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Abstract: The stretchable sensor has been considered as the most important component in a wearable
device. However, it is still a great challenge to develop a highly sensitive textile-based strain sensor
with good flexibility, excellent skin affinity, and large dynamic range. Herein, polypyrrole (PPy)
was immobilized on a stretchable textile knitted by polyester and spandex via low-temperature
interfacial polymerization to prepare a conductive strain sensor for human motion and respiration
measurements. Scanning electron microscopy, Fourier transform infrared spectrometry, and thermal
gravimetric data verify that a thin layer of PPy has been successfully coated on the textile with a
high density and very uniform distribution. The resistance of the as-prepared textile is 21.25 Ω/cm2

and the PPy-coated textile could be used as an electric conductor to light up a LED lamp. Moreover,
the textile could tolerate folding at an angle of 180◦ and 500 times of bending-twisting cycles without
significant changes on its resistance. A negative correlation between the resistance change and the
applied strain is observed for the textile-based sensor in the strain ranging from 0 to 71% with the
gauge factor of −0.46. After more than 200 cycles of stretching-releasing under the strain of 26%,
there is no obvious alteration on the sensing responses. The sensors were attached on volunteers’
body or clothes for the real-time measurement of human motions and respiration, demonstrating that
the textile-based sensor could sensitively detect finger, elbow, and knee bending and differentiate
deep, normal, and fast breath. This work may provide an approach to uniform and dense coating
conductive polymers on textiles for highly sensitive and stretchable sensors, which possess great
potentials in practical applications for real-time monitoring human motions and physiological signs.

Keywords: textile; strain sensor; low-temperature interfacial polymerization; wearable electronics;
human motion

1. Introduction

As advances of flexible and stretchable electronics, various wearable devices have been developed
in the past decades to meet people’s requirements on real-time fitness tracking, daily health monitoring,
and early disease diagnostics [1,2]. Strain sensors have been considered as crucial building blocks for
wearable devices due to their great capability in sensing slight changes of human body and human
skin [3]. After being directly attached to the clothes or skin, they could precisely detect a wide range of
human motions and physical signs like respiration rate and heart rate [2–5]. Therefore, it is of great
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demand to design highly sensitive strain sensors with good flexibility, excellent skin affinity, and large
dynamic range [4].

Polymers have been extensively investigated as the matrix to composite with conductive materials
for the fabrication of stretchable strain sensors [6]. Polyurethane and poly(3,4-ethylenedioxythiophene):
poly(styrenesulfonate) have been blended together to construct a polymeric composite-based flexible
strain sensor [7]. A patch-type strain sensor with both high stretchability and sensitivity has been
fabricated by simple dropping conductive gold nanowires on a stretchable latex rubber [8]. A highly
sensitive strain sensor with the stretchability up to 100% has also been developed based on piezoresistive
graphene-nanocellulose nanopaper [9]. Although the polymers-based sensors are easy-to-use and
very flexible, their skin affinity and air/moisture penetrability are still great concerns to the end users.
A textile is a flexible material consisting of a network of fibers, which has been utilized for wearing over
human history. Due to its light-weight, mass production, and superior flexibility [5], the textile has been
considered as an ideal material for the preparation of wearable strain sensors [10]. In comparison to
the conventional polymeric film, the woven structure of the textiles allows the free exchange of air and
moisture between the environment and human skin, which is quite important for the long-term usage
of the skin-attached wearable devices. In the past few years, extensive efforts have been dedicated to
enable the textile with conductivity for the fabrication of stretchable strain sensors [4,5,8,11]. In the
early studies, metal nanoparticles were in situ grown on the textile surface to form the conductive
layers [8,12,13]. This method could provide good conductivity for the functionalized textiles at the
relax state. However, the metal coating layer could be damaged under the strain, further resulting
in the sharp drop of the conductivity. Conductive nanomaterials, such as silver nanowires and
carbon nanotubes, have been dispensed on the textile substrates to form conductive coatings [14,15].
The inter-crosslinked nanowires or nanotubes could tolerate the stretching, but the high cost of the
conductive materials and the complicated fabrication procedures may hinder their mass-production
and feasibility.

Conducting polymers are a class of electronic materials with excellent processability, good stability,
and high electric conductivity [16]. As a typical representative of conducting polymers, polypyrrole
(PPy) has been applied in a wide range of fields including battery [17–19], supercapacitors [20,21],
sensors [22,23], ion-sieving [24], corrosion protection [25,26], microwave shielding [27–29], e-textiles [5],
and artificial muscles [10] due to its high conductivity, good environmental stability, low-cost,
good adhesion, and non-toxicity [30]. PPy-coated Lycra, cotton spandex, and cotton have been
manufactured as textile-based strain sensors via in situ monomer vapor deposition [31], electrochemical
polymerization [24], and in situ oxidative chemical polymerization [11]. The in situ monomer
vapor deposition method is quite tedious and needs expensive instruments like screen-printer.
The electrochemical polymerization could only be adapted to the conductive textiles. As to the in situ
oxidative chemical polymerization, the high reaction rate may lead to the non-uniform distribution
and aggregation of PPy on the fiber surface. Low-temperature interfacial polymerization is a facile,
economical, and efficient method to produce uniform PPy thin film at the interface of two phases
with a relatively low reaction rate [32]. It has been conducted to prepare paper- and textile-based
supercapacitors for the achievement of high capacitances [21,32]. As far as we know, low-temperature
interfacial polymerization has not been used to immobilize PPy on a stretchable textile for the fabrication
of textile-based strain sensors.

In this work, PPy was coated on a stretchable textile knitted by 92% polyester and 8% spandex
via low-temperature interfacial polymerization to prepare a conductive strain sensor for human
motion and respiration monitoring. Scanning electron microscopy (SEM), Fourier transform infrared
spectrometry (FTIR), and thermal gravimetric analyzer (TGA) were carried out to characterize the
pristine and PPy-modified polyester/spandex textiles. Effects of the bending angle and 500 times of
bending/twisting on the resistance of the PPy-coated textiles were also measured to investigate the
flexibility and stability. The sensing performance of the PPy-modified textiles was studied with the
strain rising from 0 to 100%. The sensing mechanism was discussed based on the optical images of
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a sensor at its releasing and stretching states. Finally, the as-prepared sensors were fixed on finger,
elbow, knee, and abdomen of the volunteers to demonstrate their potentials in practical monitoring of
human motion and respiration.

2. Materials and Methods

2.1. Materials

Pyrrole (99%) was purchased from Adamas-beta Co. (Shanghai, China). Iron chloride hexahydrate
(FeCl3·6H2O), cyclohexane, and p-toluenesulfonic acid (PTS) were bought from Aladdin Reagent
Co. (Shanghai, China). All other chemicals were of analytical grade and directly used without
further purification. Deionized water was produced by a Millipore Q water purification system.
The polyester/spandex-based stretchable textile was fabricated by BJD Clothes Co. (Zhengjiang, China).
Before the experiments, the polyester/spandex textile was cut into small pieces with the desired shapes
and sizes to meet the requirements of human motion and respiration measurements.

2.2. Preparation of PPy-Coated Textiles

The PPy-functionalized textile was prepared according to Chen’s approach with minor
modifications [32] (Figure 1). Firstly, 5 mL of 0.4 M FeCl3·6H2O and 4 mL of 0.4 M PTS were
mixed in a petri dish, followed by pre-cooling at 4 ◦C for 1 hour. A polyester/spandex-based stretchable
textile with the size of 40 by 40 mm2 was immersed into the above mixture. Then, 9 mL cyclohexane
containing 150 µL pyrrole was slowly dropped into the FeCl3-PTS aqueous solution. Due to the
immiscibility of water and cyclohexane, two phases were formed in the petri dish with the organic
phase on top. The whole reaction system was stored at 4 ◦C for 12 hours. During this process, the color
of the textile gradually changed from white to black. The functionalized textile was collected and
thoroughly rinsed with water for three times to remove free polymers. Then, the textile was dried at
40 ◦C for 1 hour. The above procedures were repeated one more time to immobilize a dense PPy layer
on the textile.
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Figure 1. Preparation of polypyrrole (PPy)-coated textile via low-temperature interfacial polymerization.

2.3. Characterization

Surface morphologies of the polyester/spandex textiles before and after PPy modification were
characterized using a JSM-7600 FESEM (JEOL, Tokyo, Japan). A smartphone-attached optical
microscope (Wellwa, Guangdong, China) was applied to image the structural change of the PPy-coated
textile under tension at micrometer scale. The surface functional groups and the thermal stability of the
textile before and after PPy coating were examined with a Fourier transform infrared spectrometer (FTIR,
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Nicolet 6700, Thermo Electronic Corporation, Waltham, MA, USA) and a SDT-Q600 thermogravimetric
analyzer (TA Instruments, New Castle, DE, USA), respectively.

2.4. Strain Sensing Tests

The resistances of the PPy-coated polyester/spandex textiles were measured using a Keithley 2400
Source Meter. A 20 mm by 40 mm textile was bent at an angle of 0–180◦ for the measurement of its
resistance alteration. The resistance of the same textile was also examined after 500 times of bending or
twisting to investigate the stability of the PPy layer. The textiles with the size of 20 mm by 40 mm
were stretched with an electronic universal testing machine (WDW-211, Jinan, China) at the velocity
of 500 mm/min to achieve the designed strains. Strain-induced resistance changes were collected to
explore the strain sensing range.

2.5. On-Body Tests

The PPy-coated polyester/spandex textiles shaped as per the requirements of on-body
measurements were fixed on clothes or skin to demonstrate their potentials in practical applications.
The sensing performance of the device were collected with an electrochemical workstation (CHI
660E, CH Instrument Company, Shanghai, China). The current changes induced by the bending of
finger, elbow, and knee were measured with the PPy-coated textile at an operating voltage of 0.1 V.
The textile-based sensor was also attached on the volunteer’s abdomen to sense the up and down
movement caused by human breathing. The current patterns were collected to track deep breath,
fast breath, and normal breath.

3. Results and Discussion

SEM was employed to characterize surface morphologies of polyester/spandex textiles before and
after PPy immobilization. As shown in Figure 2a,c, the pristine polyester/spandex textile is woven
with fibers, which possess very smooth surface and the diameter of ~20 µm. After low-temperature
interface polymerization, the fiber surface became rough (Figure 2b) and a lot of small particles could
be observed (Figure 2d). High-magnified image (Inset of Figure 2d) further illustrates that the fiber is
fully covered with a dense and uniform film, which is significantly different from the loosely attached
particles prepared with chemical oxidative polymerization at room temperature [33]. The greatly
reduced reaction rate and the polymerization occurred at the interface between two phases may
cause the formation of the uniform and thin PPy layer. The data strongly proves that PPy has been
successfully immobilized on the textile surface to function as a continuous conductive layer. The same
approach could also be applied to successfully immobilize PPy on nylon/lycra, silk, and cotton textiles.
Their maximum strains much lower than that of PPy-coated polyester/spandex textile. Thus, we chose
polyester/spandex textile as the substrate to prepare the strain sensor in this work (Figures S1 and S2 in
supporting information).

FTIR spectra were collected to further verify the existence of PPy on the textiles. In comparison
to pristine polyester/spandex textile, two weak peaks appear at 1447 and 1531 cm−1 in the spectra of
the PPy-coated one (Figure 3a). The former peak could be attributed to the C=C and C-C stretching
vibration of PPy ring [32]. The latter one may be ascribed to the pyrrole ring characteristic vibration [34].
The thermal stability of the textiles was also investigated by measuring the weight change in the
temperature range of 25–700 ◦C under the nitrogen atmosphere. It can be seen from Figure 3b that the
weight of the pristine textile keeps at a very stable level as temperature increases from 25 to 400 ◦C.
However, after PPy coating, the sample undergoes a gradual weight loss of ~5%, which may be due to
the breakdown of the PPy backbone and chemical decomposition of the dopant FeCl3. Interestingly,
the remaining weights of pristine and PPy-modified textiles at 700 ◦C are 14.6% and 25.0%, respectively.
The relatively high content of carbon element in PPy may lead to the remarkable enhancement on the
residue weight of PPy-modified sample. The FTIR and TGA data also verify that the PPy has been
immobilized on the textiles, agreeing well with the SEM images.
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Figure 2. SEM images of pristine polyester/spandex textile at low (a) and high magnifications (c);
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in (c,d): Detailed surface morphologies of the fibers before and after PPy coating, respectively.
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Figure 3. (a) FTIR spectra of the polyester/spandex textiles before and after PPy modification. (b) thermal
gravimetric analyzer (TGA) curves of the polyester/spandex textiles before and after PPy modification
in an atmosphere of nitrogen.

Before the sensing tests, the resistance of the PPy-coated polyester/spandex textile is measured
as 21.25 Ω/cm2, which is comparable to the PPy-modified polyester/spandex and cotton/spandex
fabrics [35]. We changed the pyrrole volume in the polymerization system to control the amount of PPy
coated on the textiles. As the monomer volume rises from 50 to 150 µL, the amount of PPy coated on the
textiles gradually increases. When the volume further enhances to 200 µL, a slight reduction on the PPy
amount is observed (Figure S3a in supporting information). Moreover, the amount of surface-coated
PPy could significantly affect the conductivity of the textile. Large amount of PPy on the textile may
lead to a high level of conductivity (Figure S3b in supporting information). Since the conductive textile
is designed as a strain sensor, we must rule out the interferences of bending and twisting on the textile
resistance. Thus, we investigated the effects of bending angle and repeated bending/twisting on the
normalized resistance of the PPy-functionalized textile. When the textile was bent from 0◦ to 180◦,
the resistance remains at a constant level, suggesting that the bending does not affect its electronic
property. Since bending and twisting cannot be avoided during the practical applications of wearable
devices, the influences of repeated bending and twisting on the textile resistance were also studied.
As shown in Figure 4b,c, the normalized resistance is also stable during 500 times of twisting and
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bending, indicating that the textile can tolerate repeated bending and twisting without alteration on
the device conductivity. To demonstrate the conductivity, a PPy-immobilized textile was connected
with a LED and two batteries in series. The textile could function as an electrical conductor to light up
a LED lamp with lowest working voltage of 2.0 V (Figure 4d).Micromachines 2019, 10, 788 6 of 11 
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The tensile property of the PPy-coated polyester/spandex textile is quite different in the wasp and
weft directions. Along the weft direction, the textile can be stretched up to the strain of 100%, which is
~2 times higher than the maximum strain in the wasp direction (Figure 5a). Therefore, in the following
experiments, the stretching force was applied along the weft direction to investigate the properties of
the textile-based strain sensor. The gauge factor (GF) is employed to evaluate the tensile sensitivity
according to the following equation:

GF = (∆R/R0)/ε (1)

where ∆R and R0 are the change of resistance and the initial resistance, respectively, and ε is the
strain applied in the test. As illustrated in Figure 5b, the normalized resistance change is negatively
correlated to the strain applied to the PPy-coated textile in the strain range of 0 to 71% with R2 of 0.96
(Figure 5b). The GF is calculated to be −0.46 in the linear sensing range (0–71%). The performance
of the textile-based strain sensor could be prominently affected by the amount of PPy coating layer
(Figure S3 in supporting information). When the mass ratios of PPy on the textiles are 0.128 and
0.180, the stretching of the sensors induce the enhancement of the textile resistance. On the contrary,
the resistance of the sensor decreases at the stretching state as the mass ratio increases to 0.183. It can
be clearly seen that the sensor with the PPy mass ratio of 0.183, which was prepared at the monomer
volume of 150 µL, has the largest absolute value of GF and the widest sensing range. The durability of
the PPy-coated polyester/spandex sensor is studied under stretching-releasing cycles with the strain
of 26% and the applied voltage of 0.1 V. It can be seen that the current responses to the repeated
stretching and releasing keeps very stable even after 200 cycles (Figure 5c). Significant changes on
the current profiles occur after 200 stretching-releasing cycles, indicating that the sensor can tolerate
200 times of stretching-releasing without alteration on its sensing performance (Figure S4 in supporting
information). The non-uniform stretching velocity applied by the universal testing machine may lead
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to the zigzag current changes in Figure 5c. In comparison to the strain sensors based on PPy-coated
textiles that were prepared with other approaches [11,22,31,36–38], the as-prepared one possesses the
largest dynamic range as well as the comparable GF and conductivity (Table 1). More importantly,
for the textile-based sensor, the resistance at the stretching state is lower than that at the releasing state.
A much more significant current signal may be collected at a higher strain under a constant applied
voltage, which is favorable for the practical applications.Micromachines 2019, 10, 788 7 of 11 
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Table 1. Summary of previously reported strain sensors based on PPy-coated textiles.

Textile Types Method Resistance Maximum
Strain Range Gauge Factor References

Cotton spandex In situ polymerization
at 0 ◦C 3.83 Ω/cm2 0–9% −1.23 [38]

Polyester/Spandex In situ polymerization
at 0 ◦C 6.77 Ω/cm2 0–8% −0.05 [38]

Lycra In situ polymerization
at room temperature 375 Ω/cm2 0–60% −0.69 [37]

Cotton/Spandex In situ polymerization
at 0 ◦C 8.93 Ω/cm2 0–25% 0.71(15−25%)

1.1(0−15%) [22]

PU/PDMS In situ polymerization
at room temperature

130.63
Ω/cm2 0.15 [36]

Cotton In situ polymerization
at 0–8 ◦C 303 Ω sq−1 0–35% 0.35 (0–15%)

2.39(15−35%) [11]

Nylon/Lycra Screen-printing/vapor 0–20% 8 [31]

Polyester/Spandex
Low-temperature

interfacial
polymerization

21.25
Ω/cm2 0–71% −0.46 This study
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To understand the sensing mechanism, a PPy-coated textile was examined using an optical
microscope at both releasing and stretching states (Figure 6a,b). A typical woven structure could be
observed in both images. At the releasing state, the fibers are loosely entangled together. When the
strain is applied in the weft direction, the warp fibers are aligned and tightly hold together with
each other. According to Holm’s contact resistance theory, higher pressure and more contact points
lead to the lower contact resistance [38]. Since PPy has been coated on the fibers during the
low-temperature polymerization process, the tight contacts of the fibers may significantly increase the
pathways in the textiles for the electron transfer, thus reducing the resistance of the sensors (Figure 6c).
However, the effects of strain on individual fibers should also be considered in the sensing mechanism.
The application of a strain may lead to the rupture of the PPy coating layer, which obviously leads to
the enhancement of the textile resistance. Therefore, the strain-induced addition of the electron transfer
pathways and rupture of the conductive coating layers may both contribute to the performance of the
textile-based sensors. As shown in Figure S3 (ESI), positive GFs were observed in the textiles with
thin PPy layers because of the easy fraction of the conductive layers under tensile loading. While,
negative GFs appear in the samples containing more PPy since the addition of contact points plays a
prominent role.
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To further demonstrate the feasibility of the strain sensor based on PPy-coated polyester/spandex
textiles, the devices were fixed on body to test their capability for human motion and respiration
monitoring. As shown in Figure 7a–c, repeated bending of finger, elbow, and knee could be sensitively
real-time detected with the as-prepared strain sensors. Once the volunteer bends the finger, elbow,
and knee, stretching forces are applied to the sensors, resulting in the sharp reduction of the resistance.
As the finger, elbow, and knee are straightened again, the resistances recover to the original levels.
The PPy-coated textile was also stitched on the clothes to sense the breath-caused changes on the
abdomen (Figure 7d). During the inhalation process, the abdomen contracts, leading to the rising of
resistance. The abdomen relaxes in the exhalation process and the resistance decreases. The strain
sensor can not only monitor the respiration rate, but also differentiate various breathing patterns like
deep breath, normal breath, and fast breath. Inspired by Zhao and Shu’s work [39–41], to demonstrate
its great compatibility with daily clothing, the textile-based sensor was stitched on a glove for the sensing
of finger bending, also showing very sensitive responses (Figure 7e). Based on above results, it can be
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concluded that the PPy-coated polyester/spandex textile is very promising to be used as the strain sensor
for real-time monitoring human motions and precise tracking human’s cardiopulmonary function.Micromachines 2019, 10, 788 9 of 11 
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Figure 7. Responses of the textile-based strain sensors to human finger bending (a), elbow bending (b)
and knee bending (c). Inserts are the photos showing the attachment of the devices on human body.
(d) Real-time measurements of respiration by fixing a sensor on the volunteer’s abdomen. (e) Real-time
measurements of finger bending by a glove-stitched sensor.

4. Conclusions

In summary, we have prepared a PPy-coated stretchable textile via low-temperature interfacial
polymerization method to function as a sensitive and wearable strain sensor for monitoring human
motions and respiration. The PPy film is uniformly and densely deposited on the textile surface to
produce a continuous conductive layer, rendering the as-prepared textile with the conductivity as high
as 21.25 Ω/cm2. The as-prepared textile could be used as an electrical conductor to light up a LED lamp.
More importantly, it can tolerate 500 times of bending and twisting without significant change on its
resistance. The tensile tests show that the textile-based strain sensor possesses a negatively dynamic
range from 0 to 71% with GF as −0.46. After more than 200 cycles of stretching-releasing under the
strain of 26%, there is no obvious alteration on the sensing response. The on-body investigations further
demonstrate that the sensor based on PPy-coated polyester/spandex textile could sensitively detect
human motions like finger, elbow, and knee bending and differentiate human respiration patterns like
deep, normal, and fast breath. This work may not only develop a strain sensor based on PPy-coated
textile for practical applications in wearable electronics, but also provide an approach for the uniform
and dense coating of conductive polymers on textiles.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-666X/10/11/788/s1,
Figure S1: SEM images of pristine nylon/lycra, silk and cotton fabrics at low (a,e,i) and high magnifications
(c,g,k); SEM images of PPy-caoted nylon/lycra, silk and cotton fabrics at low (b,f,j) and high magnifications (d,h,l).

http://www.mdpi.com/2072-666X/10/11/788/s1


Micromachines 2019, 10, 788 10 of 12

Figure S2: PPy-coated polyester/spandex, nylon/lycra, silk and cotton textiles stretched to the maximum strain.
Figure S3: Mass ratios (a) of surface-coated PPy to the textile and resistance ratios (b) of the as-prepared conducting
textiles after polymerization with different volume of Py. Relative resistance change (∆R/R0) of the as-prepared
textiles prepared with 50 µL Py (c), 100 µL Py (d), 150 µL Py (e) and 200 µL Py (f). Figure S4: Current responses of
a textile-based sensor upon periodic stretching-releasing cycles under a strain of 26%.

Author Contributions: Conceptualization, Y.Q. and Z.L.; methodology, B.L., X.C. and Z.L.; formal analysis, X.C.
and Z.L; data curation, X.C. and B.L.; writing—original draft preparation, X.C., Y.Q. and Z.L.; writing—review
and editing, Y.Q. and Z.L.; supervision, Y.Q. and Z.L.

Funding: This work was financially supported by Chongqing Natural Science Foundation (cstc2019jcyj-
msxmX0314), Fundamental Research Funds for the Central Universities (XDJK2019B002 and XDJK2018B003) and
Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sekitani, T.; Someya, T. Stretchable, large-area organic electronics. Adv. Mater. 2010, 22, 2228–2246. [CrossRef]
[PubMed]

2. Zang, Y.P.; Zhang, F.J.; Di, C.A.; Zhu, D.B. Advances of flexible pressure sensors toward artificial intelligence
and health care applications. Mater. Horiz. 2015, 2, 140–156. [CrossRef]

3. Trung, T.Q.; Lee, N.E. Flexible and stretchable physical sensor integrated platforms for wearable
human-activity monitoring and personal healthcare. Adv. Mater. 2016, 28, 4338–4372. [CrossRef] [PubMed]

4. Cho, J.H.; Ha, S.H.; Kim, J.M. Transparent and stretchable strain sensors based on metal nanowire microgrids
for human motion monitoring. Nanotechnology 2018, 29, 155501. [CrossRef]

5. Chen, S.; Liu, S.Q.; Wang, P.P.; Liu, H.Z.; Liu, L. Highly stretchable fiber-shaped e-textiles for strain/pressure
sensing, full-range human motions detection, health monitoring, and 2D force mapping. J. Mater. Sci. 2018,
53, 2995–3005. [CrossRef]

6. Sun, Q.; Seung, W.; Kim, B.J.; Seo, S.; Kim, S.W.; Cho, J.H. Active matrix electronic skin strain sensor based
on piezopotential-powered graphene transistors. Adv. Mater. 2015, 27, 3411–3417. [CrossRef]

7. Seyedin, M.Z.; Razal, J.M.; Innis, P.C.; Wallace, G.G. Strain-responsive polyurethane/PEDOT: PSS elastomeric
composite fibers with high electrical conductivity. Adv. Funct. Mater. 2014, 24, 2957–2966. [CrossRef]

8. Gong, S.; Lai, D.T.H.; Su, B.; Si, K.J.; Ma, Z.; Yap, L.W.; Guo, P.Z.; Cheng, W.L. Highly stretchy black gold
E-skin nanopatches as highly sensitive wearable biomedical sensors. Adv. Electron. Mater. 2015, 1, 1400063.
[CrossRef]

9. Yan, C.Y.; Wang, J.X.; Kang, W.B.; Cui, M.Q.; Wang, X.; Foo, C.Y.; Chee, K.J.; Lee, P.S. Highly stretchable
piezoresistive graphene-nanocellulose nanopaper for strain sensors. Adv. Mater. 2014, 26, 2022–2027.
[CrossRef]

10. Ge, J.; Sun, L.; Zhang, F.R.; Zhang, Y.; Shi, L.A.; Zhao, H.Y.; Zhu, H.W.; Jiang, H.L.; Yu, S.H. A stretchable
electronic fabric artificial skin with pressure-, lateral strain-, and flexion-sensitive properties. Adv. Mater.
2016, 28, 722–728. [CrossRef]

11. Hao, D.D.; Xu, B.; Cai, Z.S. Polypyrrole coated knitted fabric for robust wearable sensor and heater. J. Mater.
Sci. Mater. El. 2018, 29, 9218–9226. [CrossRef]

12. Geng, J.; Zhu, G.; Yuan, Y.K.; Han, G.Z. pH-mediated synthesis and mechanistic study of homogeneous
magnetic Ag@Fe3O4 nanoparticles. J. Nanosci. Nanotechnol. 2020, 20, 2231–2238. [CrossRef] [PubMed]

13. Orouji, A.; Abbasi-Moayed, S.; Hormozi-Nezhad, M.R. ThThnated Development of a pH assisted AgNP-based
colorimetric sensor array for simultaneous identification of phosalone and azinphosmethyl pesticides.
Spectrochim. Acta 2019, 223, 496–503. [CrossRef] [PubMed]

14. Gao, Y.; Wang, K.; Song, H.Z.; Wu, H.; Yan, S.C.; Xu, X.; Shi, Y. Fabrication and electrical properties of silver
telluride nanowires. J. Nanosci. Nanotechnol. 2020, 20, 2628–2632. [CrossRef] [PubMed]

15. Dovjuu, O.; Kim, S.; Lee, A.; Kim, J.; Noh, J.; Huh, S.; Choi, B.; Jeong, H. A simple approach for heat transfer
enhancement of carbon nanofluids in aqueous media. J. Nanosci. Nanotechnol. 2020, 20, 2337–2343. [CrossRef]

16. Merlini, C.; Ramoa, S.D.A.S.; Barra, G.M.O. Conducting polypyrrole-coated banana fiber composites:
Preparation and characterization. Polym. Compos. 2013, 34, 537–543. [CrossRef]

http://dx.doi.org/10.1002/adma.200904054
http://www.ncbi.nlm.nih.gov/pubmed/20229571
http://dx.doi.org/10.1039/C4MH00147H
http://dx.doi.org/10.1002/adma.201504244
http://www.ncbi.nlm.nih.gov/pubmed/26840387
http://dx.doi.org/10.1088/1361-6528/aaabfe
http://dx.doi.org/10.1007/s10853-017-1644-y
http://dx.doi.org/10.1002/adma.201500582
http://dx.doi.org/10.1002/adfm.201303905
http://dx.doi.org/10.1002/aelm.201400063
http://dx.doi.org/10.1002/adma.201304742
http://dx.doi.org/10.1002/adma.201504239
http://dx.doi.org/10.1007/s10854-018-8950-2
http://dx.doi.org/10.1166/jnn.2020.17303
http://www.ncbi.nlm.nih.gov/pubmed/31492232
http://dx.doi.org/10.1016/j.saa.2019.04.074
http://www.ncbi.nlm.nih.gov/pubmed/31077953
http://dx.doi.org/10.1166/jnn.2020.17330
http://www.ncbi.nlm.nih.gov/pubmed/31492287
http://dx.doi.org/10.1166/jnn.2020.17375
http://dx.doi.org/10.1002/pc.22448


Micromachines 2019, 10, 788 11 of 12

17. Fedorkova, A.; Nacher-Alejos, A.; Gomez-Romero, P.; Orinakova, R.; Kaniansky, D. Structural and
electrochemical studies of PPy/PEG-LiFePO4 cathode material for Li-ion batteries. Electrochim. Acta
2010, 55, 943–947. [CrossRef]

18. Fedorkova, A.; Orinakova, R.; Orinak, A.; Heile, A.; Wiernhofer, H.D.; Arlinghaus, H.F. Electrochemical and
TOF-SIMS investigations of PPy/PEG-modified LiFePO4 composite electrodes for Li-ion batteries. Solid State
Sci. 2011, 13, 824–830. [CrossRef]

19. Fedorkova, A.; Orinakova, R.; Orinak, A.; Talian, I.; Heile, A.; Wiemhofer, H.D.; Kaniansky, D.; Arlinghaus, H.F.
PPy doped PEG conducting polymer films synthesized on LiFePO4 particles. J. Power Sources 2010, 195,
3907–3912. [CrossRef]

20. Sharma, R.K.; Rastogi, A.C.; Desu, S.B. Pulse polymerized polypyrrole electrodes for high energy density
electrochemical supercapacitor. Electrochem. Commun. 2008, 10, 268–272. [CrossRef]

21. Sun, J.F.; Huang, Y.; Fu, C.X.; Wang, Z.Y.; Huang, Y.; Zhu, M.S.; Zhi, C.Y.; Hu, H. High-performance
stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. Nano Energy
2016, 27, 230–237. [CrossRef]

22. Hu, J.Y.; Zhang, X.F.; Li, G.H.; Yang, X.D.; Ding, X. Electrical properties of Ppy-coated conductive fabrics for
human joint motion monitoring. Autex Res. J. 2016, 16, 7–12.

23. Li, M.F.F.; Li, H.Y.; Zhong, W.B.; Zhao, Q.H.; Wang, D. Stretchable conductive polypyrrole/polyurethane
(PPy/PU) strain sensor with netlike microcracks for human breath detection. ACS Appl. Mater. Interface 2014,
6, 1313–1319. [CrossRef] [PubMed]

24. Atobe, M.; Tsuji, H.; Asami, R.; Fuchigami, T. A study on doping-undoping properties of polypyrrole films
electropolymerized under ultrasonication. J. Electrochem. Soc. 2006, 153, D10–D13. [CrossRef]

25. Yang, J.J.; Di, S.C.; Blawert, C.; Lamaka, S.V.; Wang, L.Q.; Fu, B.L.; Jiang, P.L.; Wang, L.; Zheludkevich, M.L.
Enhanced wear performance of hybrid epoxy-ceramic coatings on magnesium substrates. ACS Appl. Mater.
Interface 2018, 10, 30741–30751. [CrossRef]

26. Lenz, D.M.; Delamar, M.; Ferreira, C.A. Application of polypyrrole/TiO2 composite films as corrosion
protection of mild steel. J. Electroanal. Chem. 2003, 540, 35–44. [CrossRef]

27. Jamadade, S.; Jadhav, S.V.; Puri, V. Electromagnetic reflection, shielding and conductivity of polypyrrole thin
film electropolymerized in P-Tulensulfonic acid. J. Non-Cryst. Solids 2011, 357, 1177–1181. [CrossRef]

28. Olad, A.; Shakoori, S. Electromagnetic interference attenuation and shielding effect of quaternary
Epoxy-PPy/Fe3O4-ZnO nanocomposite as a broad band microwave-absorber. J. Magn. Magn. Mater.
2018, 458, 335–345. [CrossRef]

29. Zhao, H.; Hou, L.; Lu, Y.X. Electromagnetic shielding effectiveness and serviceability of the multilayer
structured cuprammonium fabric/polypyrrole/copper (CF/PPy/Cu) composite. Chem. Eng. J. 2016, 297,
170–179. [CrossRef]

30. Foroughi, J.; Spinks, G.M.; Wallace, G.G. Effect of synthesis conditions on the properties of wet spun
polypyrrole fibres. Synth. Met. 2009, 159, 1837–1843. [CrossRef]

31. Esfahani, M.I.M.; Taghinedjad, S.; Mottaghitalab, V.; Narimani, R.; Parnianpour, M. Novel printed body
worn sensor for measuring the human movement orientation. Sens. Rev. 2016, 36, 321–331. [CrossRef]

32. Chen, Y.X.; Cai, K.F.; Liu, C.C.; Song, H.J.; Yang, X.W. High-Performance and breathable polypyrrole coated
air-laid paper for flexible all-solid-state supercapacitors. Adv. Energy Mater. 2017, 7, 1701247. [CrossRef]

33. Mosnakova, K.; Chehimi, M.M.; Fedorko, P.; Omastova, M. Polyamide grafted with polypyrrole: Formation,
properties, and stability. Chem. Pap. 2013, 67, 979–994. [CrossRef]

34. Hu, W.H.; Li, C.M.; Cui, X.Q.; Dong, H.; Zhou, Q. In situ studies of protein adsorptions on poly
(pyrrole-co-pyrrole propylic acid) film by electrochemical surface plasmon resonance. Langmuir 2007,
23, 2761–2767. [CrossRef]

35. Lv, J.C.; Zhou, P.W.; Zhang, L.P.; Zhong, Y.; Sui, X.F.; Wang, B.J.; Chen, Z.Z.; Xu, H.; Mao, Z.P. High-performance
textile electrodes for wearable electronics obtained by an improved in situ polymerization method. Chem.
Eng. J. 2019, 361, 897–907. [CrossRef]

36. Kim, I.; Cho, G. Polyurethane nanofiber strain sensors via in situ polymerization of polypyrrole and
application to monitoring joint flexion. Smart Mater. Struct. 2018, 27, 075006. [CrossRef]

37. Wu, J.; Zhou, D.; Too, C.O.; Wallace, G.G. Conducting polymer coated lycra. Synth. Met. 2005, 155, 698–701.
[CrossRef]

http://dx.doi.org/10.1016/j.electacta.2009.09.060
http://dx.doi.org/10.1016/j.solidstatesciences.2011.03.015
http://dx.doi.org/10.1016/j.jpowsour.2010.01.003
http://dx.doi.org/10.1016/j.elecom.2007.12.004
http://dx.doi.org/10.1016/j.nanoen.2016.07.008
http://dx.doi.org/10.1021/am4053305
http://www.ncbi.nlm.nih.gov/pubmed/24369719
http://dx.doi.org/10.1149/1.2130664
http://dx.doi.org/10.1021/acsami.8b10612
http://dx.doi.org/10.1016/S0022-0728(02)01272-X
http://dx.doi.org/10.1016/j.jnoncrysol.2010.11.022
http://dx.doi.org/10.1016/j.jmmm.2018.03.050
http://dx.doi.org/10.1016/j.cej.2016.04.004
http://dx.doi.org/10.1016/j.synthmet.2009.06.006
http://dx.doi.org/10.1108/SR-08-2015-0147
http://dx.doi.org/10.1002/aenm.201701247
http://dx.doi.org/10.2478/s11696-012-0305-5
http://dx.doi.org/10.1021/la063024d
http://dx.doi.org/10.1016/j.cej.2018.12.083
http://dx.doi.org/10.1088/1361-665X/aac0b2
http://dx.doi.org/10.1016/j.synthmet.2005.08.032


Micromachines 2019, 10, 788 12 of 12

38. Hu, J.Y.; Zhou, S.W.; Shi, J.H.; Zhang, H.L.; Zhu, F.; Yang, X.D. Determinants of electrical resistance change
of in situ PPy-polymerized stretch plain woven fabric under uniaxial tensile strain. J. Text. Inst. 2017, 108,
1545–1551. [CrossRef]

39. Zhao, Y.M.; Zhai, Q.F.; Dong, D.S.; An, T.C.; Gong, S.; Shi, Q.Q.; Cheng, W.L. A highly stretchable and
strain-insensitive fiber-based wearable electrochemical biosensor to monitor glucose in the sweat. Anal.
Chem. 2019, 91, 6569–6576. [CrossRef]

40. Zhao, Y.M.; Dong, D.S.; Gong, S.; Brassart, L.; Wang, Y.; An, T.; Cheng, W.L. A moss-inspired electroless
gold-coating strategy toward stretchable fiber conductors by dry spinning. Adv. Electron. Mater. 2019, 5,
1800462. [CrossRef]

41. Gong, S.; Schwalb, W.; Wang, Y.W.; Chen, Y.; Tang, Y.; Si, J.; Shirinzadeh, B.; Cheng, W.L. A wearable and
highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 2014, 5, 3132. [CrossRef]
[PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/00405000.2016.1261603
http://dx.doi.org/10.1021/acs.analchem.9b00152
http://dx.doi.org/10.1002/aelm.201800462
http://dx.doi.org/10.1038/ncomms4132
http://www.ncbi.nlm.nih.gov/pubmed/24495897
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Materials 
	Preparation of PPy-Coated Textiles 
	Characterization 
	Strain Sensing Tests 
	On-Body Tests 

	Results and Discussion 
	Conclusions 
	References

