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Abstract: Malnutrition, as a result of deficiency in essential nutrients in cereal food products and
consumption of a poorly balanced diet, is a major challenge facing millions of people in developing
countries. However, developing maize inbred lines that are high yielding with enhanced nutritional
traits for hybrid development remains a challenge. This study evaluated 40 inbred lines: 26 quality
protein maize (QPM) lines, nine non-QPM lines, and five checks (three QPM lines and two non-QPM
lines) in four optimum environments in Zimbabwe and South Africa. The objective of the study was
to identify good-quality QPM inbred lines for future hybrid breeding efforts in order to increase the
nutritional value of maize. The QPM lines had a lower protein content (7% lower) than that of the
non-QPM lines but had 1.9 times more tryptophan and double the quality index. The lysine- and
tryptophan-poor α-zein protein fraction was 41% lower in QPM than in non-QPM, with a subsequent
increase in γ-zein. There was significant variation within the QPM inbred lines for all measured
quality characteristics, indicating that the best lines can be selected from this material without a yield
penalty. QPM lines that had both high protein and tryptophan levels, which can be used as parents
for highly nutritious hybrids, were identified.

Keywords: maize inbred lines; nutritional value; protein quality

1. Introduction

Malnutrition, due to lack of a balanced diet, has become a chronic disease in under-
developed and developing countries, affecting about two billion people [1] and leading
to about 45% child mortality among infants under the age of five years [2]. Consequently,
malnutrition has become an international problem and has caused an 11% loss of annual
gross domestic product (GDP) in Africa and in other developing countries [1]. Maize is the
third most important staple cereal food crop in the world after wheat and rice; it contributes
about 30% of food-calorie intake and is a source of protein for more than four billion people
in 94 developing countries [3].

Maize kernels consist of 61 to 78% starch, 6 to 12% protein, and 3 to 6% fat [4,5].
Maize protein exists largely in the form of zein proteins, subdivided into β-, γ-, and α-
zein fractions based on amino acid sequences [5,6], with α-zein being the most abundant
fraction. The zein storage proteins are deficient in lysine and tryptophan, which are
essential amino acids for human and other monogastric animals, thus negatively affecting
the crop’s nutritional value [7,8]. This led to the development of quality protein maize
(QPM) in the 1960s, by conventional breeding through the introgression of the opaque2 gene,
and later modifier genes to harden the endosperm, to improve the nutritional content of
traditional maize varieties to combat malnutrition. QPM has double the amount of lysine
and tryptophan of normal maize and can supply 70 to 80% of human protein requirements,

Foods 2022, 11, 898. https://doi.org/10.3390/foods11070898 https://www.mdpi.com/journal/foods

https://doi.org/10.3390/foods11070898
https://doi.org/10.3390/foods11070898
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0002-6134-5534
https://orcid.org/0000-0001-9489-5623
https://orcid.org/0000-0003-2590-0999
https://orcid.org/0000-0002-0949-0419
https://orcid.org/0000-0003-0593-2678
https://doi.org/10.3390/foods11070898
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods11070898?type=check_update&version=1


Foods 2022, 11, 898 2 of 10

while non-QPM genotypes can only supply a maximum of 46% [9,10]. Several studies
have been conducted on QPM to determine the lysine and tryptophan content of maize
grains [11,12]. It is difficult to combine high grain yield with high-quality protein content
in elite maize varieties because these two characteristics are often negatively correlated [13],
either because the grain yield is directly involved in the process of seed modification
or because the modifier gene(s) could be tightly linked to those responsible for protein
synthesis [14].

Maize parental lines are the fundamental genetic materials essential for understanding
the mechanism and principles of breeding [15,16]. In recent years, a large number of QPM
inbred lines have been developed and successfully used as parents for generating hybrids
and synthetic varieties [17,18]. Parental materials form the basis on which the development
of stable and high yielding maize hybrids revolve [19]. As such, inbred lines should be
extensively evaluated at different locations for consistency in the performance of traits
of interest. Examining genotypes by environment interaction (GEI) is very important in
crop development because several factors contribute to the performance of a genotype,
since the production environment is variable [16]. The aim of this study is to assess
the seed composition, the nutritional value and zein protein composition, and the yield
performance of the new QPM inbred lines developed by the International Maize and Wheat
Improvement Centre (CIMMYT) in order to identify the best lines to use as parents in
developing high yielding and nutritious hybrids.

2. Materials and Methods
2.1. Genetic Material and Field Evaluation

The genetic material used consisted of 26 QPM inbred lines and nine non-QPM lines,
as well as five commercial checks (three QPM and two non-QPM) (Table 1), developed
by CIMMYT, Zimbabwe. The experiment was carried out under optimum conditions at
Cedara (latitude −29.54◦, longitude 30.26◦, with an elevation of 1066 m above sea level,
with reddish brown clay soils) and Potchefstroom (latitude −26.73◦, longitude 27.08◦, with
an elevation of 1349 m above sea level, with brown sandy loam soils) in South Africa. All
the trial locations are in summer rainfall regions, with December, January, and February
receiving the highest rainfall. Average annual rainfall is 824 mm (Cedara) and 600 mm
(Potchefstroom). The maximum temperatures during the maize growing season (October to
April) vary between 22–25 ◦C (Cedara) and 24–29 ◦C (Potchefstroom). Trials in Zimbabwe
were grown at CIMMYT, Harare (latitude 17◦46′, longitude 31◦02′, with an elevation of
1406 m above sea level), and Gwebi Agricultural College (latitude 17◦13′, longitude 31◦ E,
with an altitude of 1406 m above sea level). Gwebi is 27 km from Harare and has a
similar climate. The annual rainfall of Harare is 845 mm with maximum temperatures of
25–31 ◦C in the growing season. All trials were conducted under natural rainfall without
supplementary irrigation.

The experimental design used was a 5 × 8 randomised complete block design with
two replications at each location. The experimental unit consisted of one-row plots, each
4 m long with inter-row spacing of 0.75 m and spacing within rows of 0.25 m. Two seeds
were planted per hill, and seedlings were thinned to one plant per hill at four weeks after
emergence to give a final plant population density of about 53,333 plants ha−1.

At Potchefstroom, the fertiliser regime consisted of compound fertiliser 3:2:1 (25) + Zn,
applied as a basal application at planting, at a rate of 200 kg NPK (nitrogen, phosphorus,
potassium) ha−1. LAN (Limestone Ammonium Nitrate) with 28% N was used for top-
dressing in two equal splits at 28 and 56 days after emergence and at a rate of 100 kg ha−1

each. At Cedara, MAP (Monoammonium Phosphate) at 250 kg ha−1 was applied at
planting, and LAN was given at 150 kg ha−1 in two equal splits of 75 kg ha−1 at 28
and 56 days after emergence. For the Zimbabwe trials, fertilisers were applied at the
recommended rates of 250 kg ha−1 N, 83 kg ha−1 P, and 111 kg ha−1 K. Basal fertiliser
application was conducted in the form of NPK, and an additional N application was
conducted four weeks after seed emergence.
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Table 1. Description of the QPM and non-QPM inbred lines and checks used in the study.

Code Name Donor

L1 CZL1330 QPM progeny
L2 CZL15041 QPM progeny
L3 CZL15055 QPM progeny
L4 CZL15073 QPM progeny
L5 CZL1471 QPM progeny
L6 TL135470 QPM progeny
L7 VL06378 QPM progeny
L8 TL155805 QPM progeny
L9 TL147078 QPM progeny

L10 TL147070 QPM progeny
L11 TL13609 QPM progeny
L12 TL145743 QPM progeny
L13 TL156614 QPM progeny
L14 CZL1477 QPM progeny
L15 CZL15074 QPM donor
L16 CZL0616 QPM progeny
L17 CZL083 QPM progeny
L18 CML572 Non-QPM parent
L19 EBL167787 Non-QPM check
L20 CZL0520 Non-QPM parent
L21 CZL99005 Non-QPM parent
L22 CML502 QPM donor
L23 CZL0920 QPM donor
L24 CML144 QPM donor
L25 CML159 QPM donor
L26 CML181 QPM donor
L27 CML197 Non-QPM parent
L28 CML312SR Non-QPM parent
L29 CML488 Non-QPM parent
L30 CML491 QPM donor
L31 LH51 Non-QPM parent
L32 CZL00025 Non-QPM parent
L33 CZL15049 QPM tester
L34 CZL059 QPM tester
L35 CML444 Non-QPM tester
L36 CML395 Non-QPM tester
L37 CZL01005 QPM check
L38 CML511 QPM check
L39 CML312 Non-QPM check
L40 CZL1470 QPM check

Yield was measured on a plot basis, but as the difference between the average QPM
and non-QPM inbred lines was not significant, it was decided to focus only on quality
characteristics in this study.

2.2. Seed Samples

The seed samples were obtained by self-pollinating two cobs from each entry in the
two replications from all sites in order to prevent cross-pollination with unknown pollen,
which could affect the quality characteristics. All the self-pollinated cobs were harvested
and shelled manually and then bulked for each plot. The seed was placed in cold storage
(5 ◦C) until laboratory analyses, which was carried out within a few weeks of harvesting.

2.3. Sample Preparation

One hundred kernels of uniform size were randomly selected from the bulked seed
samples of each entry and replication; milled into flour using an IKA, A10 Yellowline
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grinder (Merck Chemicals Pty Ltd., Darmstadt, Germany); and then sieved with a 1 mm
screen mesh.

2.4. Zein

Zein analysis was conducted using reverse-phase high-performance liquid chromatog-
raphy (RP-HPLC). Zein extraction was adapted from the extraction method described
previously [20]. Maize flour (0.20 g) was placed in 2 mL reaction tubes. An aqueous
solution, containing 70% ethanol (Merck; 96% v/v), 24.5% filtered double distilled water,
5% beta-mercaptoethanol (Sigma; ≥99% v/v), and 0.5% sodium acetate (Saarchem AR;
w/v), was prepared as a stock solution [21,22]. One millilitre of this solution was added
to each tube. The mixture was agitated continuously on a vortex for ±16 h at ambient
temperature, and the suspension was centrifuged for 15 min at 6000 revolutions per minute.
The obtained supernatant was filtered through a 0.45 µm membrane filter using a sy-
ringe into glass vials, and it was then kept in a refrigerator at 4 ◦C until injection into the
HPLC system.

RP-HPLC was performed on a Shimadzu Prominence LC System using a Jupiter
C18 column (Phenomenex®) of 250 × 4.6 mm, with a 5 µm particle size and 300 Å pore
size. Samples of 50 µL were injected and eluted with the solvent at 1 mL per minute flow
rate with a column temperature of 55 ◦C. The two solvents used were labelled A and B.
Solvent A was made up of LiChrosolv Acetonitrile (Merck) containing 0.1% (v/v) HiPersolv
trifluoroacetic acid (TFA) (VWR chemicals), and Solvent B was filtered with deionised
water comprising 0.1% (v/v) TFA and was set to run for 75 min per sample. Zein fractions
were determined in a chromatograph using Shimadzu Class-VP 6.14 SP1 software. Based
on the distinct peak retention time, β-, γ-, and α-zeins were determined as a percentage of
the total zein content.

2.5. Amylose Content

Maize flour was used to determine the amylose content [23]. Absolute ethanol (Merck;
v/v) was diluted with distilled water to 95% concentration. A 40 g sodium hydroxide
(NaOH, Merck; w/v) was dissolved in double distilled water to prepare a 1 L solution.
Other solutions were acetic acid, prepared by adding 57.2 mL of glacial acetic acid (Merck,
Mr = 60.05; density = 1.05 g per mL) to 1 L distilled water, and iodine solution, prepared by
dissolving 0.2 g iodine and 2.0 g potassium iodide in 100 mL distilled water.

A solution containing 1 ml of 95% ethanol (v/v) and 9 mL 1 M NaOH was added to
each flour sample (0.1 g) in a 100 mL volumetric flask and vortexed. The samples were
incubated and placed in boiling water to gelatinise the starch for 30 min before being
allowed to cool for 1 h at room temperature, and they were then centrifuged for 5 min at
3000 rpm. A 100 µL sample was transferred into each 15 mL test tube, and 20 µL 1 M acetic
acid and the prepared 200 µL iodine solutions were added. The final volume was made up
to 10 mL using double distilled water, thoroughly mixed, and left to stand for 20 min for
colour development to take place, before reading the absorbance at 620 nm on a UV–Vis
spectrophotometer (Jenway Spectrophotometer Model 7315, UK, ST15 OSA).

The amylose percentage was calculated as follows:

Amylose (%) =
Total amylose in sample (mg)

Sample mass (mg)
× 100

2.6. Tryptophan and Starch Content

Lysine and tryptophan levels are generally highly positively correlated in maize
kernels [7,24], and, for this reason, only tryptophan was measured in this study. Flour
samples (2 g) were defatted and analysed for tryptophan content, using a colorimetric
method based on a glyoxylic acid reaction with the tryptophan present in the flour, in
the presence of ferric chloride and sulphuric acid (H2SO4), according to the protocol



Foods 2022, 11, 898 5 of 10

of Nurit [24]. The optical density of tryptophan was read at 560 nm using a Jenway
Spectrophotometer, Model 7315. The tryptophan percentage was then calculated [24]:

Tryptophan (%) =
OD60mm

slope
× hydrolysis volume

sample weight
× 100

The total starch was determined using a polarimetric method [25]. Flour samples of
2.5 g were weighed into 100 mL Erlenmeyer flasks. Then, 50 ml of a 32% (v/v) GR HCL
(Merck) solution was added, and the flask was placed in boiling water for 15 min, with
the samples stirred every 5 min. The samples were taken out and allowed to cool to
approximately 20 ◦C in a cool water bath. The mixture was then quantitatively transferred
to a 100 mL volumetric flask. Then, 10 ml of a 4% (w/v) GR tungstophosphoric acid
(Merck) was added to the solution, made up to 100 mL using double distilled water, and
inverted several times. Double filtration with Whatman no. 4 filter paper followed until
approximately 70 mL filtrate was collected. The filtrate was then read on an automatic
polarimeter (ATAGO® AP-300) at 589 nm.

The percentage of starch in the sample was computed as follows:

Starch (%) =
10, 000× P

L× [a]20◦
D × S

where P = the measured angle of the optical rotation in degrees; L = length (dm) of the
sample tube, [a]20◦

D = specific rotation of the pure starch, and S = exact mass of the sample.

2.7. Protein and Oil Content, and Quality Index

A 500 g sample of the self-pollinated seeds was used to determine the protein and oil
contents (percentage weight basis, %wt) for each sample, using a near-infrared transmission
spectroscopy (NIR) Perten Grain Analyzer (Model DA 7250, Perten, Instruments AB,
Stockholm, Sweden), with three subsamples for each sample. The NIR calibration was
confirmed with results from the wet chemistry of 50 samples before use. The quality index
was calculated as the proportion of tryptophan to protein content.

2.8. Data Analysis

Analysis of variance was performed on the measured characteristics with Genstat
(21st edition) [26] for the separate locations and across locations.

3. Results
Analysis of Variance for Individual and Combined Locations

The effect of the inbreds was significant for all measured characteristics at all four
locations and across locations, with the exceptions of protein content and β-zein content
at Cedara and Gwebi (Table 2). Across all locations, the effect of the environment was
highly significant (p > 0.01) for all characteristics. Genotype-by-environment interaction
was highly significant (p > 0.01) for all characteristics except for β-zein, indicating that
the inbreds did not rank the same across the different environments for the measured
characteristics (Table 2).

Table 2. Analysis of variance of quality traits analysed for 40 inbred lines at four environments in
Zimbabwe and South Africa during the 2017/2018 cropping season.

Source Protein % Oil % Starch % Tryptophan % Amylose % β-Zein γ-Zein α-Zein QI

Cedara
Rep 0.61 0.03 23.62 * 0.000003 15.77 54.90 14.30 110.80 0.03

Entry 0.86 1.44 * 9.59 * 0.000700 ** 224.68 ** 29.47 814.77 ** 596.97 * 0.11 **
Error 0.59 0.47 4.81 0.000026 3.99 43.81 185.02 277.94 0.01
Potch
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Table 2. Cont.

Source Protein % Oil % Starch % Tryptophan % Amylose % β-Zein γ-Zein α-Zein QI

Rep 0.01 0.82 5.61 0.00012 * 3.43 2.89 506.42 184.40 0.01
Entry 1.77 ** 1.77 ** 11.59 ** 0.00007 ** 127.90 ** 2.56 * 626.25 ** 749.91 ** 0.11 **
Error 0.41 0.44 3.38 0.00001 5.62 1.09 173.98 102.07 0.01

Harare
Rep 0.01 0.01 0.44 0.00005 25.97 51.47 265.39 1124.40 * 0.05

Entry 2.12 * 1.05 * 3.16 ** 0.00048 ** 2459.23 159.55 ** 455.05 491.71 ** 0.16 **
Error 0.45 0.08 0.13 0.00004 1861.53 31.43 279.22 132.02 0.01

Gwebi
Rep 0.23 0.30 0.04 0.00005 23.99 34.95 8228.20 * 52.26 0.01

Entry 2.33 0.97 * 4.70 0.00050 ** 166.79 11.12 390.22 591.20 0.11 **
Error 1.00 0.13 1.41 0.00002 7.54 23.68 454.75 806.43 0.01

Combined
analysis

Entry (G) 7.42 ** 4.41 ** 0.003 ** 7.42 ** 249.07 ** 9.80 ** 1490.51
**

1577.48
** 0.99 **

Environment (E) 592.77 ** 4.14 ** 0.008 ** 592.77 ** 823.45 ** 67.80 ** 976.73 ** 606.62 ** 20.71 **
GxE 1.03 ** 0.88 ** 0.000 ** 1.03 ** 232.70 ** 2.21 213.41 ** 209.52 ** 0.21 **
Error 0.32 0.25 0.000 0.32 10.01 1.67 96.01 98.11 0.04

* p < 0.05, ** p < 0.01; QI = quality index.

On average, across the locations (Table 3), the protein content was significantly higher
for non-QPM than for QPM, and the values ranged from 6.38% (QPM L6) to 9.78% (non-
QPM L27). The oil content was similar for QPM and non-QPM, with the values ranging
between 3.18% (QPM L30) and 5.65% (QPM L33). The starch content of QPM and non-QPM
was similar, ranging from 60.20% (QPM L14) to 67.49% (non-QPM L28). As expected,
the tryptophan content of QPM was much higher than that of non-QPM (1.9 times), with
values ranging between 0.034% (non-QPM L36) and 0.091% (QPM L5 and L16). The
quality index of QPM was double that of non-QPM, varying from 0.42 (non-QPM L39) to
1.73 (QPM L33). Amylose content was similar for QPM and non-QPM but varied extensively
from 31.88% (non-QPM L39) to 53.18% (QPM L25). β-zein content was similar for QPM
and non-QPM and varied from 2.35% (non-QPM L31) to 6.75% (QPM L31). There was a
very large difference (41%) between QPM and non-QPM for γ-zein content, with the QPM
values being the highest. The differences between the highest and lowest values were also
very high (22.71% for non-QPM L20 and 70.62% for QPM L215). Likewise, the difference
between QPM and non-QPM for α-zein content was 37% with non-QPM having the highest
value and the values overall ranging from 26.68% (QPM L5) to 68.4% (non-QPM L20).

Table 3. Means of quality traits for 40 inbred lines analysed across four environments in Zimbabwe
and South Africa during the 2017/2018 cropping season.

Line Line Status Protein % Oil % Starch % Tryptophan % QI Amylose
%

β-Zein
%

γ-Zein
%

α-Zein
%

L1 QPM 7.21 4.27 65.69 0.079 1.21 41.23 4.98 62.70 33.06
L2 QPM 8.44 3.94 66.35 0.086 1.11 44.24 4.33 46.49 49.26
L3 QPM 7.11 4.94 65.17 0.076 1.19 42.04 5.15 56.96 37.88
L4 QPM 7.54 3.78 66.84 0.068 1.01 45.92 6.00 35.27 58.66
L5 QPM 7.80 5.50 63.11 0.091 1.28 38.94 5.21 68.03 26.68
L6 QPM 6.38 3.83 66.72 0.079 1.68 46.56 4.79 44.18 38.19
L7 QPM 8.54 3.54 61.51 0.089 1.01 38.50 5.41 65.21 29.30
L8 QPM 9.43 5.09 63.25 0.076 0.88 46.10 5.92 40.08 54.05
L9 QPM 8.21 4.97 64.36 0.089 1.18 50.65 5.11 57.19 37.79

L10 QPM 9.64 6.31 61.14 0.076 0.83 37.30 5.81 37.52 56.67
L11 QPM 7.22 5.27 65.83 0.078 1.30 35.38 4.44 43.70 51.93
L12 QPM 7.13 3.62 66.91 0.078 1.12 36.07 6.75 62.61 30.56
L13 QPM 6.75 4.26 66.56 0.081 1.21 34.67 5.36 56.16 38.51
L14 QPM 8.63 4.15 60.20 0.083 1.01 33.75 5.48 63.42 31.02
L15 QPM 6.96 4.33 66.32 0.083 1.29 44.08 6.35 64.34 29.39
L16 QPM 8.98 5.06 63.61 0.091 1.07 44.12 4.71 49.60 45.69
L17 QPM 6.69 5.30 65.11 0.085 1.40 48.00 4.81 60.26 34.93
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Table 3. Cont.

Line Line Status Protein % Oil % Starch % Tryptophan % QI Amylose
%

β-Zein
%

γ-Zein
%

α-Zein
%

L18 non-QPM 7.81 3.47 66.20 0.035 0.51 39.82 6.18 44.82 48.92
L19 non-QPM 8.46 3.65 67.01 0.039 0.70 48.10 6.46 30.40 62.84
L20 non-QPM 8.17 4.50 65.06 0.044 0.71 49.42 4.55 22.71 72.83
L21 QPM 8.57 3.75 65.03 0.046 0.67 44.46 2.59 40.02 57.32
L22 QPM 8.00 4.57 63.45 0.081 1.56 37.23 5.38 51.73 42.90
L23 QPM 8.63 3.92 65.10 0.075 0.96 39.01 4.95 43.68 51.29
L24 QPM 8.24 4.12 65.50 0.085 1.15 43.61 5.71 64.69 29.60
L25 QPM 6.38 4.96 65.30 0.083 1.48 53.18 6.58 70.62 22.89
L26 QPM 8.53 3.86 65.64 0.075 1.06 39.37 3.06 43.13 53.81
L27 non-QPM 9.78 5.75 61.46 0.045 0.45 32.22 3.72 34.26 62.15
L28 non-QPM 7.09 4.07 67.49 0.038 0.65 36.04 5.64 32.26 62.10
L29 non-QPM 7.79 5.34 66.32 0.046 0.69 39.48 3.75 34.95 61.22
L30 QPM 7.95 3.18 66.14 0.043 0.58 44.74 6.62 57.88 35.43
L31 non-QPM 8.06 3.90 65.71 0.045 0.72 39.40 2.35 29.17 68.40
L32 non-QPM 9.30 4.09 63.85 0.040 0.46 31.32 3.69 30.40 65.99
L33 QPM 6.63 5.65 65.38 0.086 1.73 50.20 4.27 57.41 38.32
L34 QPM 6.53 5.64 65.01 0.075 1.30 45.43 4.58 64.01 31.49
L35 non-QPM 8.17 4.70 64.68 0.045 0.56 46.37 3.43 31.41 65.17
L36 non-QPM 7.16 4.77 66.42 0.034 0.59 31.88 6.85 29.98 63.16
L37 QPM 6.60 4.06 67.10 0.066 1.29 37.68 4.20 68.67 27.04
L38 QPM 7.53 5.04 66.19 0.079 1.38 39.50 5.41 47.62 44.80
L39 non-QPM 9.49 4.97 61.85 0.041 0.42 45.60 5.40 33.52 61.20
L40 QPM 6.77 4.86 66.10 0.076 1.36 44.49 4.93 55.98 39.08

QPM mean 7.69 4.54 64.99 0.078 1.18 42.29 5.13 54.45 39.92
Non-QPM mean 8.30 4.47 65.10 0.041 0.59 40.00 4.73 32.17 63.09

Total mean 7.86 4.52 65.02 0.068 1.02 41.68 5.02 48.33 46.29
LSD (0.05) 0.47 0.42 1.08 0.0051 0.16 2.62 1.07 8.11 8.20

QPM = quality protein maize; non-QPM = non quality protein maize; QI = quality index.

The values of significant correlations were low (Table 4), except for those for α- and
γ-zeins, which were directly negatively correlated (r =−0.94). For the rest, only correlations
of higher than 0.3 and p < 0.01 are mentioned. α-Zein content was negatively correlated
with tryptophan content, while β-zein content was significantly negatively correlated with
protein content. γ-Zein content was positively correlated with tryptophan content.

Table 4. Correlations between measured characteristics across all locations.

Characteristic 1 Characteristic 2 Correlation

α-Zein γ-Zein −0.94 **
Tryptophan −0.47 **

Amylose Starch 0.18 *
β-Zein Protein −0.31 **

Starch 0.15 *
Oil Protein 0.22 **

Tryptophan 0.19 *
γ-Zein Tryptophan 0.41 **
Tryptophan Starch 0.20 *

* p < 0.01, ** p < 0.001.

4. Discussion

With the development of QPM, it was reported that the protein content of QPM and
that of non-QPM were similar [27], but in the inbred lines in this study, the protein content
of the non-QPM was significantly higher (by 7%) than that of the QPM. Oil, starch, amylose,
and β-zein were similar for the two groups of material, but there was a wide range of values
for these characteristics, indicating that there are QPM lines with high protein content.

QPM contains the mutant gene opaque 2 (o2), which is responsible for the reduction
in α-zeins, which contain no lysine or tryptophan, with an increase in non-zein proteins.
Originally, this gene caused soft endosperm, which was overcome by using o2 modifiers
that ensured hard endosperm without the loss of the high lysine trait [28,29]. In this study,
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the tryptophan content of the QPM lines was 1.9 times that of non-QPM; this was also
reflected in the QI, which was double in QPM compared to non-QPM. For a maize grain to
be classified as a QPM, it must have a QI equal to or above 0.8 [30,31]. In o2 maize, the zein
fraction was found to be reduced by 50% [14], but it had higher contents of non-zein protein
(albumin, globulin, and glutelin fractions), which are rich in lysine and tryptophan [32].
Therefore, the presence of the o2 gene in the QPM lines would explain the large decrease in
α-zeins in the QPM lines compared to non-QPM and the simultaneous increase in γ-zein
in the QPM, where γ-zein was highly significantly correlated with tryptophan content.
The highly significant negative correlation between α- and γ-zeins supports this finding.
γ-Zeins are subdivided into three classes, namely, 16 kDa, 27 kDa, and 50 kDa. QPM
lines were reported to have 2–3-fold higher levels of the 27 kDa γ-zein than non-QPM
lines [32]. This may have caused the increase in the γ-zein fraction in the QPM lines. It
was reported [33] that maize kernels with hard endosperm produced more α-zein (22 kDa
and 19 kDa), while the intensity of these bands declined in QPM genotypes [19,33]. In the
current study, the α-zein concentration was also much lower in QPM lines.

The significant genotype-by-environment interaction, observed for all the quality char-
acteristics analysed except for β-zein, indicates that the environment plays an important
role in the expression of these characteristics and protein fractions, changing the ranking
of lines in different environments. Differences in amino acid contents, as a result of varia-
tions in soil nitrogen contents in different soybean varieties and different planting dates of
buckwheat, were reported [34,35], demonstrating the environmental influences on protein
composition, which was also the case in this study. This indicates that not only the line but
also the environment influence the nutritional value of the grain.

Generally, the range of starch content values in the present study for the inbred lines
is comparable to the values reported previously [36,37], with ample variation in all lines.
Similarly, amylose, which is a major constituent of starch, varied significantly for the lines
evaluated.

Some QPM lines, such as L16, L7, and L2, had a tryptophan content higher than 0.086
and could still maintain a protein content of 8.98, 8.54 and 8.44%, respectively. These lines
can be used as parents in hybrid crosses in order to enhance the protein and tryptophan
content in the seed.

5. Conclusions

The yield potential of the QPM and non-QPM inbred lines was similar (data not shown)
but the QPM lines had much higher tryptophan and QI, and a much lower amount of the
lysine- and tryptophan-poor α-zein fraction. Within the QPM lines, there was significant
variation in protein content and α- and γ-zeins, as well as in starch and amylose content.
The QPM lines had much better protein quality than that of the non-QPM lines, although
the protein content was 7% lower on average. Some QPM lines were identified to have
acceptable yield and to have both high protein quantity and quality; these can be used
for future hybridisation to produce highly nutritious hybrids, which can be distributed to
farmers in the region to address malnutrition caused by a maize-based diet.
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