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Both crizotinib and sunitinib, novel orally-active multikinase inhibitors, exhibit antitumor
activity and extend the survival of patients with a malignant tumor. However, some
patients may suffer liver injury that can further limit the clinical use of these drugs, however
the mechanisms underlying hepatotoxicity are still to be elucidated. Thus, our study was
designed to use HepG2 cells in vitro and the ICR mice model in vivo to investigate the
mechanisms of hepatotoxicity induced by crizotinib and sunitinib. Male ICR mice were
treated orally with crizotinib (70 mg/kg/day) or sunitinib (7.5 mg/kg/day) for four weeks.
The results demonstrated that crizotinib and sunitinib caused cytotoxicity in HepG2 cells
and chronic liver injury in mice, which were associated with oxidative stress, apoptosis
and/or necrosis. Crizotinib- and sunitinib-induced oxidative stress was accompanied by
increasing reactive oxygen species and malondialdehyde levels and decreasing the
activity of superoxide dismutase and glutathione peroxidase. Notably, the activation of
the Kelch-like ECH-associated protein-1/Nuclear factor erythroid-2 related factor 2
signaling pathway was involved in the process of oxidative stress, and partially
protected against oxidative stress. Crizotinib and sunitinib induced apoptosis via the
mitochondrial pathway, which was characterized by decreasing Bcl2/Bax ratio to
dissipate the mitochondrial membrane potential, and increasing apoptotic markers
levels. Moreover, the pan-caspase inhibitor Z-VAD-FMK improved the cell viability and
alleviated liver damage, which further indicated the presence of apoptosis. Taken
together, this study demonstrated that crizotinib- and sunitinib-caused oxidative stress
and apoptosis finally impaired hepatic function, which was strongly supported by the
histopathological lesions and markedly increased levels of serum alanine
aminotransferase, alkaline phosphatase and lactate dehydrogenase.

Keywords: crizotinib, sunitinib, hepatotoxicity, Keap1/Nrf2, apoptosis, liver mitochondrial injury
January 2022 | Volume 12 | Article 7499541

https://www.frontiersin.org/articles/10.3389/fonc.2022.749954/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.749954/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.749954/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.749954/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:zhangleiyi@csu.edu.cn
mailto:yanmiao@csu.edu.cn
https://doi.org/10.3389/fonc.2022.749954
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.749954
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.749954&domain=pdf&date_stamp=2022-01-28


Guo et al. Crizotinib- and Sunitinib-Induced Hepatotoxicity
INTRODUCTION

Crizotinib, an oral inhibitor of anaplastic lymphoma kinase,
MET proto-oncogene, and c-ros oncogene 1 tyrosine kinases,
was approved by the U.S. Food and Drug Administration (FDA)
in 2011 for non-small cell lung cancer (1). Although crizotinib
has been documented to improve survival in cancer patients, it
can cause severe adverse effects, including pulmonary toxicity
(2), acute and fulminant hepatitis (3). In clinical trials, the
frequency of elevated serum transaminases in patients treated
with crizotinib was 10-38% for all grades, 16% for grade 3 to
grade 4 and nearly 0.1% for fatal hepatotoxicity (4). Recently, two
clinical cases reported that patients treated with crizotinib
presented with fatal liver failure despite the discontinuation of
crizotinib and intensive supportive therapy (5, 6).

As another oral multitargeted inhibitor of platelet-derived
growth factor receptors, vascular endothelial growth factor
receptor and c-Kit tyrosine kinases, sunitinib was approved by
FDA in 2006 for patients with metastatic renal-cell carcinoma,
imatinib-resistant gastrointestinal stromal tumors and pancreatic
neuroendocrine tumors (7). Nevertheless, sunitinib showed some
potentially severe adverse reactions including cardiac dysfunction
and potentially life-threatening hepatotoxicity (8, 9). Sunitinib-
induced liver failure has been reported in many clinical cases (10).
In clinical trials, 2-5% of patients treated with sunitinib developed
grade 3 and grade 4 elevated aminotransferase (11) and hepatic
failure happened in 0.3% of patients (12). TheUS FDA requested a
black box warning of hepatotoxicity for the use of sunitinib
pending warnings of fatal liver damage reports in 2010 (4).
Hepatotoxicity has limited the clinical application of crizotinib
and sunitinib. Therefore, there is an urgent need to further explore
the molecular mechanisms and pathways associated with
crizotinib- and sunitinib-induced hepatotoxicity for clinical
medication guidance and hepatotoxicity avoidance. Recently,
researchers have reported that crizotinib did not significantly
affect mitochondrial function in isolated rat liver mitochondria
(13) andHepG2 cells (14) at concentrations of 20- to 100-fold peak
blood levels. However, some in vitro studies suggested that
crizotinib induced ATP depletion, caspase activation in primary
rat andhumanhepatocytes (15), and reactiveoxygen species (ROS)
generation in HL7702 cells (16). Similarly, Zhang and his
colleagues reported that sunitinib showed no effects on intact
mitochondria or submitochondrial particles even at the highest
concentrations tested in isolated rat liver mitochondria (13).
Nevertheless, recent research showed that sunitinib generated
toxic metabolites causing mitochondrial toxicity in mice (17, 18),
and apoptosis was induced in HepG2 cells and HepaRG cells (19).
The results of the previous studies appear to be incompatible or
contradictory in different cell lines and animal models. Thus, it is
important to investigate whether oxidative damage and
mitochondrial-related apoptosis are involved in crizotinib- and
sunitinib-induced hepatotoxicity. Therefore, the present studywas
conducted usingHepG2 cells as an in vitromodel and ICRmice as
an in vivomodel to explore potential mechanisms associated with
crizotinib- and sunitinib-induced hepatotoxicity. Our results
confirmed that crizotinib and sunitinib treatment induced liver
toxicity, which manifested in terms of elevated liver enzymes,
Frontiers in Oncology | www.frontiersin.org 2
elevated oxidative stress, and mitochondrial dysfunction, which
subsequently lead to hepatocyte apoptosis. Importantly, we were
the first to find that the Kelch-like ECH-associated protein-1
(Keap1)/Nuclear factor erythroid-2 related factor 2 (Nrf2)
signaling pathway was involved in the process of crizotinib- and
sunitinib induced oxidative stress. Our findings indicate that the
activation of the Keap-Nrf2 pathway may participate in the
elimination of ROS to alleviate oxidative injury.
MATERIALS AND METHODS

Drugs and Reagents
Crizotinib (purity≥98%) and sunitinib (purity≥99%) were
obtained from Huateng pharmaceuticals-company (Hunan,
China). DMEM medium and phosphate-buffered saline (PBS)
were obtained fromGibco (Grand Island, NY, USA). Fetal bovine
serum (FBS) was obtained from Biological Industries (Israel).
Dimethyl sulfoxide (DMSO) and 3-(4, 5-dimethylthiazol-2-yl)-2,
5-diphenyltetrazolium bromide (MTT) were obtained from
Sigma-Aldrich (St. Louis, MO, USA). Trypsin, penicillin, and
streptomycin were obtained from Hyclone (Logan, USA). The
primary antibodies usedwere anti-Nrf2 (sc-722, SantaCruz), anti-
Keap1 (af5266, Affinity), anti-cleaved caspase3 (af7022, Affinity),
anti-Bcl2 (ab692, Abcam), anti-Bax (ab32503, Abcam), anti-
HistoneH3 (af0863, Affinity), and anti-b-actin (ac006, ABclonal).

HepG2 Cell Culture
HepG2 cells were cultured in DMEM medium supplemented
with 10% FBS and 1% streptomycin and penicillin. The cells were
maintained in a water-jacket CO2 incubator at 37°C with 5%
CO2. In all experiments, the cells were inoculated with an
appropriate density according to the experimental design and
cultured for 24 h before the treatment.

Animal Treatment and Drug Administration
ICR male mice (body weight of 18-22 g) were purchased from
Hunan Slack Jingda Experimental Animal Co., Ltd. (Hunan,
China). The mice were acclimatized for one week and were
maintained under a standard conditioned environment. Water
and normal chow were given ad libitum. Animal care was
following institutional guidelines. The study was approved by
the Institutional Animal Care and Use Committee of Central
South University (Hunan, China). The mice were randomly
divided into vehicle-treated group (control, n=8), crizotinib-
treated group (n=8, 35 mg/kg, twice daily) and sunitinib-
treated group (n=8, 7.5 mg/kg/day, once daily). The mice
received either 0.5% (w/v) carboxymethyl cellulose sodium
once daily, crizotinib twice daily or sunitinib once daily via
intragastric administration for 4 weeks consecutively. After 24 h
of the last treatment, the animals were euthanized, blood samples
were collected and livers were surgically excised and collected in
10% phosphate-buffered formalin for further determination.

Cytotoxicity Assay
HepG2 cells were seeded (5×103 cells/well) in 96-well plates, with
200 mL media per well. Cells were exposed to different
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concentrations of crizotinib (0, 5, 10, 15, 20, 30, 40 mM) or
sunitinib (0, 3.2, 6.6, 13.1, 19.6, 26.1, 39.2, 52.2 mM) for 12, 24,
and 48 h. Cells were incubated with fresh MTT solution (100 mL/
well; stock 5 mg/mL in PBS) for 3-4 h. After the crystal dissolved,
the plates were read on an automated microplate
spectrophotometer (Thermo Multiskan Spectrum, Thermo
Electron Corporation, USA) and absorbance at 570 nm
was measured.

Hepatotoxicity Assessments
After crizotinib and sunitinib treatment of HepG2 cells, the
supernatant was collected and the biochemical parameters
alanine aminotransferase (ALT), aspartic acid transferase
(AST), alkaline phosphatase (ALP) and lactate dehydrogenase
(LDH) were measured by the full-automatic clinical analyzer in
the laboratory of the second Xiangya hospital (7600, HITACHI
Ltd., Tokyo, Japan).

Liver samples of the mice were fixed in 10% phosphate-
buffered formalin and embedded in paraffin. In brief, the liver
tissue was embedded in paraffin, then deparaffinized with xylene,
stained with hematoxylin and eosin, then dehydrated and sealed,
and finally evaluated for damage under light microscopy.

Apoptosis Determined by Annexin V-FITC
and TUNEL Assay
Apoptosis was detected through flow cytometry using FITC
Annexin V Apoptosis Detection Kit (Bestbio, Shanghai,
China). Drug-treated cells (culture in the incubator for 24 h)
were digested by trypsin without EDTA, centrifuged, and
resuspended with PBS for 3 times strictly. The fluorescence
maker was added and cells were incubated in a dark place at
2-8°C for 15 min, followed by sample loading and detection
through flow cytometry. All samples were analyzed within 1 h to
ensure the effect.

Terminal deoxynucleotidyl transferase-mediated dUTP nick
end labeling (TUNEL) assay was conducted with the TUNEL kit
according to the manufacturer’s instructions. In brief, the liver
tissue was embedded in paraffin, then deparaffinized with xylene,
stained with TUNEL reaction mixture, then stained by DAPI
staining and anti-fluorescence quenching were performed.
Finally, the obtained slices were observed and photographed at
a suitable high magnification, with the apoptotic cells appearing
green and the nuclei appearing in blue.

Accumulation of ROS
The level of ROS was determined using the fluorescent probe
DCFH-DA (Beyotime Biotechnology, Shanghai, China). HepG2
cells (3.5×105 cells/well) were treated with different
concentrations of crizotinib (0, 8, 15, 20 mM) or sunitinib (0, 5,
9, 14 mM) for 24 h. After DCFH-DA was added at a final
concentration of 10.0 mM to the culture medium, the
hepatocytes in 24-wells were incubated at 37°C for an
additional 20-30 min, and then washed with PBS, and
measured immediately by fluorescence microscope (Thermo
Electron Corporation, USA). Increased green fluorescence
intensity was used to quantify intracellular ROS production.
Frontiers in Oncology | www.frontiersin.org 3
Measurement of Glutathione Peroxidase
(GPx), Superoxide Dismutase (SOD) and
Malondialdehyde (MDA)
The extent of oxidative stress was estimated in liver homogenates
by measuring activities of GPx, SOD and MDA using
commercial kits (Jiancheng Bioengineering Institute, Nanjing,
China) according to the manufacturer’s instructions. GPx is an
important selenoprotein that reduces hydroperoxides as well as
hydrogen peroxide (H2O2) while oxidizing glutathione, which
can protect the structure and function of the cell membrane (20,
21). Briefly, GPx can promote the reaction of H2O2 with reduced
glutathione (GSH) to produce H2O and glutathione oxidized.
The activity of GPx was measured by spectrophotometer assay at
412 nm from the oxidation of GSH in the presence of H2O2 used
as substrate.

The activity of SOD was determined by the xanthine oxidase
(hydroxylamine) method. This redox produced superoxide
which oxidizes hydroxylamine to nitrite by reacting with the
reagent producing a purple-red dye. The absorbance of the color
which was inversely proportional to the SOD activity was
determined by a spectrophotometer at 550 nm (22).

The production of MDA was assessed with the thiobarbituric
acid reactive substances method (TBA). TBA was added to each
sample tube and vortexed. The reaction mixture was incubated at
95°C for 60 min. After cooling, the pink pigment was read
spectrophotometrically at 532 nm (22).

Mitochondrial Membrane Potential (MMP)
Mitochondrial membrane potential assay kit with JC-1
(Beyotime Biotechnology, Shanghai, China) is a fast and
sensitive assay kit that uses JC-1 as a cationic dye to detect
membrane potential changes in cells, tissues or purified
mitochondria, which can be used for early detection of
apoptosis. After the liver tissue was digested, cell precipitation
was collected, then fluorescence probe was loaded and cells were
incubated at 37°C for 20 min, mixed well every 3-5 min, and
washed with dyeing buffer (1×) at 4°C and centrifuged three
times, finally detected by flow cytometry.

Western Blotting
The HepG2 cell and animal liver protein samples were extracted
with enhanced RIPA lysate (Boster, Hubei, China), the
cytoplasmic and nuclear proteins were prepared with the
subcellular structure cell nucleus and cytoplasmic protein
extraction kit (Boster, Hubei, China) according to the
manufacturer’s instruction. The protein concentration of
whole-cell lysates was determined using the BCA method
(Boster, Hubei, China). Protein lysates (15-30 mg) were loaded
on 8-12% SDS-PAGE gels, separated electrophoretically and
transferred to the PVDF membrane. Subsequently, the
membranes were incubated in a blocking solution at room
temperature for 1 h. After blocking, membranes were
separately incubated at 4°C on a rocker with primary
antibodies specific to the protein of interest; these were rabbit
anti-Keap1 antibody (1:1000), anti-cleaved caspase3 antibody
(1:1000), anti-Bax antibody (1:5000), anti-Histone H3 antibody
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(1:1000), anti-b-actin antibody (1:500-1:2000), mouse anti-Nrf2
antibody (1:800), and anti-Bcl2 antibody (1:500). Subsequently,
the membranes were incubated with a suitable HRP-conjugated
secondary antibody (Proteintech, USA) for 1h, and then signal
detection was conducted with an ECL kit (Boster, Hubei, China)
according to the manufacturer’s protocol.

Statistical Analysis
The data were presented as the means ± standard derivation
(SD). The significance of differences between groups was
determined with the one-way analysis of variance (ANOVA)
and SPSS 20.0 software (SPSS Inc., Chicago, IL, USA), and
comparison between two groups was done with an
independent sample t-test. Figures were drawn with GraphPad
Prism 6 (GraphPad Software, La Jolla, CA, USA).
RESULTS

Crizotinib and Sunitinib Induced
Hepatotoxicity
The results showed that HepG2 cell viability was reduced in a
concentration- and time-dependence manner (Figures 1A, B).
When cells were treated for 24 h, crizotinib 15 mM and sunitinib
9 mM were used in subsequent experiments. The levels of ALT,
AST, and LDH are sensitive markers of hepatocyte damage.
Figure 1C showed that ALT and AST levels increased
Frontiers in Oncology | www.frontiersin.org 4
significantly in the supernatant from treated HepG2 cells at a
concentration of 15mM and 20 mM, but LDH levels were not
significantly altered in the crizotinib treatment compared to
vehicle. According to Figure 1D, sunitinib treatment
significantly elevated the levels of ALT, AST, and LDH
compared to vehicle.

Serum levels of the hepatic enzymes ALT and ALP were
significantly elevated in crizotinib-treated group, while the levels
of ALT and LDH were significantly elevated in animals treated
with sunitinib compared to the control group (Figure 2A). Also,
histopathological analysis of liver sections from the crizotinib
group (Figure 2B-b) showed small pockets of inflammatory cells
infiltrate around the hepatic lobules and the central veins,
compared with those of the control group (Figure 2B-a). More
hepatocyte edema, cytoplasm loose light dye, and a small amount
of hepatocyte edema to balloon-like degeneration, cell swelling,
cytoplasmic cavitation (Figure 2B-c), and a small amount of
focal lymphocyte infiltration (Figure 2B-d) were seen in the
sunitinib group, but not in the control group. These findings
support drug-induced liver injury for animals treated with
crizotinib and sunitinib in vivo.

Hepatotoxicity Induced by Crizotinib and
Sunitinib Is Mediated by Cell Apoptosis
and Necrosis
As shown in Figure 3A, an upward tendency pattern was
apparent, when the HepG2 cells were treated with different
A B

DC

FIGURE 1 | The hepatotoxicity of crizotinib and sunitinib in vitro. (A, B) Cytotoxicity of crizotinib or sunitinib alone at the various concentration for 12, 24 and 48 h in
HepG2 cells (n=5-6). (C, D) ALT, AST and LDH levels in the supernatant following HepG2 cell treatment with crizotinib or sunitinib at different concentrations for 24 h
(n = 3). *P < 0.05, **P < 0.01 or ***P < 0.001 (the crizotinib or sunitinib alone vs. control). ALT, alanine aminotransferase; AST, aspartic acid transferase; LDH, lactate
dehydrogenase.
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concentrations of crizotinib (0, 8, 15, 20, 25 mM) for 24 h, which
supported the hypothesis that crizotinib induced hepatocyte
apoptosis and/or necrotic. Subsequently, a time-dependent
increase was observed, and HepG2 cells treated for 24 h and
48 h with crizotinib showed greater apoptosis and/or necrosis
(Figure 3C). The percentage of cells undergoing apoptosis and/
or necrosis in crizotinib-treated hepatocytes increased
dramatically compared with non-treated cells (Figures 3B, D).
Activation of caspase 3 is the most critical apoptotic executive
event in apoptosis. Sunitinib was associated with a significant
concentration-dependent increase in cleaved caspase 3 starting at
9 mM (Figure 3E). Moreover, Z-VAD-FMK, an irreversible pan-
caspase inhibitor, was applied to block apoptosis. The results
showed that Z-VAD-FMK increased cell viability and relieved
drug-induced toxicity to HepG2 cells, as shown in Figures 3F, G.

As shown in Figures 4A, B, the number of TUNEL-positive
cells in the liver tissue of ICR mice increased significantly after
crizotinib and sunitinib treatment. When crizotinib and
sunitinib were applied to mice, the expression of cleaved
caspase 3 was increased significantly, which was consistent
with the results of TUNEL assay (Figures 4C, D). These
results further revealed that apoptosis and/or necrosis
cont r ibu ted to cr i zo t in ib- and sun i t in ib- induced
hepatocyte death.

Crizotinib and Sunitinib Induced
Oxidative Stress
As shown in Figures 5A, B, treatment with crizotinib or
sunitinib (24 h) increased the production of ROS in a
concentration-dependent manner compared with control cells.
As shown in Figure 6, a significant reduction in the activity of
GPx was found in both crizotinib- and sunitinib-treated animals
compared to the control group. However, accumulation of MDA
and a decrease of the activity of SOD were significantly observed
in the sunitinib but not crizotinib treatment group. Accordingly,
The function of the endogenous antioxidant defense system is
impaired as demonstrated by a decrease of SOD activity and an
Frontiers in Oncology | www.frontiersin.org 5
increase of MDA which cannot remove ROS effectively leading
to the accumulation of ROS in the liver tissues of mice.
Subsequently, we investigated the changes in the Keap1/Nrf2
pathway which played an important role in oxidative stress.
When HepG2 cells were exposed to crizotinib or sunitinib for
24 h, the protein expression of total Keap1 was down-regulated
while nuclear Nrf2 was up-regulated (Figures 7A, B). Similar to
in vitro findings, crizotinib- and sunitinib-treated animal groups
showed down-regulation and up-regulation for the expression of
Keap1and nuclear Nrf2, respectively (Figures 7C, D).

The Mitochondrial Dysfunction Was
Involved in Crizotinib- and Sunitinib-
Induced Hepatotoxicity
Mitochondria are a crucial component of the intrinsic pathway
of apoptosis, a major mechanism of drug-induced cytotoxicity.
MMP is an important indicator of mitochondrial function. In
Figure 8, red fluorescence represents JC-1 aggregates in the
normal mitochondria whereas green fluorescence represents JC-
1 monomer indicating MMP dissipation. When the ratio of red-
to-green fluorescence intensity decreases, it indicates a loss of
MMP that is widely probed by JC-1 staining. In vivo, flow
cytometry results showed that the ratio of JC-1 aggregates/JC-
1-monomer was reduced in the crizotinib- and sunitinib-treated
groups, indicating the impairments of MMP (Figures 8A, B).
Also, crizotinib and sunitinib altered the balance between the
anti-apoptotic protein Bcl2 and the pro-apoptotic protein Bax on
the mitochondrial membrane (Figures 9A, B). In vivo, compared
with the untreated group, crizotinib and sunitinib induced a
concentration-dependent decrease in the Bcl2/Bax ratio
(Figures 9C, D).
DISCUSSION

Small molecule kinase inhibitors, such as tyrosine kinases
inhibitors (TKIs), which are designed to inhibit the action of
A B

FIGURE 2 | The hepatotoxicity of crizotinib and sunitinib in vivo. (A) Blood levels of different liver enzymes in male ICR mice after the administration of crizotinib or
sunitinib treatment (n = 8). (B) Histopathological analysis of liver micro-tissues from animals in the different experimental groups. Representative images from: (a)
control group; (b) crizotinib-treated animals, 70 mg/kg/day; (c, d) sunitinib-treated animals, 7.5 mg/kg/day. Magnification of photomicrographs at 20x. **P < 0.01 or
***P < 0.001 (the crizotinib or sunitinib alone vs. control). ALT, alanine aminotransferase; AST, aspartic acid transferase; ALP, alkaline phosphatase; LDH, lactate
dehydrogenase.
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A

B

D

E F G

C

FIGURE 3 | Crizotinib and sunitinib induced apoptosis in HepG2 cells. Following treatment of cells with increasing doses of crizotinib for 24 h (A) and increasing
administration time of crizotinib 15 µM (C), cell apoptosis was measured by Annexin V−FITC/PI double staining assay. In the flow cytometry plot, live, early apoptotic,
late apoptotic and necrotic cells were shown in the lower left, lower right, upper right and upper left quadrants, respectively. (B) Quantification of experiments shown
in (A). (D) Quantification of experiments shown in (C). (E) Western blot analysis for the level of cleaved caspase 3 after sunitinib exposure for 24 h (n=3). (F) The cell
survival rate for HepG2 cells after treatment with crizotinib or sunitinib with or without Z-VAD-FMK. Cell viability was measured by the MTT assay, and (G) The levels
of ALT, AST, and LDH in the supernatant of HepG2 cells treated with crizotinib or sunitinib with or without Z-VAD-FMK (n=3). In these experiments, cells were
pretreated with Z-VAD-FMK 50 mM for 24 h before crizotinib (15 mM) or sunitinib (9 mM) treatment. *P < 0.05, **P < 0.01 or ***P < 0.001 (the crizotinib or sunitinib
alone vs. control). ##P < 0.01 ###P < 0.001 (the crizotinib or sunitinib alone vs. the crizotinib or sunitinib pretreated with Z-VAD-FMK). ALT, alanine aminotransferase;
AST, aspartic acid transferase; LDH, lactate dehydrogenase.
Frontiers in Oncology | www.frontiersin.org January 2022 | Volume 12 | Article 7499546

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Guo et al. Crizotinib- and Sunitinib-Induced Hepatotoxicity
mutated or over-expressed tyrosine kinases in cancer cells, have
improved the management of cancers and significantly extended
survival in cancer patients compared with traditional
chemotherapy agents (23). However, unexpected toxic reaction
of hepatotoxicity has been reported for several TKIs, including
imatinib, gefitinib, sunitinib, crizotinib, lapatinib, pazopanib,
ponatinib, and regorafenib (11, 24, 25). As of October 2019,
the FDA has approved 53 small molecule kinase inhibitors, seven
(sunitinib, lapatinib, pazopanib, regorafenib, ponatinib,
idelalisib, pexidartinib) of which had a black box warning of
liver toxicity, and twenty-nine of which had warnings and
precautions for hepatotoxicity in their product labeling (26).
Many case reports demonstrated that crizotinib and sunitinib
induced hepatotoxicity, even acute liver failure (ALF) (27–29).
However, dose adjustment or drug discontinuation are the
common strategies to reduce or manage hepatotoxicity
induced by crizotinib or sunitinib. Also, alternative agents such
as alectinib though belongs to the same drug class, could be a
Frontiers in Oncology | www.frontiersin.org 7
choice in cases of crizotinib-induced liver toxicity, however more
evidence is awaited (28). Thus, monitoring of liver function is
recommended for patients using crizotinib or sunitinib,
especially in patients with liver impairment or those using
antisecretory drugs (30). Furthermore, applying the above-
described measures may contribute to treatment failure and
tumor progression in some cases. A limited number of
systematic studies described the molecular mechanism(s)
assoc ia ted with cr izot in ib- and suni t in ib- induced
hepatotoxicity. Therefore, it is necessary to elucidate the
molecular mechanisms and pathways associated with
crizotinib- and sunitinib-induced liver toxicity.

In this study, we established an animal model that mimicked
the clinical dose and duration of administration of crizotinib and
sunitinib to investigate their hepatotoxicity. In addition, HepG2
cells are a well-characterized human cell system suitable for
investigating mitochondrial drug toxicity (31, 32). Findings from
our study demonstrated that crizotinib and sunitinib treatment
A

B

DC

FIGURE 4 | Crizotinib and sunitinib induced apoptosis in vivo. (A) The ICR mice hepatocyte apoptosis in liver tissue (TUNEL, 20×). The blue fluorescence indicates
nuclei, and the green fluorescence indicates apoptotic cells. (B) TUNEL-positive cells were quantified. (C, D) The protein expression of cleaved caspase 3 in ICR
mice treated with vehicle, crizotinib, or sunitinib treatment (n = 6). *P < 0.05 or **P < 0.01 (the crizotinib or sunitinib alone vs. control).
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reduced viability of HepG2 cells and induced liver toxicity in
animal model. A study indicated that the pattern of liver injury in
patients receiving TKIs is typically hepatocellular (29), so we
investigated the main way of hepatocyte death caused by
crizotinib and sunitinib. Apoptosis and necrosis are the two
major forms of cell death, which are relevant to drug-induced
liver injury (33, 34). In our study, the flow cytometry results
demonstrated that the percentage of HepG2 cells undergoing
apoptosis or necrosis is increased in crizotinib-treated cells when
compared with the untreated hepatocytes, consistent with
previously published reports (14, 15, 35). Although sunitinib
cannot be treated with fluorescent dyes to investigate apoptosis
because of autofluorescence, Western blotting demonstrated that
the level of cleaved caspase 3 increased in HepG2 cells and liver
Frontiers in Oncology | www.frontiersin.org 8
tissue after both crizotinib and sunitinib treatment. Meanwhile,
the results of crizotinib- and sunitinib-mediated apoptosis were
also confirmed by TUNEL assay in vivo. In addition, Z-VAD-
FMK, the caspase inhibitor, effectively protected from drug-
induced liver cell death and reduced the release hepatic
enzymes ALT, AST, and LDH caused by crizotinib and sunitinib.

Mitochondria play an important role in oxidative stress and the
intrinsic apoptotic pathway (36). Bcl2 and Bax proteins are
important regulators factors of MMP. Bcl2/Bax ratio can control
the release of cytochrome C from mitochondria and the activation
of downstream caspase 3 to promote cell survival or apoptosis (37,
38). Previous studies indicated that crizotinib dissipated MMP
starting at high concentrations (starting at 50 mM) and inhibited
glycolysis only weakly when applied to HepG2 cells (14), and MMP
A

B

FIGURE 5 | (A, B) Crizotinib and sunitinib increased ROS levels in HepG2 cells (n = 3). The intracellular ROS levels were measured using DCFH-DA. The
microscopic images of the intensity of DCH fluorescence of respective experimental group (magnification ×200).
FIGURE 6 | The activity assay of hepatic GPx, SOD and MDA in mice treated with crizotinib or sunitinib (n = 6-8). *P < 0.05 and **P < 0.01 (the crizotinib or sunitinib
alone vs. control). GPx, glutathione peroxidase; SOD, superoxide dismutase; MDA, malondialdehyde.
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was not affected in rat liver mitochondria (13). Notably, we found
that crizotinib could dissipate the MMP by decreasing the
expression of Bcl2/Bax in the liver tissue. In addition, an in vitro
study reported that sunitinib has mitochondrial toxicity, which
reduced the MMP starting at 1 mM in HepG2 cells and after
exposure for 15 min at 10 mM in isolated mouse liver mitochondria
(19). However, there were other reports that sunitinib did not
disrupt the MMP of rat heart mitochondria (39), mouse liver
mitochondria (40), and isolated rat liver mitochondria (13). In
our study, after sunitinib treatment, the MMP of liver tissue
Frontiers in Oncology | www.frontiersin.org 9
dissipated significantly and the expression of Bcl2/Bax decreased
significantly. The different findings can be explained by differences
in the experimental models and settings applied according to Peach
et al. (17). Taken together, our findings demonstrate regulatory roles
for Bcl2 and Bax in altering MMP in crizotinib- and sunitinib-
induced mitochondrial apoptotic pathway.

In a case report by Kreitman et al., treatment with N-
acetylcysteine (NAC), a ROS scavenger, partially restored liver
function tests to normal level and partially relieved ALF induced
by crizotinib in a patient (27). In line with this, we previously
A B

DC

FIGURE 7 | Involvement of the Nrf2 pathway in crizotinib- or sunitinib-mediated hepatotoxicity in vitro and in vivo. (A, B) The protein expression of Keap1 and
nuclear Nrf2 in HepG2 cells (n = 3). (C, D) The hepatic Keap1 and nuclear Nrf2 protein levels in mice treated with crizotinib or sunitinib alone (n = 6). b-actin: loading
control of total protein; Histone H3: nuclear loading control. *P < 0.05, **P < 0.01 or ***P < 0.001 (the crizotinib or sunitinib alone vs. control). Keap1, Kelch-like ECH-
associated protein-1; Nrf2, Nuclear factor erythroid-2 related factor 2.
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indicated that NAC treatment decreased hepatocyte damage
induced by crizotinib and sunitinib in HL7702 cells (35).
Therefore, the results of these efforts indicated that the
underlying mechanism might be related to oxidative stress.
Oxidative stress results from an imbalance between ROS and
antioxidants, which has long been recognized as a critical
pathogenic factor in acute injury, including acute kidney injury
and acute liver injury (41, 42). The overproduction of ROS can
reduce the content of GPx and SOD which are two major
antioxidant enzymes to reduce oxidative stress. Meanwhile, high
levels of ROS can cause lipid peroxidation to damage cellular
membranes, and MDA is a significant marker of lipid
peroxidation (43). Our research revealed that crizotinib and
sunitinib significantly increased the level of ROS in a
concentration-dependent manner in HepG2 cells, and markedly
reduced the content of GPx and SOD, and increased MDA in liver
tissue. However, the change of ROS was not statistically significant
in experimental animals. Possible reasons for the variability in
results might include differences in animal models used, the drug
dose used, and the experimental assays used to detect ROS in
isolated liver mitochondria. These results demonstrate that the
imbalance between ROS and antioxidative function leads to
oxidative stress, which contributes to hepatocyte damage.

Currently, strategies for the prevention and treatment of
hepatotoxicity induced by TKIs are very limited, and it is necessary
Frontiers in Oncology | www.frontiersin.org 10
to find the key targets in TKIs-induced liver injury. Nrf2, which is an
imperative redox-sensitive transcription factor targeting of
elimination of ROS, and its activation is widely thought to alleviate
the liver diseases triggered by oxidatie stress (44, 45). Under stress
conditions, Nrf2 dissociates from Keap1, translocates to the nucleus
and binds to antioxidant response elements, which results in the
expression of diverse antioxidant and metabolic genes to relieve
oxidative stress (46, 47). Importantly, we first found that low doses
of crizotinib and sunitinib activated the Keap1/Nrf2 signaling
pathway in vitro and in vivo to alleviate self-induced hepatotoxicity,
which is following previously published papers on drug-induced liver
injury (42, 48, 49). Therefore, our findings indicated that the
activation of the Keap1/Nrf2 signaling pathway could be a potential
therapeutic target for TKIs in the treatment of liver injury.
CONCLUSIONS

The results show that crizotinib and sunitinib induce hepatic
oxidative stress and apoptosis that lead to hepatotoxicity. The
activation of the Keap1/Nrf2 signaling pathway was involved in
crizotinib- and sunitinib-induced oxidative stress, which might
partially protect against their induced oxidative damage.
However, the specific mechanism underlying the relationship
between crizotinib- and sunitinib-induced oxidative stress and
A

B

FIGURE 8 | Crizotinib and sunitinib disrupt MMP in liver tissue. (A) Treatment with crizotinib or sunitinib decreased MMP in animals treated for 4 weeks compared
to the control group as measured by flow cytometry and JC-1 staining. Red fluorescence represents JC-1 aggregates in the normal mitochondria whereas green
fluorescence represents JC-1 monomer indicating MMP dissipation. (B) Quantification of high- and low-MMP cells in liver tissue (n = 8). *P < 0.05 (the crizotinib or
sunitinib alone vs. control). MMP, mitochondrial membrane potential.
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mitochondrial apoptotic pathway requires further investigations.
Therefore, we will continue to explore additional biomarkers for
hepatotoxicity and other potential signaling pathways associated
with crizotinib- and sunitinib-induced liver injury.
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