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Abstract

While global success in cessation advocacy has seen smoking rates fall in many developed countries, persistent lung
inflammation in ex-smokers is an increasingly important clinical problem whose mechanistic basis remains poorly
understood. In this study, candidate effector mechanisms were assessed in mice exposed to cigarette smoke (CS) for 4
months following cessation from long term CS exposure. BALF neutrophils, CD4+ and CD8+ T cells and lung innate NK cells
remained significantly elevated following smoking cessation. Analysis of neutrophil mobilization markers showed a
transition from acute mediators (MIP-2a, KC and G-CSF) to sustained drivers of neutrophil and macrophage recruitment and
activation (IL-17A and Serum Amyoid A (SAA)). Follicle-like lymphoid aggregates formed with CS exposure and persisted
with cessation, where they were in close anatomical proximity to pigmented macrophages, whose number actually
increased 3-fold following CS cessation. This was associated with the elastolytic protease, MMP-12 (macrophage metallo-
elastase) which remained significantly elevated post-cessation. Both GM-CSF and CSF-1 were significantly increased in the
CS cessation group relative to the control group. In conclusion, we show that smoking cessation mediates a transition to
accumulation of pigmented macrophages, which may contribute to the expanded macrophage population observed in
COPD. These macrophages together with IL-17A, SAA and innate NK cells are identified here as candidate persistence
determinants and, we suggest, may represent specific targets for therapies directed towards the amelioration of chronic
airway inflammation.
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Introduction

Chronic Obstructive Pulmonary Disease (COPD) is a debilitat-

ing lung condition that is characterized by chronic airway

inflammation. COPD is now the third cause of death worldwide

and kills more than 3.5 million people per year. About 85% of all

COPD is caused by inhalation of irritants mostly cigarette smoke

(active and passive), ambient air pollutants and poor indoor air

quality caused by biomass cooking and heating fumes. Inflamma-

tion induced by these irritants contributes to key pathological

processes in COPD including small airway narrowing, destruction

of alveolar walls (emphysema) and mucous hypersecretion

(reviewed in [1]). Innate immune cells including macrophages

and neutrophils accumulate and are considered essential for

disease progression [2], as are immune cells of the adaptive

response including CD8+ T cells [3]. CD4+ T cells and B cells also

aggregate and can organize into lymphoid follicles, the percentage

of which increases with progression of COPD [2]. The close

association of de novo lymphoid follicles with persistence and

severity of COPD strongly suggests their contribution to delete-

rious autoimmunity in the airways although beneficial effects in

terms of mounting a rapid immune response to respiratory

pathogens have not been formally excluded. The combined

activity of the these inflammatory cells is thought to drive the

accelerated decline in lung function that is a hallmark of the

disease.

Cigarette smoke (CS) cessation currently remains the single

most effective strategy to reduce the accelerated decline in lung

function attributable to COPD. At least in developed countries

there is clear evidence that smoking rates have fallen, in part due

to effective cessation strategies. However, cross-sectional and

longitudinal studies have shown that in individuals with established

disease, airway inflammation does not fully resolve with CS

cessation [4,5] and post cessation persistent lung disease is an

increasingly important clinical problem. In particular, airway and
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sputum neutrophils persist and in some cases, increase with

cessation [4–6]. Neutrophilic inflammation is particularly damag-

ing in COPD due to a deficiency in efferocytosis (clearance of

moribund cells) mediated by excessive oxidative stress [7,8], which

can lead to excessive degranulation of necrotic neutrophils.

Activated neutrophils release neutrophil elastase and other serine

proteases, which increases with the severity of COPD and these

processes are intrinsically insensitive to inhaled glucocorticoster-

oids [9]. Neutrophil elastase degrades extracellular matrix

components including elastin, collagens I–IV and fibrinogen and

the degree of elastase localized to lung elastic fibers correlates with

the degree of emphysema [10]. Neutrophil elastase can also

promote mucin production [11] and activate TLR4-dependent

production of IL-8 via epidermal growth factor receptor (EGFR)

transactivation mechanisms [12].

Macrophages also accumulate in COPD airways and are

positively associated with disease severity [2]. Importantly,

depletion of macrophages protected against the development of

emphysema in a chronic smoke exposure model; demonstrating a

pathogenic role for this immune cell [13]. Furthermore, it is now

recognized that macrophages acquire a distinct phenotype

associated with the progressive induction of M2-related programs

as a consequence of smoke exposure and COPD [14]. Macro-

phages can initiate neutrophilic inflammation as they are a major

source of neutrophil chemokines. Several neutrophil chemokines

such as IL-8 (CXCL8), KC (CXCL1) and MIP-2a (CXCL2) are

implicated in COPD as they are elevated in CS exposure models

[15] and during exacerbations [16]. In addition, Interleukin-17A

(IL-17A) can promote neutrophil mobilization through its

regulation of leukocyte growth factors and cytokines. Immunore-

active IL-17A+ cells increase in frequency in the submucosa of

COPD patients [17] and IL-17A expression is elevated in CS

exposure models, where mice lacking IL-17RA were protected

from developing emphysema [18]. Serum Amyloid A (SAA) can

also mobilize neutrophils into the airways, and SAA is elevated in

COPD lung tissue [19] and is related to neutrophilic lung

infiltration [20]. In this study, a CS cessation model was used to

identify which molecular markers most closely relate to the

persistence of innate immune responses. We identify IL-17A and

SAA inflammatory cytokine networks in the persistence of

inflammation following CS cessation and suggest that targeting

these networks may be of therapeutic benefit in augmenting the

benefit of smoking cessation in this disease group.

Materials and Methods

Animals
Specific pathogen-free male BALB/c mice obtained from the

Animal Resource Centre (Perth, Australia) arrived at 6 weeks of

age were housed at in sterile micro-isolator cages, and maintained

on a 12:12 h light/dark cycle. This study was carried out in strict

accordance with the National Health and Medical Research

Council (NHMRC) of Australia. All procedures were approved by

the Animal Experimentation Ethics Committee of the University

of Melbourne.

Treatment
After a one week acclimatization period, mice were randomly

divided into 4 groups (n = 14–18 per group) that were matched for

body weight. Two groups of animals were exposed to cigarette

smoke (CS) and two groups were sham exposed according to our

published protocol [21,22]. Briefly, animals underwent whole

body exposure to the smoke of 1 filtered cigarette inside an 18 liter

plastic chamber (Winfield Red, 16 mg or less of tar, 1.2 mg or less

of nicotine and 15 mg or less of CO, Philip Morris) over 15 min

with a 5 minute recovery interval and this was then repeated such

that mice received 2 cigarettes over a 30 min period. Smoke was

generated in 50-ml tidal volumes over 10 seconds by use of timed

draw-back. The mean total suspended particulate (TSP) mass

concentration in the chamber containing cigarette smoke gener-

ated from one cigarette, measured from 3 min 13 s to 15 min, was

419 mg/m3 as previously published [22]. This exposure protocol

was repeated three times a day (8 am, 12 pm and 4 pm exposures)

for 6 days a week and generates carboxyhemoglobin levels within

the range observed in human smokers [22]. Sham animals were

handled identically without cigarette smoke exposure. After 16

weeks of CS one group of mice was sacrificed, as described below.

The remaining groups were then sacrificed after a period without

CS of 4 and 12 weeks. Body weight was measured twice per week.

Tissue Collection
The study protocol included 4 groups (n = 11–14 per group).

Mice were weighed and given an anesthetic overdose (ketamine

and xylazine, 180 and 32 mg/kg i.p., respectively) and allocated to

the following experimental protocols. Cohort 1 (n = 8) were

subjected to bronchoalveolar lavage (BAL). Briefly, lungs from

each mouse were lavaged in situ with 0.4 ml PBS, followed by

three 0.3 mL of PBS, with 1 ml of BAL fluid (BALF) recovered

from each animal. Smoke exposure had no effect on the recovered

volume as previously shown [22]. Whole lungs were perfused free

of blood via right ventricular perfusion with 10 ml of saline,

rapidly excised en bloc, blotted. The large left lobe was snap

frozen in liquid nitrogen and stored at 280uC for QPCR analysis.

The remaining lung tissue was retained and subjected to flow

cytometry analysis as detailed in the flow cytometry methods

section. Cohort 2 (n = 5–6) were subjected to histology as detailed

in the histology methods section.

Cellular Inflammatory Response
Bronchoalveolar lavage fluid (BALF) was collected as previously

described [22]. Cytospins were prepared at 400 rpm for 10 min

on a Cytospin 3 (Shandon, UK). Cytospin slides were stained with

DiffQuik (Dade Baxter, Australia) and 500 cells per slide were by

standard morphological criteria.

Flow Cytometry
BALF cells were resuspended in FACS buffer (PBS 1% FCS).

Lungs were perfused with ice-cold PBS to remove excess blood

before single cell suspensions were obtained using collagenase.

Briefly, whole lungs were digested with RPMI containing

collagenase D (1 mg/mL) and DNase I (Roche, Mannheim,

Germany) and cells were washed and recovered by centrifugation.

Erythrocytes were lysed by incubation with RBC lysis buffer. To

avoid non-specific binding of Abs to FcRc, FACS Buffer

containing anti-mouse CD16/32 mAb (Mouse BD Fc Block)

(2.4G2, BD) was added to all primary stains. Cells were labeled

with fluorophore-conjugated antibodies at pre-optimized dilutions

to CD3-FITC, CD4-PE, CD8-PE, CD49b-PE (NK/NK T

marker) and CD69-FITC (all from Becton Dickinson) for 1 h at

4uC and then washed twice in FACS buffer and resuspended in a

final volume of 0.5 ml of FACS buffer. Data was acquired on a BD

FACSCalibur flow cytometer (Becton Dickinson) and typically up

to 105 viable cell events were collected for analysis. A strict gating

strategy was used to determine different immune cell populations

as follows: single cell gate (FSC-H vs FSC-A), live cells (propidium

iodide exclusion), granularity/size cell gate (FSC-A vs SSC-A) and

specific surface marker gates. Flowjo software (version 7.2.4, Tree

Star, OR) was used to generate plots for data analysis.
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Histology
Mouse lungs (n = 5–6 per group) were perfusion fixed in situ via

a tracheal cannula with 10% neutral buffered formalin (NBF) at

25 cm H2O pressure. After 10 min, the trachea was ligated and

the lungs were left in situ for 1 hr, then removed and immersed in

10% NBF for at least 24 hr and then embedded in paraffin. After

paraffin embedding, 4 mm sections were prepared and stained

with hematoxylin and eosin. The number of pigmented macro-

phages was counted by a treatment-blind observer at x200

magnification, with at least 8 fields captured per sample for

analysis using ImageJ software. Assessment of the number of

lymphoid follicles per mm2 of lung tissue was determined as

previously published [23].

Quantitative RT-PCR
Total RNA was isolated from lung tissue using an RNeasy kit

(Qiagen, MD, USA) and was used as a template to generate first-

strand cDNA synthesis using SuperScript III (Invitrogen, CA,

USA). TaqMan low density arrays (Applied Biosystem, CA, USA)

were used for determining gene expression of individual samples

using an ABI 7900 HT Sequence Detection System (Applied

Biosystems). Gene expression was quantified using 18S rRNA as

an internal control as previously described [22].

Statistical Analyses
Results are expressed as mean 6 SE. All data were analyzed

using two-way ANOVA and when statistical significance was

achieved a post hoc Bonferroni test for multiple comparisons was

used to compare between treatment groups. All statistical analyses

were performed with GraphPad Prism for Windows (version 6.02).

In all cases, probability values less than 0.05 (P,0.05) were

considered statistically significant.

Results

Cessation of CS exposure restored body weight
As previously reported [24,25] mice exposed to CS failed to

gain as much body weight as the Sham handled mice and were

15% lighter at the conclusion of the 16 week exposure period (P,

0.05; Figure 1). After smoking cessation mice rapidly gained

weight but remained significantly lighter by 6% after 4 weeks of

recovery (P,0.05). By 12 weeks of recovery the body weight of

mice previously exposed to CS was no different to the sham

handled mice. Since the systemic effects of cigarette smoke resolve

by 12 weeks, the cellular and molecular markers were character-

ized at this time point. In addition, following 16 weeks of smoke

exposure, no significant increase in airspace enlargement was

observed in BALB/c mice, which is consistent with previous

studies that show an increase in mean linear intercept and

destructive index in longer term chronic exposure models (i.e. 6

months) [26].

Neutrophil and lymphocyte cell number remained
elevated after 12 weeks of CS cessation

Mice exposed to CS for 16 weeks (6 cigarettes/day, 6 days/

week) had a significant increase in total, macrophage and

neutrophil number in BALF compared to sham mice (P,0.05,

Figure 2A–C). Following 12 weeks of CS cessation BALF

macrophage and total cell number decreased to sham levels. Peak

neutrophil numbers in CS exposed mice declined by approxi-

mately 10-fold in the 12 weeks CS cessation group, however

remained significantly elevated by 5-fold compared to Sham mice

(P,0.05, Figure 2C). FACS analysis was used to determine the

number of Ly6G+ neutrophils in the lung tissue, which showed

that tissue neutrophils accumulated with CS exposure, resulting in

a 1.6-fold increase above sham exposed mice (Figure 2D). Unlike

neutrophil numbers in the BALF, tissue associated neutrophil

numbers in the CS cessation group normalized to sham levels

(Figure 2D).

Figure 1. Smoke-induced weight loss was reversed 12 weeks after CS cessation. Male BALB/c mice were either exposed to 6 cigarettes/day,
6 days/week (&) or sham handled (m) for 16 weeks. After smoke exposure, groups of mice were then exposed to room air without cigarette smoke
for either 4 weeks (=) or 12 weeks (¤). For all groups body weight was determined weekly. Data are shown as mean 6 SE for n = 14–18 per
treatment group.
doi:10.1371/journal.pone.0113180.g001
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FACS analysis was used to determine CD3+ CD4+ and

activated CD69+CD8+ T cell number in BALF and lung tissue

(Figure 3A–F). In lung tissue, CS had no effect on CD4+ T cell

numbers and no change in frequency was observed in the

cessation groups (Figure 3A). CD4+ T cells were also analyzed in

the BALF compartment following 12 weeks CS recovery,

demonstrating a 1.6-fold increase above Sham exposed mice

(Figure 3B). Activated CD8+ T cells were also quantified by flow

cytometry in the lung tissue, demonstrating a significant 2.3-fold

increase in CS-exposed mice above Sham controls (Figure 3C).

There was also a trend towards increased CD8+ T cell numbers in

the CS cessation group (1.5-fold); however this failed to reach

statistical significance. Analysis of BALF CD8+ T cells numbers

demonstrated a 2.4-fold increase in the recovery group compared

to the Sham controls (Figure 3D). In addition, activated NK cells

were quantified in the lung and BAL compartment demonstrating

a 2-fold increase in the lung tissue that was maintained in the CS

cessation group (Figure 3E). In contrast there was no increase in

activated NK cells in the BAL compartment (Figure 3F).

Cigarette smoke exposure induced lymphoid aggregates
and the prolonged elevation in pigmented macrophages

Hematoxylin and eosin staining of lung sections revealed the

presence of structures consistent with the formation of lymphoid

aggregates, a hallmark of chronic inflammation in CS exposed

mice, which persisted following 12 weeks of cessation (Figure 4A).

Quantification of the number of tertiary lymphoid aggregates

demonstrated that these structures appeared with 16 weeks of CS

exposure and consistent with a recent study [23], persisted in the

cessation group where numbers appeared to slightly increase over

time (Figure 4B). The lymphoid aggregates were anatomically

located in close proximity to pigmented macrophages. The

Figure 2. Effect of sub-chronic smoke exposure and 12 weeks of CS cessation on BALF cellularity and lung neutrophilia. Male BALB/c
mice were either exposed to 6 cigarettes/day, 6 days/week (&) or sham handled (%) for 16 weeks. After smoke exposure a group of mice was then
exposed to room air without cigarette smoke for 12 weeks. Total cells (A), macrophages (B) and neutrophils (C) were determined in BALF. Data are
shown as mean 6 SE for n = 8–11 per treatment group. (D) Single cell suspension of the lungs was used to determine neutrophil numbers in the lung
tissue by flow cytometry. Data were analysed by two-way ANOVA and when significance was achieved a post hoc Bonferroni test was performed.
#P,0.05 significant post hoc effect of CS compared to sham animals at the same recovery time-point.
doi:10.1371/journal.pone.0113180.g002
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Figure 3. Effect of sub-chronic smoke exposure and 12 weeks of CS cessation on BALF and lung CD4+ and activated CD8+

lymphocytes. Male BALB/c mice were either exposed to 6 cigarettes/day, 6 days/week (&) or sham handled (%) for 16 weeks. After smoke
exposure a group of mice was then exposed to room air without cigarette smoke for 12 weeks. CD4+CD3+ lymphocyte number was determined in
individual lung single cell suspensions (A) and BALF cells (B) using FACS analysis. Activated CD8+CD69+ lymphocyte number was determined in
individual lung single cell suspensions (C) and BALF cells (D) using FACS analysis. In addition, activated NK cell numbers were quantified in individual
lung single cell suspensions (E) and BALF cells (F). Data are shown as mean 6 SE for n = 7–8 per treatment group. Data were analysed by two-way
ANOVA and when significance was achieved a post hoc Bonferroni test was performed. #P,0.05 significant post hoc effect of CS compared to sham
animals at the same recovery time-point.
doi:10.1371/journal.pone.0113180.g003
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Figure 4. Sub-chronic smoke exposure resulted in the prolonged presence of pigmented macrophages. Representative histological
staining of hematoxylin and eosin sections from sham and CS exposed mice and after 12 weeks of recovery (A). Magnification, x100 and x1000. The
histological sections were scored for the number of lymphoid aggregates (B). The histological sections were scored for the presence of pigmented
macrophages (C). Gene expression of the macrophage survival cytokines GM-CSF (D) and CSF-1 (E) was determined by Q-PCR, normalized to 18S
rRNA and expressed as a fold change relative to the Sham no recovery group. Data are shown as mean 6 SE for n = 7–8 per treatment group for
QPCR and n = 4–6 for immunhistochemistry. Data were analysed by two-way ANOVA and when significance was achieved a post hoc Bonferroni test
was performed. #P,0.05 significant post hoc effect.
doi:10.1371/journal.pone.0113180.g004
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accumulation of brown pigmented macrophages in the CS mice

was quantified by a blind observer. CS exposure induced a

significant increase in pigmented macrophages compared to sham

mice (P,0.05, Figure 4C). Cessation resulted in a further 3-fold

increase in the numbers of pigmented macrophages when

compared to mice analyzed immediately after the 16 weeks of

CS exposure (P,0.05, Figure 4C). Gene expression analysis of

macrophage colony stimulating factors known to promote the

survival and proliferation of leukocytes demonstrated that CS

exposure caused a significant induction of GM-CSF mRNA

compared to sham animals and this increase persisted following 12

weeks of cessation (P,0.05, Figure 4D). The mRNA expression of

CSF-1 was also significantly induced after 12 weeks of CS

cessation (P,0.05, Figure 4E).

Differential effects of CS cessation on markers of
alternative macrophage activation and neutrophil
mobilization

Expression of markers of alternative macrophage activation,

MMP-12 and IL-10, was examined by QPCR of the lung tissue.

CS caused a marked induction of MMP-12 gene expression (36-

fold) and this remained significantly elevated by 19-fold after 12

weeks of cessation compared to sham animals (P,0.05, Fig-

ure 5A). IL-10 mRNA expression was also significantly elevated in

the CS group after 12 weeks of smoking cessation compared to

sham mice (P,0.05, Figure 5B).

The mRNA expression of neutrophil mobilization mediators

was also examined. CS exposure significantly increased the

mRNA expression of MIP-2a, KC and G-CSF compared to

sham mice (P,0.05, Figure 6). 12 weeks of CS cessation resulted

in a significant reduction in the mRNA expression of MIP-2a (2.3-

fold), KC (2.3-fold) and G-CSF (2.1-fold) when compared to mice

that were analyzed immediately following CS (P,0.05). Expres-

sion of the alternative neutrophil mobilizing mediators, IL17A and

SAA, significantly increased by 9-fold and 33-fold above sham

exposed mice respectively (P,0.05, Figure 7). IL-17A transcript

levels did not decrease with CS cessation, where there was a 13-

fold increase in the CS cessation group (Figure 7A). Although

there was a trend towards reduced expression of SAA transcript in

the CS cessation group (17-fold above sham), this was not

significantly different to levels in CS exposed mice (Figure 7B). In

addition, the well characterized TH17 polarising cytokines IL-6

(Figure 7C) and IL23 (Figure 7D) were measured by QPCR in the

lung tissue. IL-6 levels were increased by 16 weeks of CS exposure;

however there was no difference in IL-6 expression in the CS

cessation arm. IL23 levels did not significantly increase with 16

weeks CS exposure.

Discussion

COPD is a disease that displays a complex immunological

profile associated with the engagement of innate and adaptive

cellular processes in response to chronic CS exposure. Immune

cells of both the innate and adaptive response persisted in our CS

cessation model and this was previously associated with a modest

reduction of alveolar enlargement and increased pulmonary

compliance [27]. The innate response is particularly active in

COPD, where macrophages and neutrophils accumulate in

COPD airways [28], and neutrophilic inflammation fails to fully

Figure 5. Effect of sub-chronic smoke exposure and 12 weeks
of CS cessation on alternative macrophage marker mRNA
expression in lung tissue. Male BALB/c mice were either exposed to
6 cigarettes/day, 6 days/week (&) or sham handled (%) for 16 weeks.
After smoke exposure a group of mice was then exposed to room air
without cigarette smoke for 12 weeks. Gene expression of the
alternative macrophage markers, MMP-12 (A) and IL-10 (B) was
determined by Q-PCR, normalized to 18S rRNA and expressed as a
fold change relative to the Sham 0 weeks recovery group. Data are

shown as mean 6 SE for n = 7–8 per treatment group. Data were
analysed by two-way ANOVA and when significance was achieved a
post hoc Bonferroni test was performed. #P,0.05 significant post hoc
effect.
doi:10.1371/journal.pone.0113180.g005
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resolve in response to CS cessation [4,5]. Our experimental model

displayed a similar response to CS cessation where neutrophilic

inflammation in the BAL compartment reduced with cessation but

failed to fully resolve to control levels. In contrast, tissue

neutrophils declined to control levels with CS cessation, which

was consistent with the decline in G-CSF, a major hematopoietic

growth factor required for mobilization and maturation of

granulocyte precursors. Given the short-lived nature of blood

derived neutrophils, the low level persistence of neutrophils in the

BAL compartment is characteristic of an inflammatory response

that has failed to fully resolve.

In addition, the adaptive response was also engaged, where

increased CD4+ and CD8+ lymphocyte numbers in the BALF

compartment remained elevated following CS cessation. Although

total lymphocyte numbers in lung tissue were not significantly

increased in the CS cessation group, there was an accumulation of

lymphoid follicle-like structures in response to CS exposure that

persisted in the cessation group. This is consistent with a recent

report, where the persistence of lymphoid aggregates was

associated with increased anti-nuclear autoantibody (ANA) pro-

duction [23]. The role of these organized structures remain to be

fully resolved, however therapeutic targeting of lymphoid follicle

formation in mice chronically exposed to CS failed to suppress

airway remodeling and alveolar enlargement [29]. There was also

an increase in innate lymphoid NK cells in CS exposed mice,

which persisted in the cessation group. This is consistent with the

observed increase in NK cells in the induced sputum of COPD

patients [30]. In a chronic CS challenge model, NK cells were

shown to be more primed to release inflammatory mediators

including IL-12 and IL-18 [31]. It has also been shown that the

NK cell group 2D (NKG2D) ligand is increased in response to CS-

exposure [32], which can sustain activation of cytotoxic T cells

including NK cells.

CS models consistently show increased macrophage numbers in

the BALF compartment (reviewed in [33]) and elevated macro-

phage numbers have been observed in other CS cessation models

[27]. Here, we observed the persistence of pigmented macrophage

populations that typically clustered together in regions adjacent to

lymphoid aggregates. The presence of pigmented macrophages is

thought to be related to the accumulation of CS products ingested

by resident lung macrophages. To the best of our knowledge, this

is the first study to quantify pigmented macrophages and

demonstrate an increase with CS cessation. In conjunction with

increased pigmented macrophage numbers, leukocyte colony

stimulating factors, GM-CSF and CSF-1 transcript were signifi-

cantly increased in the CS cessation group. Both CSFs are known

to promote survival, proliferation and differentiation of myeloid

lineages, and the findings presented here suggest that pigmented

macrophages may proliferate in response to increased CSF

expression. Whether these pigmented macrophages represent a

distinct phenotype in COPD that contribute to disease pathobi-

ology remains to be determined. There is however, growing

evidence that macrophages do not conform to the classic M1/M2

Figure 6. Effect of sub-chronic smoke exposure and 12 weeks
of CS cessation on classic neutrophil mobilization mediators.
Male BALB/c mice were either exposed to 6 cigarettes/day, 6 days/week
(&) or sham handled (%) for 16 weeks. After smoke exposure a group
of mice was then exposed to room air without cigarette smoke for 12
weeks. Gene expression of MIP-2a (A), KC (B) and G-CSF (C) was
determined by Q-PCR, normalized to 18S rRNA and expressed as a fold
change relative to the Sham group. Data are shown as mean 6 SE for
n = 7–8 per treatment group. Data were analysed by two-way ANOVA
and when significance was achieved a post hoc Bonferroni test was
performed. #P,0.05 significant post hoc effect.
doi:10.1371/journal.pone.0113180.g006
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dichotomy in COPD [14,34]. In this study, IL-10 and MMP-12

expression were used as markers for differential macrophage

polarization as previously reported [34], and increased expression

suggest that alternative macrophage populations persist and

contribute to chronic inflammation.

Previous global expression studies have shown that the majority

of CS-inducible genes decline with cessation [35]. In our study,

there was a focus on genes involved in neutrophil mobilization that

are known to be upregulated in COPD. We have shown that IL-

17A and SAA were not significantly reduced in the CS cessation

group, in contrast to MIP-2a, KC and G-CSF that significantly

declined with recovery. Our previous studies have demonstrated

intense SAA immunoreactivity [19] and a positive correlation with

neutrophilic airway inflammation [20] in the lungs of COPD

patients. SAA is also a ligand for the GPCR termed ALX/FPR2,

where SAA is a potent chemotactic factor that mediates phagocyte

migration via this receptor [36]. SAA also promotes airway

neutrophilic inflammation in a manner that is opposed by the

eicosanoid, LipoxinA4 [19]. Lipoxins and resolvins are alternative

lipid-based ALX/FPR2 ligands that can oppose the actions of

SAA and actively promote the resolution of inflammation

(reviewed in [37,38]). Hence, the relative abundance of alternative

ALX/FPR2 ligands may contribute to the impairment of

resolution, where increased SAA may skew the balance towards

a pro-inflammatory state.

SAA has also been shown to promote airway neutrophil

recruitment via IL-17A dependent mechanisms [20]. There is also

emerging evidence for an important role for IL-17A in COPD. IL-

17A+ cells have been shown to be increased in the bronchial

submucosa of chronic smokers and stable COPD subjects [17,39].

Furthermore, genetic ablation of the IL-17R in experimental CS

models protected the mice against the development of emphysema

[18], hence identifying IL-17A as a major inflammatory cytokine

that can drive pathological inflammation. Recent studies also

Figure 7. Effect of sub-chronic smoke exposure and 12 weeks of CS cessation on IL-17A and SAA expression. Male BALB/c mice were
either exposed to 6 cigarettes/day, 6 days/week (&) or sham handled (%) for 16 weeks. After smoke exposure a group of mice was then exposed to
room air without cigarette smoke for 12 weeks. Gene expression of IL-17A (A), SAA (B), IL-6 (C) and IL23 (D) was determined by Q-PCR, normalized to
18S rRNA and expressed as a fold change relative to the Sham group. Data are shown as mean 6 SE for n = 6–8 per treatment group. Data were
analyzed by two-way ANOVA and when significance was achieved a post hoc Bonferroni test was performed.
doi:10.1371/journal.pone.0113180.g007
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demonstrate that neutrophilic inflammation induced by CS

exposure is potently suppressed in mice deficient in IL-17A [40]

and in response to neutralisation with a blocking antibody [41].

Furthermore, inhibition of IL-17A signaling in an experimental

COPD model also suppressed accumulation of macrophages in

response to CS exposure [18]. Our finding of persistent IL-17A

expression in the CS cessation group is consistent with a recent

study that identified an increase in the frequency of IL-17A

expressing CD4+ (TH17) and CD8+ (TC17) T cells in CS exposed

mice [42]. In our study, known TH17 cytokines were also

quantified by QPCR and showed that IL-6, but not IL23 was

significantly increased in response to CS exposure. This finding is

consistent with our previous study that investigated TH17 cytokine

expression in response to SAA stimulation, where IL-6 was

predominately induced [20]. Although SAA levels were not

significantly reduced with CS cessation, there was a trend towards

reduced expression relative to the non-cessation group and IL-6

levels were not increased in the CS cessation group. This data

suggests that SAA and IL-6 can be sufficient to initiate polarization

and maturation of IL-17A expressing cellular populations in CS

exposed lungs, however once established, IL-17A+ cells may be

maintained in the mucosa independently of TH17 cytokines.

In addition to classic TH17 pathways, there is also emerging

evidence for alternative innate cellular sources of IL-17A in

inflammatory lung models. This may be particularly relevant to

COPD as NOD. SCID mice deficient in B and T cells still develop

airspace enlargement in response to chronic CS exposure, to

suggest a more prominent role for innate immune responses [43].

Indeed, innate sources of IL-17A have been identified in

inflammatory lung models including macrophages, neutrophils,

NK cells and cd T cells [20,44] and the predominant source of IL-

17A in COPD is yet to be defined. In conclusion, this study has

investigated innate and adaptive responses following CS cessation

and has identified the IL-17A and SAA innate cytokine networks

as markers of persistent inflammatory responses. The targeting of

the IL-17A axis may represent a novel therapeutic strategy to

promote the resolution of inflammation following CS cessation.
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