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This study investigates the dynamics of attention during continuous, naturalistic
interactions in a video game. Specifically, the effect of repeated distraction on a
continuous primary task is related to a functional model of network connectivity. We
introduce the Non-linear Attentional Saturation Hypothesis (NASH), which predicts that
effective connectivity within attentional networks increases non-linearly with decreasing
distraction over time, and exhibits dampening at critical parameter values. Functional
magnetic resonance imaging (fMRI) data collected using a naturalistic behavioral
paradigm coupled with an interactive video game is used to test the hypothesis. As
predicted, connectivity in pre-defined regions corresponding to attentional networks
increases as distraction decreases. Moreover, the functional relationship between
connectivity and distraction is convex, that is, network connectivity somewhat increases
as distraction decreases during the continuous primary task, however, connectivity
increases considerably as distraction falls below critical levels. This result characterizes
the non-linear pattern of connectivity within attentional networks, particularly with
respect to their dynamics during behavior. These results are also summarized in the
form of a network structure analysis, which underscores the role of various nodes in
regulating the global network state. In conclusion, we situate the implications of this
research in the context of cognitive complexity and an emerging theory of flow during
media exposure.

Keywords: attentional networks, cognitive dynamics, network neuroscience, interactivity, video games,
functional magnetic resonance imaging

INTRODUCTION

All visual and auditory stimuli are mediated in some way by attentional processing. Biologically,
attention serves both as a general alertness mechanism and as a specific resource allocation
mechanism (Raz and Buhle, 2006). These mechanisms serve two purposes relevant to real-
time behavior. In a direct sense, they act to filter incoming perceptual information through
the constraint of finite capacity (Lang, 2000). They also indirectly act to prioritize the order in
which competing stimuli are processed. Observations of this self-organized cueing led (Petersen
and Posner, 2012) to propose that the neural circuitry for attention forms a network with three
distinct components: executive control, orienting, and alerting. While the activation of attentional
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networks in static stimulus paradigms has been carefully studied
(Fan et al., 2005), simple demonstrations of how this activation is
related to complex cognitive dynamics remain elusive.

We investigated the neural dynamics of network connectivity
for attention while participants are engaged in a continuous
activity while undergoing functional magnetic resonance imaging
(fMRI). Participants played a first-person shooter video game
(Tactical Ops: Assault on Terror; Villeurbanne, France) as primary
task while a laser light presented to participants at randomized
time intervals provided an exogenous distraction (secondary
task). This task allowed us to examine the effect of ongoing
distraction during a naturalistic continuous primary task on
attentional network connectivity over time.

Non-linear Attentional Saturation
Hypothesis
Our experimental task can be broken down into two sub-
components, each with unique properties. One stimulus (the
video game) requires continuous attention, while the other
stimulus (the laser light distractor) serves as a means to disrupt
attention at random intervals. Within a limited capacity of
attention framework (Lang, 2000), we can sketch two expected
relationships between distraction and attentional capacity. To
provide an intuition for our argument, let us consider that
attentional capacity is characterized by a critical threshold
value, beyond which attention changes significantly, and in turn
affects connectivity between neural structures within attentional
networks. With this framework in mind, we would expect that
connectivity within attentional networks increases somewhat
as distraction (D) decreases and nears a threshold value
(T), but increases considerably as distraction (D) falls below
threshold (T). Conversely, we would expect that increasing
levels of distraction (D) actively force participants to split
their attention between two or more tasks. Thus, a critical
threshold value exists at which the magnitude of distraction
exceeds capacity and causes a collapse of attentional function
evident in the lack of connectivity between structures within
attentional networks. We refer to this expectation as the Non-
linear Attentional Saturation Hypothesis (NASH), formalized
with a general linear statistical model and illustrated by the
functional relationships between directed network connectivity
and a distraction measure D shown in Figure 1. The assumptions
that underpin the NASH are reliant upon the nature of attentional
capacity and associated neuronal networks as defined in the
literature. However, the NASH rests upon several methodological
assumptions and conceptual definitions from the cognitive and
network neuroscience literature to which we will now turn.

ASSUMPTIONS, PREMISES, AND
DEFINITIONS

General Premises and Conceptual
Background
In this manuscript, we focus on connectivity patterns within
attentional networks (Mesulam, 2012). We define these

FIGURE 1 | Relationship between Connectivity and Distraction. Hypothesized
relationship between connectivity in attentional networks and distraction from
a primary task.

connections in terms of effective connectivity, which accounts
for the dynamic and task-modulated influence of one structure
over another (Friston, 2011). While there are a number of
potential interactions to explore (Spreng et al., 2013), this
analysis will focus on defining the functional role of each region
in the cognitive processing of potentially disruptive events
(Meunier et al., 2009). We argue that over time (1) effective
connectivity within attentional networks decreases (or increases)
non-linearly with increasing (or decreasing) distraction, and
(2) that effective connectivity exhibits a non-linear response at
critical distraction values. This argument is based on two central
premises.

The first premise is that cognitive functions are regulated by
interconnected brain structures (Bassett and Gazzaniga, 2011).
This study focuses on the importance of course-grained neural
connectivity for examining attentional dynamics on a regional
scale rather than a voxel-by-voxel basis (Power et al., 2011; Wig
et al., 2011). In general, functional brain networks (FBNs, see
Sporns et al., 2005; Friston, 2009; Plaza et al., 2014) involve
multiple, distributed centers called nodes which play different
roles in regulating cognitive functions and producing behaviors
(Grobstein, 1988; Arbib et al., 1997). Based on evidence resulting
from the study of default mode networks, structures within a
functional network are likely to exhibit selective connectivity
between regions and modules (Doucet et al., 2011). A study that
treated attentional networks as having directed information flow
(Yan and He, 2011), identified key hubs in attentional networks
which included the inferior frontal gyrus, supplementary motor
area, insula, and fusiform gyrus. More recently, a focus on right-
lateralized attentional network connections has been implicated
in maximizing the integration of information from disparate
sources in the brain (Shine et al., 2016).

In general, FBNs require interaction between multiple
distributed brain regions (Tononi et al., 1994). Such synchronous
activity yields patterns that correlate with neuronal dynamics,
particularly changes in brain state (Buonomano and Merzenich,
1998). Therefore, one of the key attributes of network
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organization is network connectivity (Buzsaáki, 2006). In the
context of cognition, this means that strong connectivity might
greatly strengthen the resiliency of attentional function with
regard to distractions, while selective weakening or disruption of
certain connections might lead to sudden shifts in function (for
the general idea, see Van Essen et al., 1994; Betzel et al., 2016; for
definition, see Supplementary Presentation S1).

In opposition to linear models of attentional capacity, the
second premise argues that connectivity exhibits a robust
response to distraction (laser light presentations) in the form of
large distracter parameter values. One common feature of robust
phenomena across various types of networks (for examples, see
Holme and Kim, 2002) is a built-in response that keeps a system
functioning even in the face of extreme disturbance or ambiguity.
In the context of brain science, robustness is defined as the
degree to which topological properties of a network can be
reconfigured in response to perturbation (Bullmore and Sporns,
2012) or as a function of tolerance against errors (Albert et al.,
2000; Achard et al., 2006). Recent results provide additional
support for the view that robustness is a common feature of brain
networks (Davison et al., 2015; Spielberg et al., 2015), and show
that connectivity within the attentional network is dynamically
reconfigured in response to cognitive processing (Spielberg et al.,
2015; Telesford et al., 2016).

Attentional networks operate in a dynamic fashion, with
functional regulation occurring on multiple time scales. This
facilitates adaptation to new conditions, produces non-linear
connectivity patterns between network structures, and allows
brain networks that operate one way under normal conditions
to acquire a new (or modified) functional state during disruption
(Bilder and Knudsen, 2014). The ability of attentional networks
to adapt over time may be optimized when the brain operates
at a critical point between two modes of activity (Beggs, 2008;
Haimovici et al., 2013; Gu et al., 2015; Cocchi et al., 2017).
We predict that similar patterns occur in attentional networks.
To test this, we use a laser light stimulus to introduce a
distraction, which acts to force brain activity toward new states
in a non-deterministic manner. Such an approach allows for the
observation of specialized intra-network functions which emerge
in specific contexts, such as how the insula mediates saliency
during attentional switching (Menon and Uddin, 2010; Uddin,
2015), or how capacity limitations shift the locus of attentional
control from posterior parietal cortex to frontoparietal cortex
(Ptek, 2012).

Empirical Assumptions
In terms of experimental design, we expect that the network
components will shift from a linear response to a non-linear
response with increasing amounts of distraction. Expertise in
so-called “action” video games results from training, which
has several augmentative effects on attentional capacity. These
include rapid switching between tasks, enhanced acuity with
respect to the visual field perimeter, increased speed of
processing, and greater cognitive control (Green and Bavelier,
2015). By contrast, brain disorders such as ADHD (Sripada et al.,
2014) or cognitive decline associated with aging and disease (Zuo
et al., 2012) exhibit a lack of adaptive dynamics. In general, we can

characterize adaptability in the brain as distributed connectivity
characterized by smooth transitions between functional states in
the face of fluctuating cognitive conditions (Parks and Madden,
2013; Davison et al., 2015).

In our study, we assume that continuous brain dynamics
can be better understood using a continuous stimulus and a
naturalistic experimental paradigm (Bartels and Zeki, 1998, 2004,
2005; Mathiak and Weber, 2006; Spiers and Maguire, 2007;
Bohil et al., 2011; Maguire, 2012; Krakauer et al., 2017). This
design provides a unique window into the functioning of brain
activity unattainable using more traditional repeated-measures
experimental paradigms with static stimuli and subtraction logic.
Indeed, Hasson et al. (2009) have shown that collecting data using
free-viewing conditions does not work against the dynamics and
complexity of the brain, and provides a more realistic picture of
neuronal activity and cognitive function. At the same time, we
assume that a randomized presentation of a secondary distractor
with button-press response during a naturalistic task is a trial
presented in an event-related design (Mesulam, 1981; Friston
et al., 1997; Dale, 1999; Hopfinger et al., 2004). To capture the
dynamic nature of our dataset, we analyzed both the BOLD signal
in each region of interest (ROI) and distraction across time. In
this way, we observe the full effects of stimulus presentation and
potential disruption of network connectivity. Methodological
details on functional connectivity and the network structure
analysis are described in Supplementary Presentation S1.

Attentional Network Definition
For this study, temporally-specific information regarding a single
attentive episode will be inferred from the attention models
originally presented by Posner et al. (1987), Fan et al. (2002), and
Petersen and Posner (2012). The model specifies three different
types of attention that are sub-served by different functional
networks; these include: alertness, orienting, and executive
control. While the underlying neural correlates for these three
functional subnetworks have been studied intensively (Fan et al.,
2002), our experimental paradigm allows us to investigate how
the effective connectivity patterns between structures within
attentional networks during dynamic behavior. While the alerting
and orienting networks are also interesting, activity in these
networks may be driven both by the distractor stimulus as well as
features of our video game stimulus (e.g., flashes on screen, gun
shots). Instead, we are principally interested in the way capacity-
limited attention is directed at either single or multiple stimuli.
Accordingly, we focus on network connectivity patterns within
the executive attention network, which sub-serves the top-down
regulation of attentional resources in the pursuit of goal directed
behavior.

HYPOTHESES

Statistical Hypotheses
To test for the hypothesized non-linearity in the relationship
between distraction and connectivity, we use a non-linear,
quadratic form of a general linear model to explain attentional
functional connectivity. The NASH is expressed as three related
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statistical hypotheses related to Eq. (3). The first of these predicts
that connectivity between pre-defined regions depends on the
level of distraction as defined by the laser light stimulus:

H1: Connectivity depends on distraction, c 6= 0

For the attentional network components unrelated to
sensorimotor coordination, our general hypothesis not only
predicts the existence of a dependency, but also specifically
a reduction of connectivity. However, considering that the
distractor task was a left-handed button-press task and involved
sensorimotor coordination (sensing, planning, and execution
of a button-press) we do not expect this reduction to occur
in networks related to sensorimotor coordination (networks
functionally connected to the cerebellum). We therefore expect
that connectivity should decrease with increasing distraction
for networks unrelated to sensorimotor coordination: c < 0
Analogously, we expect for networks that also contribute
to sensorimotor coordination a positive relationship between
connectivity and distraction, so that connectivity should increase
with increasing distraction for networks related to sensorimotor
coordination: c > 0.

Moreover, we can make predictions on non-linear behavior of
the distraction-connectivity relationship. The NASH implies that
increases in connectivity accelerate when distraction falls below
a threshold T (see Figure 1). Thus, the relation has a non-linear
term and the sign of the non-linear term is opposite to the sign of
the linear trend. For attentional network components unrelated
to sensorimotor coordination, we would expect:

H2: The curvature of an “increasing distraction-decreasing
connectivity” relation is convex, i.e. if c < 0 then d > 0.

Correspondingly, for attentional network components related
to sensorimotor coordination, i.e. for networks for which we
expect an increase of connectivity with increasing distraction, we
predict:

H3: The curvature of an “increasing distraction-increasing
connectivity” relation is concave, i.e. if c > 0 then d < 0.

As we can see from H2 and H3, it is predicted that linear and
non-linear coefficients will exhibit opposite signs, sign(d) = −
sign(c). All hypotheses (H1, H2, and H3) were tested with second
level statistics across the group. Calculations were performed in
Matlab after a standard preprocessing pipeline for fMRI data
(Weber et al., 2015b). Maximum levels of significance was set at
p < 0.05 cluster corrected for multiple comparisons.

MATERIALS AND METHODS

Study Detail
Different aspects of the data had been evaluated previously
in (Mathiak et al., 2011). While the neuroimaging methods
and sampling methodology are identical, in this study we
perform new and additional analyses that go far beyond what
was originally done in Mathiak et al. (2011). Specifically, we

evaluate reaction time data (for the first time) as a method for
characterizing level of distraction.

Participants
Thirteen male volunteers (age 18–26, median 23) were
recruited on the basis of previous experience with video games
(15.1 ± 9.0 h/week) with ads posted at the local university and
in video game stores. Inclusion criteria were: male, age between
18 and 26 years, playing at least 5 h weekly of video games,
and right-handedness. Individuals with contraindication against
MR investigations, acute or anamnesis of major neurological,
psychiatric, or ophthalmologic disorders were excluded. All
participants gave their written informed consent and the local
ethics committee approved the study protocol. The study
protocol was approved by the ethics committee of the University
of Tübingen, Germany.

Imaging Paradigm
The video game used in this experiment is a first person shooter
simulation called Tactical Ops: Assault on Terror (Infogrames
Europe, Villeurbanne, France). In this interactive simulation,
participants play the role of a paramilitary operative armed with
a machine gun. The objective is to rescue civilian hostages from
their captors. The captors are armed with machine guns, and
can shoot at the player. The focus is on realistic representation
of the action. The game engine renders the action at 60 frames
per second. The virtual environment provides visual stimuli that
are of high fidelity, are highly-arousing, and require constant
attention. Participants played Tactical Ops for five rounds, 12 min
per round (60 min total), while in an MR scanner using a
trackball device at their right hand to minimize motion artifacts
due to hand-arm movements. While participants could freely
choose how to play the game, each participant played the
same game map with the same potential challenges. Given
our selection of relatively high-skilled gamers (see above) who
played identical game maps in similar ways, we argue that game
difficulty/skill ratios did not vary much across all participants.
Simultaneously, a secondary behavioral distraction task was
performed (see below). Brain activity was measured by fMRI
throughout game play and distraction. In addition, we recorded
sound and video of the game play as well as response times in the
distraction task and synchronized all data with the fMRI trigger
signal.

Behavioral Distractor Task
As subjects interacted with the continuous primary stimulus,
a red laser projected a light point into the periphery of the
visual field (right upper quadrant) at random time intervals
until participants responded. Delays in laser light presentations
followed a Poisson distribution with an average time delay of
10 s (Ip) after the last button press. The Poisson distribution was
chosen to ensure equal probabilities for laser light presentations
at any moment. The time intervals were independent from
changes in the primary task, but required the subject to respond
in the fastest possible time by pressing a button with the left
hand. Pressing the response button reset the timer on the laser
light and initiated another trial. As the secondary distractor
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task was performed inside the MR scanner during ongoing
game play, it served as an incongruent stimulus relative to
the main action in the simulation. The action in the video
game itself is the primary task, and required regulation by the
executive attention network. The mean time interval between
laser light presentations (Ip) and the mean response time to
each presentation of the laser light (Ir) was used to calculate the
distraction parameter D.

Definition of Distraction
The distraction parameter (D) used to model fMRI data is
determined by a response time measure in a secondary distractor
task. D is defined as a multiplicative distraction index calculated
over a constant 10-s sliding (or overlapping) window (1t). The
index calculates the inverse of the mean time interval between
laser light presentations (Ip) multiplied by the mean response
time to each presentation of the laser light (Ir):

D1t =
1

Ip × Ir
(1)

As such, distraction is defined as the various demands on
attentional capacity throughout the course of the task. In other
words, distraction is measured as the inverse of the time between
events multiplied by the time needed for a response. The more
laser light presentations (Ip → 0) and the faster participants’
response to those laser light presentations (Ir→ 0) the higher the
distraction from the primary experimental task and the higher
is D in sliding window 1t. Characterizing distraction in this
way allowed us to define a continuous measure of distraction
that spanned the entire experimental paradigm. This approach
is consistent with classic computational modeling approaches to
fMRI data where brain data are modeled using a continuous
regressor.

fMRI Data Acquisition
For this study, fMRI was conducted at a magnetic field strength of
3 Tesla (Magnetom TRIO, Siemens, Erlangen, Germany). Multi-
echo single-shot echo-planar imaging (EPI; echo times = 23,
40, and 62 ms) with dynamic distortion correction (Weiskopf
et al., 2003) and dephasing compensation (Mathiak et al., 2004)
reduced artifacts and increased sensitivity. Whole brain coverage
with 24 interleaved slices (repetition time = 2.25 s) and spatio-
temporal oversampling reconstruction resulted in an apparent
time resolution of 1.13 s after spatial filtering. For reference,
we acquired anatomical data of each participant before the
functional sessions (T1-weigthed 3D-MPRAGE, 256× 224× 160
matrix with 1 mm isotropic voxels).

ROI Analysis
The ROI analyses that are reported here rely on a priori
assumptions about the brain areas and networks involved. As
discussed above, we concentrate on the executive attention
network model proposed by Posner et al. (1987), and thus
rely on functions and localizations suggested in Fan et al.
(2002, 2005). The attention-distractor task in our paradigm is
conducted with the left hand since visuospatial attention is right

lateralized (Thiebaut de Schotten et al., 2011). For this reason,
our attentional network is biased toward executive attention
components in the right hemisphere. The ROIs have been
localized according to the suggested anatomical localization in
Collins (1994), and are represented as standardized Montreal
Neurological Institute (MNI) coordinates: [22, −27, 3] mm for
the thalamus (Thal); [16, 4, 44] mm for superior frontal gyrus
(SFG); [36, 26, 15] mm for superior parts (IFGs) and [34, 20, 5]
mm for inferior parts of the inferior frontal gyrus (IFGi); [44,
−58, 1] mm for lateral parts (FFGl) and [36, −60, 1] mm for
medial parts of the fusiform gyrus (FFGm); [0,−62,−32] mm for
the cerebellum (Cere); [36, −5, 50] mm for middle frontal gyrus
(MFG); and [6, 36, 26] mm for anterior cingulate cortex (ACC).
In order to compare the intensity of activation over time, time-
series data from nearest activation maxima in the normalized and
smoothed functional images were extracted. While the restriction
to the right hemisphere corresponds to previous research in this
area, and reduced confounds of inter-hemispheric connections
(Rosen et al., 1999), we also extracted all corresponding ROI’s
in the left hemisphere. This allowed us to test our models for
consistency in both hemispheres.

Definition of Connectivity
In the simplest of terms, connectivity can be understood as the
correlation (or statistical dependency) between two neural time-
series. This is known as functional connectivity (Friston, 2011).
Studies using functional connectivity and naturalistic stimuli
have demonstrated that BOLD signal correlations are likely to
yield course-grained temporal information about the information
transfer between brain regions (Bartels and Zeki, 2004). However,
a recent push in the neuroimaging literature has been to more
completely characterize connectivity patterns within networks.
Effective connectivity (Friston, 2011) analyses account for the
dynamic and task-modulated influence of one network structure
over another. While a number of methods exist for testing
effective connectivity, we rely on a general linear model logic
where the task-dependent neural time-series of a given ROI is
correlated with other neural time-series (Friston et al., 1997).

Brain Connectivity as
Psycho-Physiological Interactions
We use a model of Psycho-Physiological Interactions (PPI) to
characterize effective connectivity. The PPI model (O’Reilly et al.,
2012) can be generalized in the following form (Eq. 2):

Y = (Psy) β1 + (Phy) β2 + (Psy) ∗ (Phy) β3 + e (2)

where β1 represents the parameter estimate for the psychological
variable main effect, β2 is the parameter estimate for the
physiological variable main effect, β3 represents a parameter
estimate for the interaction term, Psy is the psychological variable
of interest (e.g., attention), and Phy is the physiological variable of
interest (e.g., neural time series within a given ROI), and Y is the
combined psychological and physiological effect from one ROI
on another ROI.
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General Linear Model
For our analysis we choose ROIs a priori for the executive
attention network as suggested in Fan et al. (2002, 2005).
This topographically conservative approach minimized the
chance of false positives and allowed for the interpretation of
the connectivity analysis within the framework of established
network models. In line with psycho-physiological interaction
model of connectivity (Friston et al., 1997, 1998; O’Reilly et al.,
2012), we consider a regression model that links the BOLD signal
in the target region (ROIT) with that of the source region (ROIS),
the distractor parameter D, and their interaction.

The General Linear Model in our analysis is similar to the
general PPI model (Eq. 3):

ROIT = a ∗ ROIS + b ∗ D + (c ∗ D + d ∗ D2) ∗ ROIS + ε

(3)
Since this is a non-linear equation, we assume the mean value of
all coefficients (c, d) to be 0, and these coefficients can be used
to estimate the connectivity between ROIT and ROIS depending
on D. The resulting coefficients from the model were used as a
measure of connectivity between brain ROIs.

Public Access of Data
The data featured in this study is publically available in the
Open Science Framework (OSF) in the form of two CSV files
containing all extracted ROIs and our distraction measures (one
file for each hemisphere). This data has been used to estimate
the model parameters reported in this article. The URL of this
repository is https://osf.io/435kr/. The digital identifiers are doi:
10.17605/OSF.IO/435K and ARK: c7605/osf.io/435kr.

RESULTS

Manipulation Check
The success of our study rests on participants treating the
video game as a primary task, and the distraction measure as
a secondary task (Lang, 2000). Subjects were asked a series
of 9-point (1 = totally disagree, 9 = totally agree) self-report
measures to determine the extent to which they were drawn
into the game. These data generally support the conclusion that
subjects treated the video game as a primary task. Specifically,
subjects were asked to evaluate the extent to which the study
was fun (M = 7.4, SD = 1.6), the study was interesting (M = 7.9,
SD = 1.4), and that they would participate in a similar study
again (M = 7.6, SD = 2.1). Measures of involvement with the
video game were also above scale mean in that participants:
felt like they were acting in the environment rather than
controlling a game (M = 4.7, SD = 2.4), felt present in the
game environment (M = 5.7, SD = 2.3), felt like they were not
aware of the real environment (M = 5.6, SD = 3.5), and that
they felt like the game required all of their attention (M = 5.6,
SD = 2.3). Taken together, these self-report data suggest a
successful manipulation in that subjects treated the video game
as a primary task, and our distraction measure as a secondary
task.

Distraction Measure
The behavioral distractor task was a light point projected by a red
laser requiring a speeded button-press response of the left hand.
The mean response time (Ir) was 1158.3 ms (90% interval, 5th
to 95th percentile: [434.7, 16739.6]) with slower responses after
longer Inter-Stimulus Intervals (ISIs – r = 0.55, p x < 0.0001).
The derived distraction measure D was on average 74.4 ms−2

(90% interval, 5th to 95th percentile: [2.2, 212.8] ms−2). A 90%
interval for the Ir and derived distraction measures provides
a better insight into the hyperbolic nature of its distribution
with respect to response times within and between participants.
Figure 2 shows the distribution of the distraction parameter D
across our participants.

Brain Imaging Data
Changes in Connectivity
Figure 3 illustrates significant linear changes of connectivity in
attentional network components in the right hemisphere as a
result of varying distraction levels over time (coefficient c in the
general linear model). Figure 4 illustrates significant non-linear
changes of connectivity in attentional network components in the
right hemisphere as a result of varying distraction levels over time
(coefficient d in the general linear model).

In Hypothesis 1 (H1) we predicted reduced connectivity
with increasing distraction for attentional network components
unrelated to sensorimotor coordination. This pattern did indeed
emerge for most local network connections, particularly between
frontal areas and thalamo-frontal projections (red arrows in
Figures 3, 4). In contrast, increased connectivity emerged
mainly in the cerebellar-cortical connections reflecting motor-
coordination networks (blue arrows in Figures 3, 4). Table 1
shows the coefficients of all models and their significance at the
group level. Taken together, these findings support H1 (unrelated
to sensorimotor coordination for local connections and related to
sensorimotor networks for long-range connections).

FIGURE 2 | Distribution of the distractor parameter D. For each volume in the
functional magnetic resonance imaging (fMRI) time series D is calculated
(using a 10-s sliding window) as the inverse of the product of response time
and time between distractor presentations. 95% of the values fall below
0.2128.
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FIGURE 3 | Linear attentional networks. Nine regions of interest representing linear relationships in the executive centers of our attentional network are projected on
both an axial (Left) and sagittal (Right) slice of the MNI reference (THAL, thalamus; SFG, superior frontal gyrus; IFGs, superior parts of the inferior frontal gyrus; IFGi,
inferior parts of the inferior frontal gyrus; FFGl, lateral parts of the fusiform gyrus; FFGm, medial parts of the fusiform gyrus; CERE, Cerebellum; MFG, middle frontal
gyrus; ACC, anterior cingulate cortex). The arrows visualize connections that showed a significant linear effect of the distraction parameter. Red arrows indicate a
decrease and blue arrow an increase of connectivity with higher distraction. The hypothesized reduction of connectivity with increasing distraction is mainly found in
frontal network areas whereas cerebellar connections show an increase. The latter finding may be due to increased motor-coordination as a result of increased
stimulus/distraction-response events. In order to compare the intensity of activation over time, time-series data from nearest activation maxima in the normalized and
smoothed functional images were extracted.

FIGURE 4 | Non-linear attentional networks. Nine regions of interest representing non-linear relationships in the attentional network are projected on both an axial
(Left) and sagittal (Right) slice of the MNI reference. The arrows represent connections that showed a significant non-linear effect of the distraction parameter. Red
arrows indicate a concave and blue arrow a convex relationship of connectivity with distraction. All connections are significant for both linear and non-linear
coefficients and showed the opposite sign (see Figure 3 for labels).

We confirm that H2 predicts that the curvature of a
convex “increasing distraction-decreasing connectivity” relation
(Figures 5A,B). We also confirm that H3 predicts that the
curvature of an “increasing distraction-increasing connectivity”
relation is concave (Figure 5C). The consequences of these
findings can also be observed in Figure 2. As the value of D
tends toward 0.5 in Figure 2, the strength of connectivity between
structures tends toward 0.

We also tested our results for consistency in the left
hemisphere. The analysis replicated the right-hemispheric

pattern with generally reduced effect sizes. Both the linear
(r = 0.58, p < 0.001) and the quadratic coefficient estimates
(r = 0.53, p < 0.001) were highly correlated between the left and
the right hemisphere.

Organization of Attentional Networks
Another way to further quantify network connectivity for
the significant linear and non-linear connections is shown
in Figures 3, 4, respectively. The network structure analysis
involves a rank-order evaluation of significant coefficients
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TABLE 1 | Group means of linear connectivity coefficients (c coefficients).

c Thal SFG IFGs FFGm IFGi Cere MFG FFGl ACC

Thal −1.14∗∗ −0.33 0.01 −0.05 −0.57 −2.34∗∗ 0.59 −0.20

SFG −0.51 −0.26 0.13 −0.38 0.50 1.14∗ −0.95 −0.22

IFGs −0.55 −0.06 −0.28 −0.64∗∗ 1.03∗∗∗ −0.38 0.73 −0.41∗

FFGm 0.31 −0.81∗∗ −0.38 0.83∗ −0.35 −1.65 1.11 −0.28

IFGi 0.06 −0.89∗ −1.38∗∗∗ 0.37 0.55 −2.51∗ 0.97 −0.33

Cere −0.26 1.04∗∗∗ 1.79∗∗∗ −0.22 0.67 2.41∗∗∗ −1.1 0.41

MFG −0.09 0.24 0.22 −0.01 −0.22 0.23 −0.38 −0.06

FFGl 0.24 −0.51 0.66 0.02 0.49 −0.71∗ −0.40 0.64∗∗

ACC 0.03 −0.73 −1.66∗∗ −0.12 −0.13 0.67∗ −2.20∗∗ 1.67

Columns are predicted by rows: for example, SFG ∼ (c∗D + d∗D2)∗Thal = (−1.14∗D + 2.64∗D2)∗Thal (for d coefficient, see Table 2). Hypothesis H2: sign(d) = − sign(c) is
supported for all significant models. THAL, thalamus; SFG, superior frontal gyrus; IFGs, superior parts of the inferior frontal gyrus; IFGi, inferior parts of the inferior frontal
gyrus; FFGl, lateral parts of the fusiform gyrus; FFGm, medial parts of the fusiform gyrus; CERE, cerebellum; MFG, middle frontal gyrus; ACC, anterior cingulate cortex.
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

as defined in Tables 1, 2. For each set of coefficients
(linear and non-linear network connectivity), a series of
hyperbolic regressions were conducted. Each ROI (node) is
characterized by summing all inbound and outbound edges
(connections) converging upon that location in the attentional
network (Table 3). The resulting vector is then ordered
from largest to smallest without regard for node identity.
We expect these network topology profiles to deviate from
randomized sets of inputs and outputs in the following manner:
randomized connections should yield a R2-value close to 0,
while hierarchically-structured sets of connection should yield a
R2-value approaching 1.

For the directed linear graph (shown in Figure 3), a hyperbolic
regression (Table 3) for all connections fits the data with an
R2-value of 0.72 (p < 0.001). For just the inbound nodes, the
R2-value is 0.74 (p < 0.001). For just the outbound nodes,
the R2-value is 0.42 (p < 0.001). This suggests on average,
inbound connections tend to converge on selected hubs, while
their sources come from throughout the network. A hyperbolic
regression analysis (Table 3) for all connections in the directed
non-linear graph (shown in Figure 4) yields an R2-value of
0.88 (p < 0.001). The R2-value for inbound nodes only is
0.87 (p < 0.001). The R2-value for outbound nodes only is
0.70 (p < 0.001). This suggests that the non-linear version of
the network contains more influential hubs (greater centralized
control), each with a more selective set of sources. The data
in Table 3 also reveal this hierarchical structure through a
comparison of increased network diameter (d) between the
directed linear graph (d = 3) and directed non-linear graph
(d = 4).

Non-linearity in Attentional Network
Connectivity
A comparison of linear components (Table 1 and Figure 3) and
non-linear components (Table 2 and Figure 4) resulting from
our GLM results in a similar pattern of network connectivity.
However, the differences that do exist between the c and
d parameters demonstrate significant non-linear changes of
connectivity in our attentional networks that are due to varying
distraction levels over time.

The local frontal and thalamo-frontal connections which
showed a decrease in connectivity (c < 0) revealed a significant
convex relationship (d > 0) while the long-range projections for
motor coordination (with linear increase; c > 0) were governed
by a concave relationship (d < 0) between connectivity and levels
of distraction (see Tables 1, 2).

Importantly, all commonly emerging pathways showed
opposite signs for linear increase versus curvature. In other
words, the increase or decrease of connectivity due to distraction
was limited by the non-linear term, and was thus dependent
on the level of distraction. The independent graphs in Figure 5
illustrate this relationship for three selected pathways. As second
order approximations of the NASH, Figures 5A,B (IFGs–ACC
and IFGi–IFGs) support Hypotheses 2 (H2), while Figure 5C
(Cerebellum–IFGs) support Hypothesis 3 (H3).

DISCUSSION

In this study we have presented both a rationale and technique
that permits us to investigate the dynamics of attention in a
complex, immersive environment (a video game) by mapping
psychophysiological responses to an attentional network (Friston
and Buchel, 2000). This allows us to investigate both regional and
global responses to sustained attention and selective disruption
in a statistically rigorous manner. For both right- and left-
hemispheric executive attentional networks, we find support for
NASH. Local frontal network connectivity during a continuous
experimental task (playing of a first-person video game) decreases
with increasing distraction in a simple incongruent stimulus-
distraction task. In contrast, cerebellar projections subserving
motor-coordination show increased connectivity with increasing
distraction. Overall, the result for attentional and sensorimotor
networks shows a similar but inverse relationship.

Results in the Context of NASH
As predicted by the NASH, the relationship between network
connectivity and distraction is non-linear and convex. While
we concede that the primary experimental task (playing a video
game) might also be activating alerting and spatial orientation
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FIGURE 5 | Estimations of the distraction-connectivity function. Inter-frontal
connectivity falls off but levels out with increasing distraction (A,B). In
contrast, cerebellar-frontal connectivity increases but also reaches a maximum
level (C). Interestingly, the connectivity estimate is negative in the latter path;
thus the absolute correlation is also reduced with increasing distraction. (IFGs,
superior parts of the inferior frontal gyrus; IFGi, inferior parts of the inferior
frontal gyrus; CERE, cerebellum; ACC, anterior cingulate cortex).

networks to some degree, one should keep in mind that first-
person video games are designed to fully capture alertness
and orientation in any moment (especially when played in an
experimental setting under continuous observation). This means
that either there is insufficient variation of activity in attentional
networks given the nature of our primary task, or that even a

slight distraction from the primary task might lead to complete
disruption within alerting and orienting networks.

Other secondary distractor tasks, such as asking participants
to execute simple repetitive actions simultaneously to the primary
task, might be more suitable for studying those networks (Weber
et al., 2015a). The observed negative and increasing contribution
of the cerebellum with increasing levels of distraction may be
due to the strong inhibitory function of that brain structure
(Montarolo et al., 1982). This would explain why an increase
in connectivity under increasing distraction levels was expressed
as a lower negative correlation (see Figure 5C). Moreover,
this difference in connectivity patterns between short and
long-range structures provides further clarity to the emerging
literature attempting to characterize the local and global network
characteristics of attentional systems (Hermundstad et al., 2014;
Davison et al., 2015). Similarly, previous work has shown that the
video game used in this study yields high levels of motivation
(Klasen et al., 2012). If true, then our results also fit within the
emerging perspective that hierarchical and reciprocal network
dynamics within the frontal cortex subserve motivated behavior
(Kouneiher et al., 2009).

The convex and concave relationships in Figures 3 (H2), 4
(H3), respectively, provide a dynamic view of how distraction can
affect attentional networks. We can also understand the effect
of distraction on attentional processing in neuropsychological
terms. In particular, distraction tends to play a much more
complex modulatory role with respect to the attentional network.
While previous studies have not accounted for the effects
of varying degrees of distraction on attention, the broader
mechanisms have been identified. In studies of pain perception
(Bantick et al., 2002), it has been found that distraction can
mitigate pain. This is typically understood as an attentional
modulation mechanism (Torta et al., 2017) consistent with
the load theory of attention (Lavie, 2010). The load theory of
attention suggests a distinct role for distractor processing as
the preservation of normal cognitive functioning in the face
of distraction, which is itself impacted by relative amounts of
cognitive load (Lavie, 2005).

When distractor processing has an effect on attentional
processing, the effects are heterogeneous with respect to various
parts of the attentional network. For example, high cognitive load
experienced in the frontal regions of the attentional network can
increase distractor processing, while high amounts of cognitive
load in other regions can decrease distractor processing (Van
den Heuvel and Sporns, 2011). In context, H2 means that a
breakdown of attention is equivalent to increased behavioral
distraction. While this relationship is linear for normal levels
of distraction, H3 predicts that a robustness mechanism may
also contribute to limited attentional resources for very high
levels of distraction. Thus, Figure 2 shows that activity amongst
the network nodes is retained for distraction parameter values
between 0.2128 and 0.5 (beyond the 95th percentile).

Given this context, we can say that Figure 2 suggests that
long-tail connectivity achieved at greater values of the distraction
parameter is restricted to certain parts of the network. For
those connections (Figures 5A,B) that are consistent with
H2 (increasing distraction, decreasing connectivity), the ROIs
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TABLE 2 | Group means of non-linear connectivity coefficients (d coefficients).

d RThal RSFG RIFGs RFFGm RIFGi RCere RMFG RFFGl RACC

RThal 2.64∗∗ 0.62 0.62 0.62 2.11 7.61∗∗ 0.61 0.73

RSFG 0.41 −0.89 −1.38 0.19 −3.51 −5.50∗ 2.89 0.37

RIFGs 0.50 −0.36 −0.21 1.41∗ −2.43∗∗ 5.17 −2.61 0.54

RFFGm −1.14 2.60∗ 0.17 −2.05∗ 3.86 5.21∗ −2.25 0.33

RIFGi −0.54 2.96 4.81∗∗∗ 0.07 1.33 11.59∗ −3.47 0.66

RCere −0.05 −3.53∗∗∗ −5.57∗∗∗ 1.32 −2.61 −10.30∗∗∗ 1.94 −0.93

RMFG −0.29 −0.20 −0.12 −0.24 0.94 −1.57 0.60 0.27

RFFGl −1.14 2.52∗∗ −1.99 −0.65 −3.30 2.61∗ 1.79 −3.04∗∗

RACC 0.54 2.26 4.09∗∗∗ 0.37 0.48 1.43 11.57∗∗ −4.66

Columns are predicted by rows: for example, SFG ∼ (c∗D + d∗D2)∗Thal = (−1.14∗D +2.64∗D2)∗Thal (for c coefficient, see Table 1). Hypothesis H2: sign(d) = − sign(c)
is supported for all significant models. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

TABLE 3 | Results of the network structure analysis.

Linear Non-linear

Inbound Outbound Total Inbound Outbound Total

Cere 3 3 6 RCere 2 3 5

FFGl 0 2 2 RFFGl 0 3 3

FFGm 0 2 2 RFFGm 0 3 3

MFG 5 0 5 RMFG 6 0 6

Thal 0 2 2 RThal 0 2 2

SFG 4 1 5 RSFG 4 1 5

ACC 2 3 5 RACC 1 2 3

IFGs 3 2 5 RIFGs 3 2 5

IFGi 2 3 5 RIFGi 2 2 4

Edges – – 19 Edges – – 18

R2 0.74 0.42 0.72 R2 0.87 0.70 0.88

m – – 3 m – – 4

C – – 0.21 C – – 0.23

Network structure analysis outcomes based on linear (significant c-coefficient) and non-linear (significant d-coefficient) network connectivities. Number of edges: sum
of totals for each network type divided by 2. “Inbound” and “Outbound”: direct of connections relative to each node. Detailed descriptions for m (network diameter), C
(average clustering coefficient), and R2 are located in Supplementary Presentation S1.

demonstrate an ability to work independently. These centers
tend to be in the frontal areas of the brain, which is consistent
with the notion of distraction processing. Connections between
ROIs consistent with H3 (increasing distraction, increasing
connectivity) involve centers that require interdependence as
cognitive processing is assisted through offloading. While
network statistics suggest that this effect is small, changes in the
demands of cognitive processing result in regions with a greater
number of connections in the linear case becoming slightly
more connected. Meanwhile, regions with fewer connections in
the non-linear case become relatively less connected with an
emphasis on retaining outbound (directed) connections (Kelso
and Engstrom, 2006). From a systems-level perspective, network
stability is buffered by emphasizing more connected parts of the
network and de-emphasizing peripheral parts of the network.

Revisiting the Premises of NASH
Having found support for NASH, it is worth recalling that the
hypothesis is based on two central premises. The first premise
suggested that cognitive functions are regulated by connected

brain structures. Since we have shown that connectivity in
attentional networks decreases non-linearly for a certain range
of increasing D values, something keeps network connectivity
from collapsing entirely during this response phase. Our
graphs in Figure 5 provide a snapshot of three effects on
the attentional network: intra-regional connectivity (within the
inferior frontal gyrus), inter-regional connectivity for a non-hub
region of the attentional network topology (between the inferior
temporal gyrus and anterior cingulate cortex), and inter-regional
connectivity representing the sensorimotor cortex activity. The
aforementioned intra-regional connectivity always results in
very low values, while inter-regional connectivity for both the
attentional and sensorimotor networks becomes dampened to a
greater extent. Overall, the trend shows a dampening with regard
to rare, high-magnitude distracter events that occur at a similar
distracter parameter value. This suggests an inherent response
mechanism that emerges from the dynamic, complex nature of
the brain (Rasche and Gegenfurter, 2010).

The second premise suggested that the relationship between
distraction and attentional network connectivity exhibits a
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non-linearity that demonstrates a robust response at a critical
threshold value. Our combination of naturalistic behavior, short
repetition time, and presence of noise in the form of our
distractor task (for use in perceptual systems, see Aertsen
et al., 1989) allows us to observe a dynamic cognitive response
influenced by systematic noise. Neuronal noise can play a role
in selectively modifying connectivity patterns (Chialvo et al.,
2008; Faisal et al., 2008), or even drive transitions between
two network states (Raz et al., 2005; Chialvo, 2010). One
source of these noise-driven non-linearities is the top-down
regulation of attention. For example, the selective top-down role
of hypnotic stimuli [see also (Kosslyn et al., 2000; Raz and Buhle,
2006) suggests that centralized top-down control of attentional
networks during periods of heavy information processing such
as in multitasking] are triggered by reaching critical threshold
values of distraction rather than purely incremental distractions
by a secondary task (Kelso and Engstrom, 2006). Such saturation
effects have already been observed for automatic cognitive
processes (Mathiak et al., 2005). Exactly how and when we
encounter the critical threshold can only be determined in
context, but the general mechanism implies non-linearity.
Likewise, exogenous cues similar to our distractor task have
been found to augment and improve pre-attentive function
over time in recognition tasks and video-game expertise (Brawn
and Snowden, 1996; Green and Bavelier, 2003). In this case,
robustness may result from a feedback-dependent selective
mechanism within and between brain regions (Edelman, 1987;
Sporns et al., 2000).

Broader Implications
There is still much to learn about brain dynamics and complex
cognition in real-world environments (Spiers and Maguire,
2007). For instance, how do naturalistic behaviors relate to
dynamic brain activity and known principles of connectivity?
From a systems-level perspective, work on the concept of
highly-optimized tolerance (Carlson and Doyle, 1999) suggests
that complex systems that produce power-law responses often
yield three characteristic traits: a high level of efficiency and
robustness, hypersensitivity to unanticipated disruptions, and
specialized topological configurations. These specialized network
structures arise as a response to disruptions occurring at multiple
temporal scales simultaneously (Doyle and Csete, 2005). In
instances as diverse as aging, ADHD, and disease, FBNs tend
to become less interconnected and more centralized, where
peripheral regions are mediated by the activity of hub regions
(Parks and Madden, 2013). In general, adaptability in the
brain is characterized by distributed connectivity characterized
by smooth transitions between functional states in the face
of fluctuating cognitive conditions (Bartels and Zeki, 1998;
Spielberg et al., 2015).

The approach presented here contributes to this inquiry
by simulating real-world behaviors in an interactive virtual
environment and developing advanced metrics for the analysis
of cognitive dynamics. This research can also inform emerging
communication and media theories, which at their core are

dependent upon advances in understanding attentional network
dynamics. As media such as video games and virtual reality
become increasingly immersive, ubiquitous, and continually
stimulative, we require an understanding of attentional networks
at the level of first-principles. The Synchronization Theory of
Flow (Weber et al., 2009) may serve as a recent example.
As currently understood, flow (Csikszentmihalyi, 1990) is a
rewarding motivational state requiring high levels of attention,
reward processing, and cognitive control (goal planning, goal
maintenance, performance monitoring, response inhibition).
Synchronization Theory argues that “flow” emerges from the
spontaneous emergence of a global cognitive state. We have
demonstrated in this paper that synchronization in attentional
networks, driven by connectivity, indeed occurs at a critical level
of distraction. Similar non-linear dynamics can also be found
between motivation and task-related attentional engagement
(Lang, 2000; Lang et al., 2006). For example, motivational
stimuli have been shown to exert influences on neural processing
(Collins, 1994; Mathiak et al., 2013; Ulrich et al., 2013; Yoshida
et al., 2014). However, the extent to which motivation modulates
the strength of network connectivity within reward and cognitive
control networks and drives shifts between networked brain
states optimized for task engagement or disengagement is
currently unknown. Aside from being useful in fields ranging
from anthropology to human-computer interaction, the type
of naturalistic neurobehavioral quantification introduced in
this paper may also be particularly well suited for addressing
these types of questions for examples, see (Krakauer et al.,
2017).
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