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Abstract
The α7-nicotinic acetylcholine receptor (α7-nAChR) is a ligand-gated ion channel widely

expressed in vertebrates and is associated with numerous physiological functions. As trans-

membrane ion channels, α7-nAChRs need to be expressed on the surface of the plasma

membrane to function. The receptor has been reported to associate with proteins involved

with receptor biogenesis, modulation of receptor properties, as well as intracellular signaling

cascades and some of these associated proteins may affect surface expression of α7-

nAChRs. The putative chaperone resistance to inhibitors of cholinesterase 3 (Ric-3) has

been reported to interact with, and enhance the surface expression of, α7-nAChRs. In this

study, we identified proteins that associate with α7-nAChRs when Ric-3 is expressed.

Using α-bungarotoxin (α-bgtx), we isolated and compared α7-nAChR-associated proteins

from two stably transfected, human tumor-derived cell lines: SH-EP1-hα7 expressing

human α7-nAChRs and the same cell line further transfected to express Ric-3, SH-EP1-

hα7-Ric-3. Mass spectrometric analysis of peptides identified thirty-nine proteins that are

associated with α7-nAChRs only when Ric-3 was expressed. Significantly, and consistent

with reports of Ric-3 function in the literature, several of the identified proteins are involved

in biological processes that may affect nAChR surface expression such as post-transla-

tional processing of proteins, protein trafficking, and protein transport. Additionally, proteins

affecting the cell cycle, the cytoskeleton, stress responses, as well as cyclic AMP- and inosi-

tol triphosphate-dependent signaling cascades were identified. These results illuminate

how α-bgtx may be used to isolate and identify α7-nAChRs as well as how the expression of

chaperones such as Ric-3 can influence proteins associating with α7-nAChRs. These asso-

ciating proteins may alter activities of α7-nAChRs to expand their functionally-relevant rep-

ertoire as well as to affect biogenesis and membrane trafficking of α7-nAChRs.
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Introduction
The α7-nicotinic acetylcholine receptor (α7-nAChR) is a homopentameric ligand-gated ion
channel widely expressed in both neuronal and non-neuronal tissue and is associated with
numerous physiological processes such as memory and cognition [1]. Compared to other
nAChR subtypes, the α7-nAChR desensitizes more rapidly, is more permeable to Ca2+, and is a
target for highly selective ligands such as α-Bungarotoxin (α-bgtx), derived from the venom of
the snake Bungarus multicinctus and methyllycaconitine (MLA), derived from plants of the
Delphinium genus [2–4]. These highly selective ligands are powerful tools that enable the isola-
tion of α7-nAChRs and associated proteins.

Receptor-protein associations can occur at various stages of a receptor’s life-cycle to facili-
tate receptor assembly and intracellular trafficking to and from the cell surface membrane, to
modulate receptor function, and to play a role in cellular signaling [3, 5]. Proteins and classes
of proteins associating with nAChRs have been reported that affect each of these processes, in
particular those processes which facilitate receptor assembly and trafficking [3, 6, 7]. Specifi-
cally, chaperones and proteins that affect post-translational modifications such as disulfide
bond formation, dephosphorylation, palmitoylation, and glycosylation have been associated
with nAChR assembly and trafficking [3]. Associating proteins that are involved in the com-
plex process of α7-nAChR surface expression are of particular interest because alterations in
nAChR expression can contribute to disease [8–16]. Additionally, one of the limited number of
proteins previously reported to associate with α7-nAChRs, is the molecular chaperone resis-
tance to inhibitors of cholinesterase 3 (Ric-3), which has been shown to facilitate nAChR
assembly and trafficking [9, 17].

Ric-3 is a chaperone that is predominantly localized to the endoplasmic reticulum (ER) and
has been shown to increase functional expression of homomeric α7-nAChRs on the cell surface
[8, 9, 18–23]. Ric-3 also has been reported to enhance the expression of α8-, α9-, α3β4-, α3β2-,
α4β2-, and α4β4-nAChRs in mammalian cells [24]. The mechanisms by which Ric-3 enhances
surface expression of α7-nAChRs are not fully understood. One proposed mechanism is that
Ric-3 promotes the assembly of nAChR subunits into complete oligomers to facilitate trans-
portation of α7-nAChRs out of the ER [8, 9, 23, 25]. It has also been suggested that the expres-
sion of Ric-3 may be necessary for the recruitment of additional associated proteins to facilitate
nAChR surface expression [24].

The SH-EP1-hα7-Ric-3 cell line has been developed as a model for studies of stable surface
expression of functional human α7-nAChRs [9]. The parental, human tumor-derived SH-EP1
epithelial cell line expresses little, if any, α7-nAChRs or Ric-3 [26, 27]. Capitalizing on the lack
of endogenous expression, the SH-EP1-hα7 cell line was established to stably express human
α7-nAChRs [28]. In a second round of transfection, the SH-EP1-hα7-Ric-3 cell line was estab-
lished to provide stable Ric-3 protein expression and was shown to express a substantially
higher level of functional α7-nAChRs on the cell surface [9].

Work by Paulo et al. used α-bgtx-affinity purification and mass spectrometry to identify
proteins of the murine brain α7-nAChR interactome, i.e., proteins either interacting with the
α7-nAChR or associated with the α7-nAChR protein complex [29]. The work described here
uses α-bgtx-affinity to purify α7-nAChR protein complexes, reproducibly identify human
α7-nAChR peptides, and identifies associated proteins mediated by Ric-3 expression using
high-throughput mass spectrometry.

α-Bgtx-affinity immobilization was used to isolate α7-nAChR protein complexes from
SH-EP1-hα7-Ric-3 and SH-EP1-hα7 cells and associated proteins were identified using mass
spectrometry (Fig 1). SH-EP1-hα7-Ric-3 and SH-EP1-hα7 cells provide a robust source of
human α7-nAChRs and the differential expression of Ric-3 provides an ideal model in which
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Fig 1. Experimental design. Five biological replicates of both SH-EP1-hα7-Ric-3 cells and SH-EP1-hα7
cells were independently processed and analyzed. Triton X-100 solubilized α7-nAChR protein complexes
were isolated from SH-EP1-hα7-Ric-3 and SH-EP1-hα7 extracts using α-bgtx-affinity beads. Binding of
α7-nAChRs to affinity beads was confirmed with 125I-α-bgtx radioligand binding assays. Separately,
α7-nAChR protein complexes isolated from SH-EP1-hα7-Ric-3 and SH-EP1-hα7 were eluted from affinity
beads using 1 M carbachol. Eluted proteins were reduced and alkylated before being digested with trypsin in-
solution. Digested peptides from each of the five samples prepared from SH-EP1-hα7-Ric-3 and
SH-EP1-hα7 cells were analyzed with a Q Exactive mass spectrometer, spectra identified using the Mascot
algorithm and results analyzed using ProteoIQ. Identified α7-nAChR associated proteins from
SH-EP1-hα7-Ric-3 and SH-EP1-hα7 cells were compared. Associations only identified with Ric-3 co-
expression in SH-EP1-hα7-Ric-3 cells were determined to be Ric-3-mediated changes in the α7-nAChR
interactome.

doi:10.1371/journal.pone.0134409.g001
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to investigate the effect of Ric-3 expression on the α7-nAChR interactome. A comparison of
α7-nAChR associated proteins in both cell lines allows for the identification of receptor-pro-
tein interactions that occur with Ric-3 co-expression. Ric-3-mediated α7-nAChR associated
proteins may interact with the receptor during and after direct interaction of Ric-3 with
α7-nAChRs. During direct interaction with α7-nAChRs, Ric-3 may recruit other proteins to
the receptor complex to facilitate surface expression. After the dissociation of Ric-3, proteins
may associate with mature α7-nAChRs as a result of Ric-3-mediated surface expression. The
comparison of α7-nAChR complexes from SH-EP1-hα7-Ric-3 and SH-EP1-hα7 cells provides
a method of identifying associated proteins, including those that may be essential for Ric-
3-mediated enhancement of α7-nAChR surface expression.

Materials and Methods

Preparation of α-bgtx-Sepharose affinity beads
Cyanogen bromide-activated Sepharose beads 4B (Sigma-Aldrich, St. Louis, MO) (1 g) were
hydrated in 5 mL cold 1mMHCl for 30 minutes and washed with 500 mL 1 mMHCl over a
coarse glass filter. The beads were then added to 7.5 mL coupling buffer (0.25 M NaHCO3, 0.5
M NaCl, pH 8.3) and subsequently centrifuged at 4°C for 5 minutes at 1,500 x g. The superna-
tant was discarded, and the pellets were resuspended in 7.5 mL coupling buffer containing 4
mg of α-bgtx (Life Technologies, Eugene, OR). Bead/ligand mixtures were incubated with gen-
tle agitation at 4°C for 18 hours. The beads were subsequently pelleted and resuspended in 7.5
ml of 0.2 M glycine in 80% coupling buffer, 20% ultrapure water and gently agitated overnight
at 4°C to block unreacted groups on the beads. The beads were then washed several times over
a course glass filter, first with 100 mL of 0.1 M NaHCO3, 0.5 M NaCl, pH 8.0, then 100 mL of
0.1 M NaCH3CO2, 0.5 M NaCl, pH 4.0, again with 100mL of 0.1 M NaHCO3, 0.5 M NaCl, pH
8.0, 100 mL coupling buffer, and lastly twice with 100 mL Tris-buffered saline (TBS: 150 mM
NaCl, 50 mM Tris, pH 7.5). Washed beads were resuspended in TBS for storage at 4°C. Prior
to use, α-bgtx-affinity beads were uniformly resuspended into a slurry and were centrifuged at
4°C for 5 minutes at 1,500 x g. Pelleted beads were resuspended to make a 50/50 slurry with
homogenization buffer (100 mMNaCl, 25 mMNaH2PO4, pH 7.4) before use.

Cell culture
SH-EP1, SH-EP1-hα7, and SH-EP1-hα7-Ric-3 cells were cultured in DMEM (Sigma-Aldrich,
St. Louis, MO) containing 10% horse serum, 5% fetal bovine serum, and 50 μg/ml gentamicin
(Life Technologies, Eugene, OR). SH-EP1-hα7 cells were grown with an additional 80 mg/L
hygromycin B (Invivogen, San Diego, CA) and SH-EP1-hα7-Ric-3 cells with an additional 80
mg/L hygromycin B and 40 mg/L G418 (Thermo Fisher Scientific Inc., Waltham, MA). The
vector used to transfect both cell lines to express human α7-nAChR confers hygromycin B
resistance while the vector used to express Ric-3 in SH-EP1-hα7-Ric-3 confers G418 resistance
[9, 28]. Cultures were maintained in 75 cm2 flasks in a humidified atmosphere containing 5%
CO2 at 37°C. Cells were processed to isolate solubilized membrane protein when cells were
90% confluent in flasks.

Membrane protein solubilization
Cells were washed with homogenization buffer (100 mMNaCl, 25 mM NaH2PO4, pH 7.4)
before being mechanically dislodged. Isolated cells were then homogenized with 30 strokes of a
Potter-Elvehjem glass homogenizer on ice. SH-EP1-hα7-Ric-3, SH-EP1-hα7, and SH-EP1
membrane solubilization conditions were adapted fromWu, et al. [30]. Membrane fragments
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were isolated following centrifugation at 10,000 x g for 10 minutes at 4°C. Membrane pellets
were then homogenized in solubilization buffer (100 mMNaCl, 25 mM NaH2PO4, 1% Triton
X-100, pH 7.4) with 40 strokes of a Potter-Elvehjem glass homogenizer and incubated for 30
minutes at 4°C with agitation to solubilize membrane-bound proteins. Following centrifuga-
tion at 12,600 x g for 10 minutes at 4°C, the solubilized membrane extract was recovered in the
supernatant. All buffers used to isolate the solubilized membrane extract were supplemented
with protease inhibitors (Roche Applied Science, Indianapolis, IN). Protein content of solubi-
lized membrane extracts was determined using a BCA assay (Pierce).

Ric-3 immunoblotting
Detergent solubilized receptor preparations (12.5 μg protein per lane) of SH-EP1-hα7-Ric-3
and SH-EP1-hα7 cell lines were used for immunoblotting. Samples were incubated at 60°C for
1 hour with 47.6 mM TCEP and 1x NuPAGE sample buffer (Life Technologies, Eugene, OR),
then alkylated in 76.3 mM iodoacetamide at room temperature for 1 hour in the dark. Proteins
were separated by SDS-PAGE and transferred at 100 V for 90 minutes to a nitrocellulose mem-
brane (Thermo Fisher Scientific Inc., Waltham, MA). The membrane was blocked in 5% non-
fat milk in TBST buffer (150 mMNaCl, 10 mM Tris, 0.05% Tween-20, pH 8) for 1 hour at
room temperature and then was incubated with anti-Ric-3 antibodies (ab112911, Abcam,
Cambridge, MA) diluted 1:500 in 3% milk TBST buffer overnight at 4°C. After washing with
TBST, the membrane was incubated with peroxidase conjugated mouse anti-rabbit secondary
antibody (211-032-171, Jackson ImmunoResearch Laboratories, Inc., West Grove, PA) diluted
1:50,000 in 3% milk TBST buffer. The membrane was then washed three times with TBST and
twice with TBS (150 mMNaCl, 10 mM Tris, pH 8) before being incubated for 5 minutes in
SuperSignal West Pico Chemiluminescent Substrate (Thermo Fisher Scientific Inc., Waltham,
MA). Reactive bands were visualized on film after a 3 minute exposure. Ric-3 antibodies were
subsequently stripped from blots using Restore Western Blot Stripping Buffer (Thermo Fisher
Scientific Inc., Waltham, MA) and probed a second time with anti-GAPDH antibodies diluted
1:1000 in 3% milk TBST buffer overnight at 4°C (14C10, Cell Signaling, Danvers, MA). Follow-
ing the incubation with anti-GAPDH antibodies, the protocol was the same as described
above. Bands were visualized on film after a 30 second exposure.

α7-nAChR and associated protein complex isolation
Immediately following the isolation of solubilized membrane extracts, a volume containing 3
mg of solubilized protein was incubated with 200 μl of the 50/50 α-bgtx-affinity bead/homoge-
nization buffer slurry for 4 hours at 4°C with gentle agitation. Control samples were solubilized
receptor preparations treated with 5 μMMLA (Sigma-Aldrich, St. Louis, MO) during the affin-
ity-immobilization incubation. Following the incubation, α-bgtx-affinity beads and bound pro-
tein were transferred to Pierce Spin Cups (Thermo Fisher Scientific Inc., Waltham, MA) and
washed several times with solubilization buffer. After washing, the total affinity-immobilized
α7-nAChR content was measured using a 125I-α-bgtx radioligand binding assay or the isolated
proteins were eluted for mass spectrometric analysis (Fig 1).

Radioligand binding assays
The use of α-bgtx to affinity immobilize α7-nAChRs and concurrently detect them is possible
because α7-nAChRs contain multiple α-bgtx binding sites [31]. Affinity-immobilized
α7-nAChR content was determined by incubating the membrane protein-α-bgtx-affinity bead
complex with 5 nM 125I-α-bgtx (Perkin Elmer, Boston, MA) for 1 hour at room temperature.
Non-specific binding was determined by the inclusion of 1 μM unlabeled α-bgtx before
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addition of 125I-α-bgtx. Following incubation with 125I-α-bgtx, beads were washed three times
with solubilization buffer and measured using a Wallac 1275 Minigamma gamma counter.

Sample preparation, precipitation, and in-solution trypsin digestion
Affinity beads with bound α7-nAChRs and associated proteins were washed three times with
solubilization buffer followed by a single high salt solubilization buffer wash (2M NaCl, 25 mM
NaH2PO4, 1% Triton X-100, pH 7.4) to reduce inclusion of non-specific proteins. Immobilized
proteins were specifically eluted from the α-bgtx-affinity beads by incubation with 100 μl 1 M
carbachol (Sigma-Aldrich, St. Louis, MO) in 20 mMHEPES, pH 8.0 for 30 minutes with agita-
tion every 5 minutes at room temperature. α-Bgtx-affinity beads were allowed to sediment and
the eluted proteins in the supernatant were removed and stored at -80°C until preparation for
mass spectrometry analysis. Protein content was determined using a Pierce BCA Protein Assay
Kit. To prepare for mass spectrometric analysis, samples were thawed and disulfide/sulfhydryl
residues were reduced with 47 mM TCEP in 20 mMHEPES, pH 8.0 for 1 hour at 60°C. Sam-
ples were alkylated with 83 mM iodoacetamide in 20 mMHEPES, pH 8.0 for 1 hour in the
dark at room temperature. Samples were then concentrated and purified via precipitation
using a BioRad ReadyPrep 2-D Cleanup Kit (BioRad, Hercules, CA). Precipitated protein was
resuspended in 50 mM ammonium bicarbonate, pH 7.8 supplemented with 100 ng trypsin
(Promega, Madison, WI) and digested overnight in-solution at 37°C.

Liquid chromatography & mass spectrometry of protein digests
Tryptic digests were analyzed at the Brown University (Providence, RI) NSF-EPSCoR Proteo-
mics Core Facility with an Agilent 1200 (Agilent Technologies) high performance liquid chro-
matography (HPLC) in-line with a Q Exactive Hybrid Quadrupole-Orbitrap Mass
Spectrometer (Thermo Fisher Scientific Inc., Waltham, MA). Separation of peptides was
achieved using a 12 cmMonitor C18 (Column Engineering) reversed-phase column with an
internal diameter of 75 μm and integrated 4 μm electrospray ionization tip (self-pack PicoTip,
New Objective). Peptides were eluted during a 50 minute linear gradient of 100% solvent A
(0.1 M acetic acid in water), 0% solvent B (0.1 M acetic acid in acetonitrile) to 60% solvent A,
40% solvent B) at a flow rate of 200 nl/min and introduced into the mass spectrometer via elec-
trospray ionization (ESI) for analysis (data-dependent mode with 30-second dynamic exclu-
sion with one MS scan followed by nine MS/MS scans). Peak lists of MS/MS spectra were
created using msconvert.exe (v. 2.2.3300) available in the ProteoWizard tool [32]. Data were
bioinformatically matched against a concatenated target-decoy (sequence-reversed) Homo
sapiens database (Uniprot, April 2013) using the Mascot algorithm (Matrix Science, Boston,
MA). Database searches used the following parameters: Up to two missed trypsin cleaves
allowed, 7 ppmMS tolerance, 20 ppmMS/MS tolerance, fixed carbamidomethyl modification,
and variable methionine oxidation modification. Mascot search DAT files were loaded into
ProteoIQ (Premier Biosoft) for further analysis. Proteins were filtered using a minimum pep-
tide length of 6 amino acids, 1% protein false-discovery rate (FDR) and�90% group probabil-
ity of correct identity assignment using the PROVALT and ProteinProphet algorithm
respectively, presence in 2 or more independent replicates, and 0% probability in controls [33–
35]. Protein probabilities represent the probability of correct assignment of all observed pep-
tides in a protein group to the identified protein. Both the PROVALT and
ProteinProphet algorithm are integrated into ProteoIQ. Only Top and Co-Top identifications,
i.e. identifications which include all peptide data in a protein group, were used. Each cell line
was analyzed with five biological replicates (Fig 1). Identified proteins were categorized by
their reported Gene Ontology (GO) biological process terms using Database for Annotation,
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Visualization and Integrated Discovery (DAVID) [36]. If an identified protein did not have a
GO term for associated biological processes, Protein ANalysis THrough Evolutionary Relation-
ships (PANTHER) was used for classification [37, 38]. If neither classification system had an
entry for an identified protein, the protein was classified as unattributed.

Results

α-Bgtx-affinity immobilization and 125I-α-bgtx radioligand binding assay
125I-α-bgtx binding assays were used to determine levels of α7-nAChR content isolated on α-
bgtx affinity beads. Solubilized membrane extracts from SH-EP1-hα7-Ric-3 and SH-EP1-hα7
cell lines were incubated with α-bgtx-affinity beads to isolate α7-nAChRs for further analysis.
Comparable 125I-α-bgtx binding levels were observed for α-bgtx-affinity immobilized protein
from both SH-EP1-hα7-Ric-3 and SH-EP1-hα7 cell solubilized receptor preparations (56 ± 15
and 49 ± 9 respectively fmol 125I-α-bgtx/mg solubilized protein) (Fig 2). Consistent with pub-
lished reports, 125I-α-bgtx binding was undetectable in untransfected SH-EP1 cells [26, 28].
Additionally, in SH-EP1-hα7-Ric-3 and SH-EP1-hα7 cell preparations, 125I-α-bgtx binding
was reduced by more than 99% by the addition of 5 μMMLA, a selective, high-affinity ligand
of the α7-nAChR. This result provides evidence that the α7-nAChR is the principal α-bgtx-
sensitive protein isolated on α-bgtx-affinity beads (Fig 2).

Immunoblot confirmation of Ric-3 expression
SH-EP1 cells have been shown previously to lack detectable protein levels of the chaperone
Ric-3. Immunoblotting was used to probe Ric-3 immunoreactivity in solubilized receptor prep-
arations of SH-EP1-hα7-Ric-3 and SH-EP1-hα7 cells. Solubilized receptor preparations from
SH-EP1-hα7-Ric-3 cells contain Ric-3 immunoreactivity while no immunoreactivity was
observed in preparations of SH-EP1-hα7 cells (Fig 3).

α7-nAChR associated proteins
Carbachol elutions of α-bgtx-affinity immobilized α7-nAChRs from both SH-EP1-hα7-Ric-3
and SH-EP1-hα7 cell preparations were analyzed using a Q Exactive Hybrid Quadrupole-Orbi-
trap Mass Spectrometer (Thermo Fisher Scientific Inc., Waltham, MA). We set the following a
priori inclusion criteria parameters to identify proteins: 1% protein FDR,� 90% group proba-
bility of correct identity assignment, and the presence in two or more of five independent bio-
logical replicates with 0% probability of correct identity assignment in controls as determined
by the ProteinProphet algorithm. Using these criteria, the α7-nAChR was identified in all
SH-EP1-hα7-Ric-3 and SH-EP1-hα7 cell replicates with 100% and 98% probability, respec-
tively, by way of the peptide FPDGQIWKPDILLYNSADER (Table 1). The identified
α7-nAChR peptide was not identified as a peptide from the reported sequence of the
CHRFAM7A protein product (Accession number Q494W8). Ric-3 was detected in SH-EP1--
hα7-Ric-3 cell samples and met all inclusion criteria, but it was associated with a borderline
probability score of 88% (compared to the preset criteria of� 90%). This may reflect the fact
that Ric-3 is only transiently associated with α7-nAChRs. Not all α7-nAChRs will be interact-
ing with Ric-3 at the time of α-bgtx-affinity bead isolation. The 2 M NaCl washes for all sam-
ples were also analyzed to confirm that α7-nAChRs were not eluted during the washing of
material bound to α-bgtx-affinity beads. Neither α7-nAChR peptides nor Ric-3 peptides were
identified in the 2 M NaCl bead wash from SH-EP1-hα7-Ric-3 cell samples. Identification of
the α7-nAChR in SH-EP1-hα7-Ric-3 and SH-EP1-hα7 cell samples confirms that α7-nAChRs
were eluted from the α-bgtx-affinity beads by the cholinergic agonist carbachol. Neither
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Fig 2. 125I-α-bgtx binding to affinity immobilized protein. Detergent solubilized membrane extracts were incubated with α-bgtx-affinity beads for 4 hours
at 4°C. Protein-α-bgtx-affinity bead complexes were incubated with 5 nM 125I-α-bgtx for 1 hour at room temperature. Non-specific binding was determined in
controls by the inclusion of 1 μM unlabeled α-bgtx to preparations prior to the addition of 125I-α-bgtx. Following incubation with 125I-α-bgtx, beads were
washed three times with solubilization buffer and measured. Comparable 125I-α-bgtx binding activity of protein-α-bgtx-affinity bead complexes isolated from
SH-EP1-hα7-Ric-3 (56 ± 15 fmol/mg, in blue) and SH-EP1-hα7 (49 ± 9 fmol/mg, in green) was observed (Student’s t test, p = 0.40) while SH-EP1
preparations (in purple) did not show α-bgtx binding activity. No 125I-α-bgtx binding to protein-α-bgtx-affinity bead complexes was observed in samples
treated with 5 μMMLA confirming α7-nAChR specificity (Student t test, p < 0.05). SH-EP1-hα7-Ric-3 and SH-EP1-hα7 125I-bgtx binding activity was
analyzed with five independent biological replicates. MLA treated samples and SH-EP1 125I-α-bgtx binding activity were analyzed with three independent
biological replicates.

doi:10.1371/journal.pone.0134409.g002
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α7-nAChR nor Ric-3 peptides were identified in carbachol-eluted samples prepared from
SH-EP1 cells, which lack expression of both proteins.

A peptide corresponding to α7-nAChR subunits was identified in α-bgtx-enriched samples
of both SH-EP1-hα7-Ric-3 and SH-EP1-hα7 cell lines. Data analysis was performed using Pro-
teoIQ version 2.7 Protein inclusion criteria include 1% protein FDR, minimum peptide length
of six amino acids�90% probability, identification in 2 or more of 5 replicates (i.e., Data sets),
and 0% probability in controls. FDRs were determined using the PROVALT algorithm and
probabilities were determined with the ProteinProphet algorithm through ProteoIQ analysis.
Only Top and Co-Top identifications were considered.

Proteins identified in our analysis of the α7-nAChR interactome are most likely compo-
nents of large protein complexes and may either be associating directly with the receptor or
with another member of the complex. Comparison of carbachol-eluted proteins from
SH-EP1-hα7-Ric-3 and SH-EP1-hα7 identified thirty-nine Ric-3-promoted α7-nAChR associ-
ated proteins (Table 2). Fourteen of the thirty-nine proteins identified as Ric-3-mediated have
previously been reported as associated with a cellular process known to affect protein expres-
sion (Table 2, category labeled blue). These fourteen Ric-3-mediated associated proteins may
be directly or indirectly recruited by Ric-3 to facilitate receptor assembly and targeting. In addi-
tion to proteins associated with protein expression, seven proteins are associated with protein
turnover, four with signaling, and fourteen associated with other processes (Table 2). In total,
seven of the thirty-nine proteins have functions previously shown to affect nAChRs (Table 3).
Six of the thirty-nine proteins listed in Table 2 were identified with a single unique peptide in
two or more replicates and are summarized in Table 4. Peptide-level detail for all thirty-nine
proteins is provided in S1 Table.

Fig 3. Ric-3 immunoreactivity in SH-EP1-ha7-Ric-3. Solubilized membrane extracts of SH-EP1-hα7-Ric-3
and SH-EP1-hα7 cell lines were probed with anti-Ric-3 polyclonal antibodies. Ric-3 antibody
immunoreactivity at 41 kDa confirms the presence of Ric-3 in membrane extracts from SH-EP1-hα7-Ric-3
cells (A). There is no corresponding band in SH-EP1-hα7 membrane extracts (B). The anti-GAPDH antibody
immunoreactivity was utilized as a loading control.

doi:10.1371/journal.pone.0134409.g003

Table 1. Identification of α7-nAChR in SH-EP1-hα7-Ric-3 and SH-EP1-hα7 cells.

Protein name Accession
number

Cell line Total
peptides

Sequence coverage
(%)

Data
sets

Probability score
(%)

Neuronal acetylcholine receptor
subunit alpha-7

P36544 SH-EP1-hα7-Ric-
3

1 3.98 5 100

P36544 SH-EP1-hα7 1 3.98 5 98

doi:10.1371/journal.pone.0134409.t001
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Receptor-α-bgtx bead complexes were eluted with carbachol from α-bgtx-affinity resin,
reduced, alkylated, precipitated and digested with trypsin in solution. Tryptic peptides were
then analyzed using a Q Exactive mass spectrometer. Thirty nine Ric-3 stimulated proteins
were identified through comparison of carbachol-eluted proteins from SH-EP1-hα7-Ric-3 and
SH-EP1-hα7 α-bgtx-affinity immobilized samples. Each condition was analyzed with five rep-
licates (i.e., Data sets). Data analysis was performed using ProteoIQ version 2.7. Protein inclu-
sion criteria included 1% protein FDR, minimum peptide length of six amino acids,�90%
probability, identification in 2 or more of 5 replicates, and 0% probability in controls. FDRs
were determined using the PROVALT algorithm and probabilities were determined with the
ProteinProphet algorithm through ProteoIQ analysis. Only Top and Co-Top identifications
were considered. Biological processes are listed as determined by DAVID analysis of Gene
Ontology (GO) terms. Biological process GO terms for six proteins are not available. Biological
processes for three of these proteins were available through PANTHER analysis (denoted by
“(P)”) and the remaining three are listed as unattributed. Each protein listed is categorized as
potentially involved with surface expression, protein turnover, signaling, or associated with
biological processes not included in the previous categories as “Other proteins”.

Seven of the thirty-nine proteins identified as Ric-3-mediated have reported functions
which have been previously shown to affect nAChRs. The cited literature reporting the rela-
tionships between each of the listed proteins and nAChRs is categorized as either indicating a
direct association to the listed proteins specifically, or linked by a previously associated class of
proteins (e.g., tyrosine phosphatases), or by both. Two proteins, cAMP-dependent protein
kinase type I-alpha regulatory subunit and inositol 1,4,5-trisphosphate receptor (IP3R) type 1
are listed as both since the literature does not always distinguish either specific proteins in the
PKA complex nor which IP3R type is being discussed. These proteins are further separated by
whether their functions have been associated with α7-nAChRs only, other nAChR subtypes
but not α7-nAChRs or with α7 and other nAChR subtypes.

Six proteins from Table 2 were identified by one unique peptide. Mass to charge ratios (m/z),
charges (z), peptide sequence, andMascot ion scores are listed for each single-peptide-based iden-
tification. For analysis, replicates were assigned replicate numbers one through five. Each identifi-
cation is listed separately for each replicate number in which the single-peptide was observed.

Ninety-seven proteins were uniquely isolated on α-bgtx-affinity beads from SH-EP1-α7 cells
that were not identified in preparations from SH-EP1-hα7-Ric-3 cells. These proteins represent
possible protein associations with α7-nAChRs that form in the absence of Ric-3 expression (S2
Table). A total of 625 proteins that met the inclusion criteria were identified in both cell lines
(S3 Table). These proteins common to both cell lines may represent general α7-nAChR interact-
ing proteins or non-specific interactions with α-bgtx-affinity beads. Analysis of the cellular com-
partment GO terms for proteins unique to SH-EP1-hα7-Ric-3 samples and those unique to
SH-EP1-α7 samples suggests a difference in cellular distribution of the receptors between the
two cell lines (S4 Table). The reported Ric-3-mediated interactome consists of proteins associ-
ated with the cytosol, intracellular membranes, and the ER. Many of the identified Ric-3-medi-
ated proteins are reported to be localized in the ER, which agrees with previous reports that Ric-
3 is a chaperone predominantly expressed in the ER. In comparison, none of the proteins identi-
fied as unique in SH-EP1-α7 samples have been reported to be localized in the ER.

Discussion
To identify the Ric-3-mediated α7-nAChR interactome, specific α-bgtx-binding proteins were
isolated from cells stably expressing the receptor alone or the receptor and Ric-3 using α-bgtx
affinity beads and specifically eluted using a cholinergic agonist. Eluted proteins were digested
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Table 2. Ontological grouping of Ric-3-mediated α7-nAChR associated proteins.

Biological process Associated proteins Accession
number

Total
peptides

Seq.
cov. (%)

Data
sets

Prob.
score (%)

Category

Apoptotic process KN motif and ankyrin repeat domain-
containing protein 2

Q63ZY3 4 6.6 3 100 Protein
turnover

Tax1-binding protein 1 Q86VP1 5 7.5 3 100 Protein
turnover

Cell cycle Cell cycle progression protein 1 Q9ULG6 5 11.3 3 99 Signaling

Cytoskeletal
organization

Rho guanine nucleotide exchange factor
17

Q96PE2 1 0.7 2 98 Signaling

SUN domain-containing protein 2 Q9UH99 3 6.4 2 95 Other proteins

Developmental process
(Developmental
process, regulation of
"*")

Keratin, type I cytoskeletal 15 P19012 11 26.8 5 100 Other proteins

Keratin, type II cuticular Hb4* Q9NSB2 6 11.5 5 96 Other proteins

Keratin, type II cytoskeletal 75 (P) O95678 15 25.1 5 100 Other proteins

Ion transport Ferritin light chain P02792 3 24.6 2 100 Other proteins

Nucleobase,
nucleoside, nucleotide,
and nucleic acid
metabolic process

5'-nucleotidase P21589 6 18.1 3 100 Other proteins

FAD synthase Q8NFF5 2 7.4 2 98 Other proteins

Nuclear receptor coactivator 4 Q13772 3 5.7 2 100 Protein
turnover

TRMT1-like protein Q7Z2T5 1 2.1 3 90 Other proteins

Protein complex
assembly

Erythrocyte band 7 integral membrane
protein

P27105 2 10.1 2 99 Other proteins

Gamma-adducin (P) Q9UEY8 5 8.8 3 100 Surface
expression

Protein folding Calnexin P27824 8 16.1 5 100 Surface
expression

Calreticulin P27797 6 25.4 3 100 Surface
expression

DnaJ homolog subfamily B member 11 Q9UBS4 2 6.7 3 93 Surface
expression

Peptidyl-prolyl cis-trans isomerase A P62937 4 32.7 4 98 Surface
expression

T-complex protein 1 subunit epsilon P48643 3 9.1 2 93 Surface
expression

Protein transport ADP-ribosylation factor 4 P18085 3 20.0 2 95 Surface
expression

Autophagy-related protein 9A Q7Z3C6 1 2.3 2 91 Protein
turnover

Optineurin Q96CV9 1 2.3 2 96 Surface
expression

Translocon-associated protein subunit
gamma

Q9UNL2 1 7.6 2 99 Surface
expression

Protein Modification Dolichol-phosphate
mannosyltransferase

O60762 7 32.7 5 91 Surface
expression

LIM domain only protein 7 Q8WWI1 2 1.5 2 94 Protein
turnover

Tyrosine-protein phosphatase non-
receptor type 14

Q15678 2 4.2 3 92 Surface
expression

Ubiquitin-like modifier-activating enzyme
1

P22314 4 6.3 2 100 Protein
turnover

Regulation of
biosynthetic process

Protein LYRIC Q86UE4 2 9.3 2 99 Other proteins

(Continued)
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with trypsin and the resulting peptides were analyzed with mass spectrometry. Analysis of pep-
tide fragmentation spectrum was used to identify the proteins that associated with α7-nAChRs
in samples isolated from cells expressing, or not expressing Ric-3. Identified in this study were
thirty-nine proteins whose association with α7-nAChR was mediated by co-expression of Ric-
3.

Cellular model
The two cell lines utilized, SH-EP1-hα7-Ric-3 and SH-EP1-hα7, heterologously express
human α7-nAChRs and differentially express the chaperone Ric-3. These cell lines were chosen
to study the Ric-3-mediated α7-nAChR interactome for several reasons. First, the use of these
two transfected cell lines provides a level of control for selective expression of the two proteins
of interest that would be more difficult to achieve using endogenous expression models. Sec-
ond, these two cell lines are a reliable source of α7-nAChR and Ric-3 expression.

Previously, fifty-five α7-nAChR interacting proteins were identified by tandem mass spec-
trometry by comparison of α-bgtx affinity immobilized protein from α7-nAChR wild type and

Table 2. (Continued)

Biological process Associated proteins Accession
number

Total
peptides

Seq.
cov. (%)

Data
sets

Prob.
score (%)

Category

Response to stress Hypoxia up-regulated protein 1 Q9Y4L1 7 10.3 3 100 Surface
expression

Calcium-binding and coiled-coil domain-
containing protein 2

Q13137 8 23.5 5 100 Protein
turnover

Peroxidasin homolog Q92626 9 8.5 5 100 Other proteins

Signal Transduction Angiopoietin-related protein 2 Q9UKU9 3 7.5 2 99 Signaling

cAMP-dependent protein kinase type I-
alpha regulatory subunit

P10644 2 8.4 2 92 Surface
expression

Inositol 1,4,5-trisphosphate receptor type
1

Q14643 4 1.8 2 90 Signaling

Reticulocalbin-3 (P) Q96D15 1 3.7 2 98 Surface
expression

Unattributed BTB/POZ domain-containing protein 2 Q9BX70 4 11.1 4 100 Other proteins

RNA-binding protein 33 Q96EV2 4 4.4 2 92 Other proteins

Uncharacterized protein F5H7S3 7 24.0 3 97 Other proteins

doi:10.1371/journal.pone.0134409.t002

Table 3. Summary analysis of Ric-3-mediated proteins with literature citations implicating functional interactions with nAChRs.

Protein Summary Accession
number

Citation type α7-nAChR
only

α7 and other
nAChRs

non-α7 nAChRs
only

Calnexin P27824 Specific
Protein

[45–58]

Calreticulin P27797 Specific
Protein

[45–48]

cAMP-dependent protein kinase type I-alpha
regulatory subunit

P10644 Both [63,64,66–70]

Dolichol-phosphate mannosyltransferase O60762 Protein Class [3, 42–45]

Inositol 1,4,5-trisphosphate receptor type 1 Q14643 Both [82–85]

Peptidyl-prolyl cis-trans isomerase A P62937 Protein Class [45, 49]

Tyrosine-protein phosphatase non-receptor type 14 Q15678 Protein Class [6,59,61,62]

doi:10.1371/journal.pone.0134409.t003
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α7-nAChR knockout mouse brain tissue [29]. However, α7-nAChR peptides were not identi-
fied by tandem mass spectrometry in this study. Although the α7-nAChR was identified in the
study presented here, none of the fifty-five α7-nAChR interacting proteins identified in the
previous study were identified. In addition to the important distinction that we identified the
α7-nAChR while the previous study did not, there are several differences between the present
study and the previous study that may account for the disparity between the two identified
interactomes. Substantial modifications were made to the α-bgtx-affinity immobilization pro-
tocol and mass spectrometry sample preparation in order to maximize isolation and detection
of α7-nAChRs. The model system in the investigation presented here is also human in origin
and used clonal cells of a single morphology as compared to the heterogeneity of the cell types
found in of the murine brain. The work shown here investigates a more focused, Ric-3-medi-
ated α7-nAChR interactome, rather than a general α7-nAChR interactome, which was the aim
of the previous study.

Ric-3-mediated α7-nAChR associated proteins
The role of the molecular chaperone Ric-3 in α7-nAChR expression has been investigated by a
number of different methods in multiple models and previous reports have demonstrated an
increase in cell surface expression of α7-nAChRs in cells also expressing Ric-3 [9, 23, 26, 39].
Human cells lines were used to identify α7-nAChR protein-associations that appear with co-
expression of Ric-3. Of a total of thirty-nine identified members of the Ric-3-mediated
α7-nAChR interactome, fourteen proteins have been previously reported to be associated with a
process known to affect protein expression. Of the remaining proteins, five are associated with
signal transduction/intracellular signaling, seven with protein catabolism and/or autophagy,
and fourteen that do not have a reported connection to α7-nAChR surface expression, signaling,
protein catabolism or autophagy (Table 2). The fourteen proteins associated with protein
expression as well as the seven proteins associated with protein catabolism and/or autophagy
may represent receptor-protein interactions contributing to the life-cycle of α7-nAChRs (Fig 4).
Ric-3 was identified by mass spectrometry with 88% probability (versus the a priori 90% inclu-
sion criteria) and met all other inclusion criteria. The probability of correct identification of Ric-
3 may fall outside the preset inclusion criteria due to its transient interaction (interacting intra-
cellularly) with α7-nAChR. That transient interaction of Ric-3 nevertheless may lead to the
interactions with the α7-nAChR protein complex identified in this study.

Table 4. Summary of single-peptide-based protein identifications.

Protein Summary Accession number m/z z Peptide sequence Score Replicate

Autophagy-related protein 9A Q7Z3C6 889.85 2 ESDESGESAPDEGGEGAR 42.29 4

Q7Z3C6 889.85 2 ESDESGESAPDEGGEGAR 57.04 5

Optineurin Q96CV9 719.83 2 SEIETQTEGSTEK 20.43 4

Q96CV9 719.83 2 SEIETQTEGSTEK 77.71 5

Reticulcalbin-3 Q96D15 633.28 2 VADQDGDSMATR 87.64 1

Q96D15 633.27 2 VADQDGDSMATR 85.03 2

Rho guanine nucleotide exchange factor 17 Q96PE2 640.81 2 LSSGGGSSSETVGR 89.08 4

Q96PE2 640.81 2 LSSGGGSSSETVGR 89.33 5

Translocon-associated protein subunit gamma Q9UNL2 854.42 2 QQSEEDLLLQDFSR 109.45 4

Q9UNL2 854.41 2 QQSEEDLLLQDFSR 19.33 5

TRMT1-like protein Q7Z2T5 822.37 2 TTDDTTTDNYIAQGK 58.93 2

Q7Z2T5 822.37 2 TTDDTTTDNYIAQGK 57.62 4

Q7Z2T5 822.37 2 TTDDTTTDNYIAQGK 54.36 5

doi:10.1371/journal.pone.0134409.t004
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Endoplasmic reticulum localized associated proteins
Evidence suggests that two of the Ric-3-mediated α7-nAChR-associated proteins are involved
in early stages of protein expression in the ER. First, translocon-associated protein subunit
gamma is a TRAP protein which interacts with SEC61 and is involved in protein translocation
in the ER [40, 41]. Second, dolichol-phosphate mannosyltransferase, is an enzyme that may be

Fig 4. Proteins that could affect the life-cycle of α7-nAChRs. A total of twenty-one identified proteins have
functions that could affect the life-cycle of the α7-nAChR, e.g., receptor biogenesis, modulation of intracellular
and plasma-membrane expressed receptor pools, as well as receptor turnover, autophagy, or apoptosis
related. These proteins are grouped based on their reported cellular compartment localization. The activity of
these proteins may be localized to the endoplasmic reticulum (A), the Golgi complex (B), or the cytosol
(C&D). Cytosolic proteins can either be involved in the mobilization of internal pools of α7-nAChRs through
kinase and phosphatase activity (C) or be associated with protein turnover, autophagy, and apoptosis-related
processes (D).

doi:10.1371/journal.pone.0134409.g004
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involved in N-glycosylation (Table 3). N-glycosylation and subsequent glucose trimming is an
important regulatory step in protein expression in the ER, and α7-nAChRs have been shown
to be glycosylated [3, 42–45]. Further investigation is required to deduce if dolichol-phosphate
mannosyltransferase may be involved with α7-nAChR N-glycosylation. In addition, seven pro-
teins associated with protein folding and receptor assembly were identified: calnexin; calreticu-
lin; peptidyl-prolyl cis-trans isomerase A; DnaJ homolog subfamily B member 11; hypoxia up-
regulated protein 1; t-complex protein 1 subunit epsilon; and reticulocalbin-3.

Calnexin and calreticulin are two ER chaperones which bind to unfolded or misfolded pro-
teins and are central to a cycle of repeated folding and unfolding [45]. The calnexin/calreticulin
cycle is a well-studied ER mechanism for achieving proper protein folding and receptor assem-
bly. The calnexin/calreticulin cycle has also been identified previously as important for muscle
nAChR localization (Table 3) [45–48]. However, the interaction of both chaperones with
α7-nAChRs has not been previously reported. In addition to the two chaperones, a number of
other proteins have been shown to have a role in the calnexin/calreticulin cycle. Peptidyl-proyl
cis-trans isomerases such as peptidyl-prolyl cis-trans isomerase A may also contribute to the cal-
nexin/calreticulin cycle and have been shown to enhance α7-nAChR folding in the ER (Table 3)
[45, 49]. Moreover, BiP, another chaperone associated with protein expression, has been previ-
ously shown to associate with α subunits of the muscle type nAChR [50–52]. BiP is a member of
a large ER protein complex, and while BiP itself was not identified as a α7-nAChR-associated
protein in this study, two other members of the BiP complex were identified: DnaJ homolog sub-
family B member 11 and hypoxia up-regulated protein 1 [53]. The identification of DnaJ homo-
log subfamily B member 11 and hypoxia up-regulated protein 1 as proteins in complex with
α7-nAChR suggests the possible involvement of the BiP complex in facilitating protein folding
in the ER. The interaction of muscle-type nAChR subunits with BiP is short lived [48]. If the
interaction with α7 subunits is similarly short lived, BiP itself would not be identified in this
study. T-complex protein 1 subunit epsilon is a member of the BBS/CCT complex which facili-
tates protein folding through a complex mechanism of trapping unfolded proteins that undergo
a series of ATP hydrolysis-driven confirmation changes to induce proper folding [54]. CCT
complexes have been associated previously with a myriad of proteins but not with nicotinic sub-
units [55]. Additionally, reticulocalbin-3 is a calcium binding protein localized to the ER and has
been shown to facilitate maturation of certain proteins. Based on its identification in the current
study, reticulocalbin-3 may have a similar function in the biosynthesis of α7-nAChRs [56, 57].

Associated proteins localized in the Golgi complex
Following proper folding and receptor assembly, nicotinic receptors are transported to the
Golgi complex before being transported to the cell surface. Once at the plasma membrane,
receptors may undergo endocytosis to be recycled to the Golgi complex, recycled back to the
plasma membrane, or be degraded. Three proteins that were identified as regulated through
Ric-3 in SH-EP1-hα7-Ric-3 cells are associated with protein trafficking. Gamma-adducin is a
membrane-cytoskeleton-associated protein that promotes protein exit from the Golgi complex
by remodeling the actin network surrounding the Golgi complex. Optineurin is a protein vital
to the maintenance of Golgi complex structure in addition to being implicated in trafficking
from the Golgi complex to the plasma membrane [45]. ADP-ribosylation factor 4 is associated
with recycling proteins from endosomes to the trans-Golgi network [58].

Identified kinase and phosphatase associated proteins
Both kinase and phosphatase activity has been implicated in nAChR up-regulation [6, 59, 60].
One kinase subunit and one phosphatase were identified: cAMP-dependent protein kinase
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type I-alpha regulatory subunit and tyrosine-protein phosphatase non-receptor type 14. Tyro-
sine dephosphorylation has been shown to increase α7-nAChR surface expression in oocytes
by promoting exocytosis of intracellular receptor pools (Table 3) [59, 61]. Conversely, tyrosine
phosphatase activity has been shown to promote muscle-type nAChR turnover, emphasizing
how nAChR subtypes may respond differently to the same modification [6, 62]. Kinase activity
of cAMP-dependent protein kinase (PKA) has been shown to increase α7-nAChR surface
expression in neonatal rat sympathetic neurons as well as in human embryonal kidney cells
[63, 64]. PKA enzymes are comprised of four subunits, two catalytic and two regulatory [65].
The cAMP-dependent protein kinase type I-alpha regulatory subunit has previously been
shown to colocalize with cholinergic markers [66]. Activation of α7-nAChRs has also been
shown to stimulate PKA activity (Table 3) [67]. The identification of cAMP-dependent protein
kinase type I-alpha regulatory subunit, coupled with these previous observations suggest that
PKA activity may be linked to α7-nAChRs through the association of one of the enzyme’s regu-
latory subunits. PKA activity in turn may have a diverse effect through other pathways leading
to numerous biological processes, such as enhancement of synaptic efficiency and nicotine-
stimulated long term potentiation [68–70]. Determining whether the effects of kinases and
phosphatases are through direct phosphorylation or dephosphorylation of nAChRs or effects
upon a member of the nAChR interactome requires additional study. There may also be a tem-
poral component with phosphorylation or dephosphorylation occurring at different stages of
nAChR biogenesis.

Protein turnover, autophagy and apoptosis related proteins
Many of the mechanisms and pathways that are utilized in receptor turnover may overlap with
other mechanisms such as autophagy [71]. Seven of the Ric-3-mediated α7-nAChR-associated
proteins identified have been reported to play a role in receptor turnover, apoptosis or autop-
hagy: nuclear receptor coactivator 4, autophagy-related protein 9A, ubiquitin-like modifier-
activating enzyme 1, LIM domain only protein 7, calcium-binding and coiled-coil domain-con-
taining protein 2, KN motif and ankyrin repeat domain-containing protein 2, and tax1-binding
protein 1 [72–81]. Several mechanisms may regulate the association of autophagy with
α7-nAChR only when Ric-3 is expressed. The associated proteins could also be involved in
other pathways related to autophagy, such as protein catabolism [71]. In theory, with Ric-3 co-
expression, more α7-nAChRs reach the surface of the cell and are subject to mechanisms regu-
lating receptor turnover. In cells in which dramatically fewer α7-nAChRs reach the cell surface
(i.e., cells in which Ric-3 is not co-expressed), the proteins involved with such turnover func-
tions would be diminished as well.

Signal transduction and intracellular signaling associated proteins
In addition to the surface expression-related proteins described above, Ric-3 co-expression
appears to enhance association of α7-nAChRs with proteins involved in signal transduction
and intracellular signaling. These include: Inositol 1, 4, 5-trisphosphate receptor type 1; cell
cycle progression protein 1; Rho guanine nucleotide exchange factor 17; and angiopoietin-
related protein 2. These interactions are of interest because Ric-3-mediated co-expression may
promote subsequent signaling cascades. Inositol 1, 4, 5-trisphosphate receptor (IP3R) type 1 is
associated with intracellular Ca2+ release and signaling. Nicotine stimulation of α7-nAChRs
has been shown to lead to Ca2+ flux through IP3R type 1 and through activation of phospholi-
pase C (PLC) (Table 3) [82–85]. In addition to the effect of α7-nAChRs on the activity of
IP3Rs, it has also been shown that α7-nAChRs colocalize with IP3Rs in PC12 cells [85]. IP3Rs
have also been shown to colocalize with muscle-type nAChRs at the neuromuscular junction
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in rat skeletal muscle [86]. Expanding on what was shown previously, the association of IP3Rs
with α7-nAChR identified in this study reflects a direct interaction between the IP3R and the
α7-nAChR interactome. Cell cycle progression protein 1, Rho guanine nucleotide exchange
factor 17, and angiopoietin-related protein 2 are associated with RhoA GTPases and may be
involved in a number of processes [87–89]. Angiopoietin-related protein 2, for example, has
been linked to cellular processes such as angiogenesis and cell motility, and members of the
small RhoA GTPase family participate in the endocytosis of muscle-type nAChRs [90–95].

Additional identified associated proteins
Fourteen proteins were identified that are not currently linked to α7-nAChR surface expres-
sion, signal transduction/intracellular signaling, or protein catabolism and/or autophagy.
These fourteen proteins are associated with the cytoskeletal organization; developmental pro-
cesses; ion transport; nucleobase, nucleoside, nucleotide, and nucleic acid metabolic processes;
biosynthetic processes; response to stress, or do not currently have a well-defined associated
biological process. Several of the additional proteins identified are associated with the cytoskel-
eton and developmental processes (i.e., SUN domain-containing protein 2; keratin, type I cyto-
skeletal 15; keratin, type II cuticular Hb4; keratin, and type II cytoskeletal 75) and may be
involved in the subcellular localization of nAChRs. Keratin however is often considered to be
non-specific contaminant in mass spectrometry investigations and these proteins would have
to be investigated further to confirm specificity to α7-nAChRs. Ferritin light chain is a subunit
of the protein ferritin, which is involved in the transport of iron [96]. Ferritin light chain was
shown previously to be enriched in autophagosomal fractions from cancer cell lines as was cal-
cium-binding and coiled-coil domain-containing protein 2, optineurin, autophagy-related pro-
tein 9A, all of which were also identified in this study [76]. Several identified proteins were
associated with nucleobase, nucleoside, nucleotide, and nucleic acid metabolic processes: 5'-
nucleotidase, FAD synthase, and TRMT1-like protein. Of these three proteins, 5’-nucleotidase
is of interest as it is a marker for types of lipid rafts and during hypoxia is involved with
nAChR-simulated adenosine production [97, 98]. The biological process of Erythrocyte band 7
integral membrane protein was characterized by DAVID as protein complex assembly though
this attribution refers to the proteins ability to form homo-oligomers [99]. Erythrocyte band 7
integral membrane protein is of particular interest due to its previous association with lipid
rafts and possible regulation of ion channel activity [100]. The protein LYRIC is a marker
found in numerous cancer cell lines [101, 102]. Peroxidasin homolog is an extracellular matrix
component that may be associated with reactive oxygen species metabolism [103, 104]. There
is currently no literature reporting on the biological processes of BTB/POZ domain-containing
protein 2, RNA-binding protein 33, and uncharacterized protein “TPM1” (Uniprot Accession
F5H7S3). These proteins represent a population with an assortment of different biological
functions that warrant further investigation to discern the functionality of their relationship
with α7-nAChR.

Conclusions
Receptor-protein interactions are dynamic and dependent upon many factors. Identifying
α7-nAChR-associating proteins as described in this study captures a snapshot of possible inter-
actions under standard tissue culture conditions. A single peptide of the human α7-nAChR
subunit was detected in all SH-EP1-hα7-Ric-3 and SH-EP1-hα7 samples. This reproducibly
identified single α7-nAChR subunit peptide would be ideal for absolute quantitation using
mass spectrometry that may be of interest for future studies investigating α7-nAChR
expression.
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SH-EP1-hα7-Ric-3 and SH-EP1-hα7 cells are ideal for identifying Ric-3-mediated
α7-nAChR-associating proteins though it is possible that in this model, interactions are present
that would not occur endogenously in native cells. It is therefore important to develop appro-
priate methodologies to continue these investigations in models that endogenously express
α7-nAChRs, such as SH-SY5Y cells [27]. Additional protein interactions with α7-nAChRs and
other nAChR subtypes have been reported by other groups that were not identified in this
study [5, 105]. Our inability to detect these previously identified α7-nAChR-associated pro-
teins may reflect the ability of some proteins to compete with α-bgtx binding, and thus be
affected during the α-bgtx affinity bead incubation. For example, the three-fingered toxin fam-
ily member Lynx1 (aka SLURP2) has been shown to interact competitively with α-bgtx for
binding to α7-nAChRs and was not identified in this study [106, 107].

This investigation expands upon our previous work from a murine model to a human
model of α7-nAChR-associating proteins. The work described here is an example of how α-
bgtx-affinity may be harnessed as a tool for proteomic investigations of α7-nAChRs. Here we
investigated receptor-protein interactions mediated by the differential expression of the Ric-3
chaperone. This approach can be applied to any protein to investigate possible alterations on
the α7-nAChR interactome. Furthermore, this approach reproducibly identified a tryptic pep-
tide of the α7-nAChR subunit. This peptide was identified in all SH-EP1-hα7-Ric-3 and
SH-EP1-hα7 samples and was not observed in SH-EP1 samples. The size and reproducibility
of this peptide could be used for absolute quantitation of α7-nAChRs by mass spectrometry
using a heavy-labeled variant of the peptide. The study reported here presents a unique investi-
gation of the role of Ric-3 in modification of the proteins associating with α7-nAChR. Identify-
ing these proteins as members of the α7-nAChR macromolecular complex provides vital
insight for understanding α7-nAChR surface expression and may assist in the identification of
future therapeutic targets.

Supporting Information
S1 Fig. Uncropped Fig 3 Ric-3 and GAPDH immunoblots. Immunoblots for investigation of
Ric-3 and GAPDH immunoreactivity in SH-EP1-hα7-Ric-3 (A) and SH-EP1-hα7 (B) solubi-
lized membrane extracts. Blots are initially probed for Ric-3 immunoreactivity, stripped, and
subsequently probed again for GAPDH immunoreactivity to confirm consistent gel loading.
(TIF)

S1 Table. Characterization of each peptide identified to infer the identity of the 39 Ric-
3-promoted α7-nAChR-associated proteins reported in Table 2. “Group number” lists all
proteins, 1 through 39, in the order in which they were grouped by ProteoIQ during analysis.
Only Top and Co-Top protein identifications, i.e. only proteins identifications that can
account for all peptide information within a protein group, were analyzed. For all 39 identi-
fied proteins, all Top and Co-Top identifications were either different isoform entries for pro-
tein products of the same gene or alternative database entries. Uniprot accession numbers,
protein names, and gene names are provided for each Top and Co-Top entry. Also described
per Top and Co-Top entry are probability score, protein score, the number of unique peptides
identified, and sequence coverage. The observed mass to charge (m/z), charge (z), ion score,
peptide sequence, and possible modifications are listed for every peptide identified for both
Top and Co-Top entries. For analysis, replicate samples were assigned replicate numbers 1
through 5. Each peptide identification is listed separately for each replicate number in which
the peptide was observed.
(XLSX)
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S2 Table. Ontological grouping of α7-nAChR associated proteins independent of Ric-3
expression. Receptor protein complexes were eluted from α-bgtx-affinity beads complexes
using carbachol, reduced, alkylated, precipitated and digested with trypsin in solution. Tryptic
fragments were analyzed using a Q Exactive mass spectrometer. Ninety-seven proteins were
identified as interacting with α7-nAChR only in the absence of Ric-3 expression by comparing
α-bgtx isolated proteins from SH-EP1-hα7 samples SH-EP1-hα7-Ric-3 samples. Each condi-
tion was analyzed with five replicates. Data analysis was performed using ProteoIQ version 2.7
Protein inclusion criteria include 1% protein FDR, minimum peptide length of six amino acids
�90% probability, identification in 2 or more of 5 replicates, and 0% probability in controls.
FDRs were determined using the PROVALT algorithm and probabilities were determined with
the ProteinProphet algorithm through ProteoIQ analysis. Only Top and Co-Top identifica-
tions were considered. Biological processes are listed as determined by DAVID analysis of
Gene Ontology (GO) terms. Biological process GO terms for six proteins are not available.
(XLSX)

S3 Table. Proteins identified in α-bgtx-affinity enriched samples from SH-EP1-hα7-Ric-3
and SH-EP1-hα7. 625 identified proteins meeting the established inclusion criteria were iden-
tified in both SH-EP1-hα7-Ric-3 and SH-EP1-hα7 samples. These proteins represent both pos-
sible α7-nAChR interactions regardless of Ric-3 expression as well as non-specific binding to
α-bgtx-affinity beads. Further investigation is required to distinguish which identifications are
non-specific. Data analysis was performed using ProteoIQ version 2.7 Protein inclusion criteria
include 1% protein FDR, minimum peptide length of six amino acids�90% probability, identi-
fication in 2 or more of 5 replicates, and 0% probability in controls. FDRs were determined
using the PROVALT algorithm and probabilities were determined with the
ProteinProphet algorithm through ProteoIQ analysis. Only Top and Co-Top identifications
were considered.
(XLSX)

S4 Table. Cellular compartment GO terms associated with identified proteins. GO terms
for cellular localization of identified SH-EP1-hα7-Ric-3 unique (A) and SH-EP1-hα7 unique
(B) proteins. A total of 82% of the 39 (32 total) SH-EP1-hα7-Ric-3 unique, Ric-3-mediated
proteins and 83% of the 97 (82 total) SH-EP1-hα7 unique proteins have GO terms that identi-
fies the cellular compartment where the proteins have been reported to be localized. Proteins
are identified by Uniprot accession numbers. The number of proteins associated with each
compartment is listed as “Protein count” and the proportion of proteins classified into each
compartment are listed as a percent of the total attributed proteins.
(XLSX)
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