipeline for all HCP datasets. The similarity between the estimated number of transitions from
both methods is more than 0.989. (B) Estimated occupancy rate (OCR) from both standard and proposed pipeline for all HCP datasets. The
similarity between the OCR from both method is more than 0.989 (p < 0.0001, N = 833).

Unlike the conventional dFNC pipeline in which we need
to load the entire dataset, our approach loads a portion
of the data in each iteration. Therefore, we reduce both

the required memory as well as the computational time.
Previous studies proposed the mini-batch kmeans that partially
loads the data and does not need expensive computational
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HCP1 HCP2 HCP3 HCP4

* * * *

RP

Conven�onal Proposed

FIGURE 7

The comparison of the cluster quality between standard (blue) and proposed (red) approach. Each column represents that result of each
session. In all comparisons, proposed dFNC pipeline had higher cluster quality (p < 0.001, N = 833). Asterisk (*) represents a significant different
between the clustering quality based of old and proposed.

resources (Hicks et al., 2021). But as (Béjar Alonso, 2013)
shows, the cluster quality for mini-batch kmeans is reduced
compared to standard kmeans clustering, especially when the
number of clusters increases. Unlike the mini-batch kmeans
approach, our approach reduces the entire clustering process
time (Figure 5) and increases the clustering quality compared
with standard kmeans (Figure 7). Additionally, we can adapt
mini-batch kmeans or other fast clustering approaches to our
proposed dFNC pipeline (Viswanath and Suresh Babu, 2009;
Choromanska et al., 2013; Pourkamali-Anaraki and Becker,
2017; Chen et al., 2021). In other words, our new approach is
a clustering algorithm agnostic pipeline.

Recent approaches for kmeans clustering of big data have
focused on identifying the most informative features for the
dataset and then running a kmeans on the reduced set.
For example, a recent study reduced the dimension of the
data set from p to m (p > m) by applying a principal
component analysis on the entire dataset followed by a kmeans
clustering on the projected dataset (Feldman et al., 2013).
This method still needs the whole dataset to be loaded,
which requires massive computational power. Additionally,
since the kmeans is applied to the project space, we do not
have an estimation of the cluster centroid in the original
space. However, we can transfer the cluster centroid to
the original space, but this estimate is inaccurate and yield
lower cluster quality than the standard kmeans approach.
But, our approach increases the analysis speed without
applying any dimensionality reduction approach. Therefore,
our method does not lose any information and yields a lower
clustering quality.

Our dFNC pipeline is based on the Neuromark pipeline,
a fully automated independent component analysis (ICA)

framework that uses spatially constrained ICA to estimate
components that are flexible to each subject’s data and
comparable across individuals (Du et al., 2020). Using the
Neuromark pipeline, we calculated the replicated independent
components for four HCP sessions. Additionally, we showed
that (1) both standard and proposed pipelines generated similar
dFNC states in each session of HCP data, and (2) the brain states
were replicated across all four sessions using both standard
and the proposed dFNC pipeline. The reproducibility of the
result across four sessions assessed the robustness of the
proposed dFNC pipeline.

There are a few limitations to this study. First, the clustering
method in the proposed dFNC pipeline is not limited to kmeans
clustering. We can adapt other fast clustering approaches to
this pipeline and further improve the computational speed.
Second, we did not compare our method’s computational speed
and clustering quality with different fast clustering approaches
(Viswanath and Suresh Babu, 2009; Choromanska et al., 2013;
Pourkamali-Anaraki and Becker, 2017; Chen et al., 2021).
However, unlike these fast methods, our approach generated
a better quality cluster than the standard kmeans clustering
method. A future study is needed to compare the results across
multiple clustering approaches. Third, we did not propose an
algorithmic approach to set the maximum L-value (Figure 3).
Finding the optimum L-values is done empirically by running
the method multiple times to evaluate replicability at different
values of L. Future study is needed to develop a mathematical
approach to finding the optimum L-values for each dataset.
Additionally, we assumed that the preprocessing, group ICA,
and estimating dFNC of the large dataset are already done,
requiring considerable computation power for a large dataset.
A future study is required to develop a methodology to estimate
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dFNC information for a large dataset without needing a huge
computational power.

Conclusion

Previous dFNC analytics pipelines use standard kmeans
clustering, which is ill-suited for big dFNC data. Here, we
developed a new dFNC pipeline that reduced the evaluation
time for finding the cluster order while we only loaded a
portion of the dataset through several iterations. We validated
that our method produces similar brain states and dFNC
features as the standard method. Additionally, we evaluated
the reproducibility of results across four HCP young adult
datasets, which showed the high robustness of the proposed
method. There are a few advantages of using the proposed
approach over the existing method. (1) In the existing pipeline
for analyzing dFNC information, we need to load the entire
dataset, which requires a huge computational power. But in the
proposed dFNC pipeline, we only need to load a small portion
of data in each iteration, and it does not need to have access
to a big RAM size to analyze the data. (2) The new existing
method can find the optimum number of clusters faster than the
existing dFNC pipeline, and (3) we showed that the clustering
quality is significantly better than what we can get from the
conventional dFNC pipeline.

Data availability statement

The datasets presented in this study can be found in
online repositories. The names of the repository/repositories
and accession number(s) can be found below: https://www.
humanconnectome.org/study/hcp-young-adult.

Ethics statement

This study involving human participants was reviewed and
approved by the Washington University and the University of
Minnesota.

Author contributions

MS developed the method, analyzed the data, and wrote
the manuscript. RM developed the method and provided
feedback on the manuscript. DS provided the feedback on the
manuscript. VC supervised the study and provided feedback
on the manuscript. All authors contributed to the article and
approved the submitted version.

Funding

This study was in part funded by the NSF #2112455 and
NIH R01MH123610.

Acknowledgments

We thank those who participated in the HCP study and
collected the data.

Conflict of interest

The authors declare that the research was conducted
in the absence of any commercial or financial relationships
that could be construed as a potential conflict of
interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

References

Alfaro-Almagro, F., Jenkinson, M., Bangerter, N. K., Andersson, J. L. R.,
Griffanti, L., Douaud, G., et al. (2018). Image processing and quality control for the
first 10,000 brain imaging datasets from UK Biobank. Neuroimage 166, 400–424.
doi: 10.1016/j.neuroimage.2017.10.034

Alfaro-Almagro, F., McCarthy, P., Afyouni, S., Andersson, J. L. R., Bastiani, M.,
Miller, K. L., et al. (2021). Confound modelling in UK Biobank brain imaging.
Neuroimage 224:117002. doi: 10.1016/j.neuroimage.2020.117002

Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., and Calhoun,
V. D. (2014). Tracking whole-brain connectivity dynamics in the resting state.
Cereb. Cortex 24, 663–676. doi: 10.1093/cercor/bhs352

Béjar Alonso, J. (2013). K-means vs Mini Batch K-Means: A Comparison.
Available online at: http://hdl.handle.net/2117/23414 (accessed May, 2013).

Carbó-Carreté, M., Cañete-Massé, C., Peró-Cebollero, M., and Guàrdia-Olmos,
J. (2020). Using fMRI to assess brain activity in people with down syndrome:

Frontiers in Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2022.895637
https://www.humanconnectome.org/study/hcp-young-adult
https://www.humanconnectome.org/study/hcp-young-adult
https://doi.org/10.1016/j.neuroimage.2017.10.034
https://doi.org/10.1016/j.neuroimage.2020.117002
https://doi.org/10.1093/cercor/bhs352
http://hdl.handle.net/2117/23414
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-895637 July 22, 2022 Time: 11:29 # 11

Sendi et al. 10.3389/fnins.2022.895637

a systematic review. Front. Hum. Neurosci. 14:147. doi: 10.3389/fnhum.2020.0
0147

Chen, R., Zhao, S., and Liang, M. (2021). A fast multiscale clustering approach
based on DBSCAN. Wirel. Commun. Mobile Comput. 2021:4071177. doi: 10.1155/
2021/4071177

Choromanska, A., Jebara, T., Kim, H., Mohan, M., and Monteleoni, C. (2013).
“Fast spectral clustering via the Nyström method,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 8139 LNAI, eds S. Jain, R. Munos, F. Stephan, and T.
Zeugmann (Berlin: Springer), 367–381. doi: 10.1007/978-3-642-40935-6_26

Cook, M. J., Gardner, A. J., Wojtowicz, M., Williams, W. H., Iverson, G. L.,
and Stanwell, P. (2020). Task-related functional magnetic resonance imaging
activations in patients with acute and subacute mild traumatic brain injury: a
coordinate-based meta-analysis. Neuroimage Clin. 25:102129. doi: 10.1016/j.nicl.
2019.102129

Du, Y., Fu, Z., Sui, J., Gao, S., Xing, Y., Lin, D., et al. (2020). NeuroMark: an
automated and adaptive ICA based pipeline to identify reproducible fMRI markers
of brain disorders. Neuroimage Clin. 28:102375. doi: 10.1016/j.nicl.2020.102375

Feldman, D., Schmidt, M., and Sohler, C. (2013). “Turning big data into tiny
data: constant-size coresets for k-means, PCA, and projective clustering,” in
Proceedings of the 2013 24th Annual ACM-SIAM Symposium Discrete Algorithms,
New Orleans, LA, 1434–1453. doi: 10.1137/18M1209854

Fränti, P., and Sieranoja, S. (2019). How much can k-means be improved by
using better initialization and repeats? Pattern Recognit. 93, 95–112. doi: 10.1016/
j.patcog.2019.04.014

Glasser, M. F., Smith, S. M., Marcus, D. S., Andersson, J. L. R., Auerbach, E. J.,
Behrens, T. E. J., et al. (2016). The Human Connectome Project’s neuroimaging
approach. Nat. Neurosci. 19, 1175–1187. doi: 10.1038/nn.4361

Harlalka, V., Bapi, R. S., Vinod, P. K., and Roy, D. (2019). Atypical flexibility
in dynamic functional connectivity quantifies the severity in autism spectrum
disorder. Front. Hum. Neurosci. 13:6. doi: 10.3389/fnhum.2019.00006

Heeger, D. J., and Ress, D. (2002). What does fMRI tell us about neuronal
activity? Nat. Rev. Neurosci. 3, 142–151. doi: 10.1038/nrn730

Herberholz, J., Mishra, S. H., Uma, D., Germann, M. W., Edwards, D. H., and
Potter, K. (2011). Non-invasive imaging of neuroanatomical structures and neural
activation with high-resolution MRI. Front. Behav. Neurosci. 5:16. doi: 10.3389/
fnbeh.2011.00016

Hicks, S. C., Liu, R., Ni, Y., Purdom, E., and Risso, D. (2021). Mbkmeans:
fast clustering for single cell data using mini-batch k-means. PLoS Comput. Biol.
17:e1008625. doi: 10.1371/JOURNAL.PCBI.1008625

Hummer, T. A., Yung, M. G., Goñi, J., Conroy, S. K., Francis, M. M., Mehdiyoun,
N. F., et al. (2020). Functional network connectivity in early-stage schizophrenia.
Schizophr. Res. 218, 107–115. doi: 10.1016/j.schres.2020.01.023

Ioannides, A. A. (2007). Dynamic functional connectivity. Curr. Opin.
Neurobiol. 17, 161–170. doi: 10.1016/j.conb.2007.03.008

Kalinosky, B. T., Vinehout, K., Sotelo, M. R., Hyngstrom, A. S., and Schmit, B. D.
(2019). Tasked-based functional brain connectivity in multisensory control of
wrist movement after stroke. Front. Neurol. 10:609. doi: 10.3389/fneur.2019.00609

McInnes, L., and Healy, J. (2017). “Accelerated hierarchical density based
clustering,” in Proceedings of the IEEE International Conference on Data Mining
Workshops, ICDMW, (New Orleans, LA: IEEE), 33–42. doi: 10.1109/ICDMW.
2017.12

Menon, S. S., and Krishnamurthy, K. (2019). A comparison of static and
dynamic functional connectivities for identifying subjects and biological sex using

intrinsic individual brain connectivity. Sci. Rep. 9:5729. doi: 10.1038/s41598-019-
42090-4

Poldrack, R. A. (2008). The role of fMRI in cognitive neuroscience: Where do
we stand? Curr. Opin. Neurobiol. 18, 223–227. doi: 10.1016/j.conb.2008.07.006

Pourkamali-Anaraki, F., and Becker, S. (2017). Preconditioned data
sparsification for big data with applications to PCA and K-Means. IEEE
Trans. Information Theory 63, 2954–2974. doi: 10.1109/TIT.2017.2672725

Quevenco, F. C., van Bergen, J. M., Treyer, V., Studer, S. T., Kagerer, S. M.,
Meyer, R., et al. (2020). Functional brain network connectivity patterns associated
with normal cognition at old-age, local β-amyloid, Tau, and APOE4. Front. Aging
Neurosci. 12:46. doi: 10.3389/fnagi.2020.00046

Rashid, B., Arbabshirani, M. R., Damaraju, E., Cetin, M. S., Miller, R., Pearlson,
G. D., et al. (2016). Classification of schizophrenia and bipolar patients using static
and dynamic resting-state fMRI brain connectivity. Neuroimage 134, 645–657.
doi: 10.1016/j.neuroimage.2016.04.051

Saha, D. K., Damaraju, E., Rashid, B., Abrol, A., Plis, S. M., and Calhoun,
V. D. (2021). A classification-based approach to estimate the number of resting
functional magnetic resonance imaging dynamic functional connectivity states.
Brain Connect. 11, 132–145. doi: 10.1089/brain.2020.0794

Sendi, M. S. E., Zendehrouh, E., Miller, R. L., Fu, Z., Du, Y., Liu, J., et al.
(2021c). Alzheimer’s disease projection from normal to mild dementia reflected
in functional network connectivity: a longitudinal study. Front. Neural Circuits
14:593263. doi: 10.3389/fncir.2020.593263

Sendi, M. S. E., Pearlson, G. D., Mathalon, D. H., Ford, J. M., Preda, A., van
Erp, T. G. M., et al. (2021a). Multiple overlapping dynamic patterns of the visual
sensory network in schizophrenia. Schizophr. Res. 228, 103–111. doi: 10.1016/j.
schres.2020.11.055

Sendi, M. S. E., Zendehrouh, E., Sui, J., Fu, Z., Zhi, D., Lv, L., et al. (2021d).
Abnormal dynamic functional network connectivity estimated from default mode
network predicts symptom severity in major depressive disorder. Brain Connect.
11, 838–849. doi: 10.1089/brain.2020.0748

Sendi, M. S. E., Zendehrouh, E., Ellis, C. A., Liang, Z., Fu, Z., Mathalon, D. H.,
et al. (2021b). Aberrant dynamic functional connectivity of default mode network
in schizophrenia and links to symptom severity. Front. Neural Circuits 15:649417.
doi: 10.3389/fncir.2021.649417

van den Heuvel, M. P., and Hulshoff Pol, H. E. (2010). Exploring the
brain network: a review on resting-state fMRI functional connectivity. Eur.
Neuropsychopharmacol. 20, 519–534. doi: 10.1016/j.euroneuro.2010.03.008

van Horn, J. D., and Toga, A. W. (2014). Human neuroimaging as a “Big Data”
science. Brain Imaging Behav. 8, 323–331. doi: 10.1007/s11682-013-9255-y

Vega, J. N., Taylor, W. D., Gandelman, J. A., Boyd, B. D., Newhouse, P. A.,
Shokouhi, S., et al. (2020). Persistent intrinsic functional network connectivity
alterations in middle-aged and older women with remitted depression. Front.
Psychiatry 11:62. doi: 10.3389/fpsyt.2020.00062

Viswanath, P., and Suresh Babu, V. (2009). Rough-DBSCAN: a fast hybrid
density based clustering method for large data sets. Pattern Recognit. Lett. 30,
1477–1488. doi: 10.1016/j.patrec.2009.08.008

Wang, Z., Qiao, K., Chen, G., Sui, D., Dong, H. M., Wang, Y. S., et al. (2019).
Functional connectivity changes across the spectrum of subjective cognitive
decline, amnestic mild cognitive impairment and Alzheimer’s disease. Front.
Neuroinformatics 13:26. doi: 10.3389/fninf.2019.00026

Yan, C. G., Chen, X., Li, L., Castellanos, F. X., Bai, T. J., Bo, Q. J., et al.
(2019). Reduced default mode network functional connectivity in patients with
recurrent major depressive disorder. Proc. Natl. Acad. Sci. U.S.A. 116, 9078–9083.
doi: 10.1073/pnas.1900390116

Frontiers in Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2022.895637
https://doi.org/10.3389/fnhum.2020.00147
https://doi.org/10.3389/fnhum.2020.00147
https://doi.org/10.1155/2021/4071177
https://doi.org/10.1155/2021/4071177
https://doi.org/10.1007/978-3-642-40935-6_26
https://doi.org/10.1016/j.nicl.2019.102129
https://doi.org/10.1016/j.nicl.2019.102129
https://doi.org/10.1016/j.nicl.2020.102375
https://doi.org/10.1137/18M1209854
https://doi.org/10.1016/j.patcog.2019.04.014
https://doi.org/10.1016/j.patcog.2019.04.014
https://doi.org/10.1038/nn.4361
https://doi.org/10.3389/fnhum.2019.00006
https://doi.org/10.1038/nrn730
https://doi.org/10.3389/fnbeh.2011.00016
https://doi.org/10.3389/fnbeh.2011.00016
https://doi.org/10.1371/JOURNAL.PCBI.1008625
https://doi.org/10.1016/j.schres.2020.01.023
https://doi.org/10.1016/j.conb.2007.03.008
https://doi.org/10.3389/fneur.2019.00609
https://doi.org/10.1109/ICDMW.2017.12
https://doi.org/10.1109/ICDMW.2017.12
https://doi.org/10.1038/s41598-019-42090-4
https://doi.org/10.1038/s41598-019-42090-4
https://doi.org/10.1016/j.conb.2008.07.006
https://doi.org/10.1109/TIT.2017.2672725
https://doi.org/10.3389/fnagi.2020.00046
https://doi.org/10.1016/j.neuroimage.2016.04.051
https://doi.org/10.1089/brain.2020.0794
https://doi.org/10.3389/fncir.2020.593263
https://doi.org/10.1016/j.schres.2020.11.055
https://doi.org/10.1016/j.schres.2020.11.055
https://doi.org/10.1089/brain.2020.0748
https://doi.org/10.3389/fncir.2021.649417
https://doi.org/10.1016/j.euroneuro.2010.03.008
https://doi.org/10.1007/s11682-013-9255-y
https://doi.org/10.3389/fpsyt.2020.00062
https://doi.org/10.1016/j.patrec.2009.08.008
https://doi.org/10.3389/fninf.2019.00026
https://doi.org/10.1073/pnas.1900390116
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

	Two-step clustering-based pipeline for big dynamic functional network connectivity data
	Introduction
	Material and methods
	Preprocessing and independent components extraction
	Dynamic functional network connectivity estimation
	Proposed dynamic functional network connectivity pipeline
	Dynamic functional network connectivity temporal features estimation
	Clustering quality assessment
	Dataset

	Results
	Standard and proposed dynamic functional network connectivity pipelines produce similar brain states
	The proposed dynamic functional network connectivity pipeline finds the optimum cluster number faster than the conventional one
	Proposed and conventional dynamic functional network connectivity pipelines generate similar dynamic functional network connectivity features
	The proposed dynamic functional network connectivity pipeline has better cluster quality than the standard one

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


